高中数学竞赛基础知识讲解

合集下载

高中数学竞赛讲义第一讲《复数》练习

高中数学竞赛讲义第一讲《复数》练习

高中数学竞赛第一讲复数一、基础知识1.复数的运算法则:三角形式,若z 1=r 1(cos θ1+i sin θ1), z 2=r 2(cos θ2+i sin θ2),则z 1••z 2=r 1r 2[cos(θ1+θ2)+i sin(θ1+θ2)];11222(0),z r z z r ≠=[cos(θ1-θ2)+i sin(θ1-θ2)],或记为z 1z 2=r 1r 212()i e θθ+;.)(212121θθ-=i e r r z z 2.棣莫弗定理:[r (cos θ+i sin θ)]n =r n (cos nθ+i sin nθ). 3.开方:若=nw r (cos θ+i sin θ),则)2sin2(cosnk i nk r w n πθπθ+++=,k =0,1,2,…,n -1。

4.方程10(2n x n n n -=≥为自然数,且)的个根 记为:22cossin (0,1,2,,1)k k k i k n n nππε=+=-称为1的n 次单位根。

由棣莫弗定理,全部n 次单位根可表示为112111-n εεε ,,,。

关于单位根,有如下常用性质:)20111211≥=++++-n n (εεε ;任意两个单位根j i εε,的乘积仍为一个n 次单位根,且(1)的余数)除以是其中时,当n j i k n j i k j i j i j i +=≥+=⋅++,(εεεεε; (2)设m 为整数,1≠n ,则⎩⎨⎧=++++-的倍数)不是的倍数),是n m n m n mn m m (0(1121εεε(3)1+z 1+z 2+…+z n -1=0;(4)x n -1+x n -2+…+x +1=(x -z 1)(x -z 2)…(x -z n -1)=(x -z 1)(x -21z )…(x -11n z -). 特别地:1的立方根有:1,ω=-12+32i ,-ω=-12-32i(1)ω3=-ω3=1 (2)1+ω+ω2=0或1+-ω+-ω2=0 (3)ω-ω=1 (4)ω2=-ω,-ω2=ω (5)(1±i )2=±2i ,(3±4i )2=-7±24i5.代数基本定理:在复数范围内,一元n 次方程至少有一个根。

高中数学竞赛讲义第十章 直线与圆的方程【讲义】

高中数学竞赛讲义第十章  直线与圆的方程【讲义】

第十章 直线与圆的方程一、基础知识1.解析几何的研究对象是曲线与方程。

解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。

如x 2+y 2=1是以原点为圆心的单位圆的方程。

2.求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。

3.直线的倾斜角和斜率:直线向上的方向与x 轴正方向所成的小于1800的正角,叫做它的倾斜角。

规定平行于x 轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。

根据直线上一点及斜率可求直线方程。

4.直线方程的几种形式:(1)一般式:Ax+By+C=0;(2)点斜式:y-y 0=k(x-x 0);(3)斜截式:y=kx+b ;(4)截距式:1=+b y a x ;(5)两点式:121121y y y y x x x x --=--;(6)法线式方程:xcos θ+ysin θ=p(其中θ为法线倾斜角,|p|为原点到直线的距离);(7)参数式:⎪⎩⎪⎨⎧+=+=θθsin cos 00t y y t x x (其中θ为该直线倾斜角),t 的几何意义是定点P 0(x 0, y 0)到动点P (x, y )的有向线段的数量(线段的长度前添加正负号,若P 0P 方向向上则取正,否则取负)。

5.到角与夹角:若直线l 1, l 2的斜率分别为k 1, k 2,将l 1绕它们的交点逆时针旋转到与l 2重合所转过的最小正角叫l 1到l 2的角;l 1与l 2所成的角中不超过900的正角叫两者的夹角。

若记到角为θ,夹角为α,则tan θ=21121k k k k +-,tan α=21121k k k k +-.6.平行与垂直:若直线l 1与l 2的斜率分别为k 1, k 2。

高中数学竞赛讲义(7)解三角形

高中数学竞赛讲义(7)解三角形

高中数学竞赛讲义(七)高中数学竞赛讲义(七)──解三角形──解三角形一、基础知识在本章中约定用A,B,C分别表示△ABC的三个内角,a, b, c分别表示它们所对的各边长,为半周长。

1.正弦定理:=2R(R为△ABC外接圆半径)。

推论1:△ABC的面积为S△ABC=推论2:在△ABC中,有bcosC+ccosB=a.推论3:在△ABC中,A+B=,解a满足,则a=A.正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。

先证推论1,由正弦函数定义,BC边上的高为bsinC,所以S△ABC=;再证推论2,因为B+C=-A,所以sin(B+C)=sinA,即sinBcosC+cosBsinC=sinA,两边同乘以2R得bcosC+ccosB=a;再证推论3,由正弦定理,所以,即sinasin(-A)=sin(-a)sinA,等价于[cos(-A+a)-cos(-A-a)]= [cos(-a+A)-cos(-a-A)],等价于cos( -A+a)=cos(-a+A),因为0<-A+a,-a+A<. 所以只有-A+a=-a+A,所以a=A,得证。

2.余弦定理:a2=b2+c2-2bccosA,下面用余弦定理证明几个常用的结论。

(1)斯特瓦特定理:在△ABC中,D是BC边上任意一点,BD=p,DC=q,则AD2= (1)【证明】 因为c 2=AB 2=AD 2+BD 2-2AD ·BDcos ,所以c 2=AD 2+p 2-2AD ·pcos ① 同理b 2=AD 2+q 2-2AD ·qcos , ②因为ADB+ADC=, 所以cos ADB+cosADC=0,所以q ×①×①+p +p +p×②得×②得qc 2+pb 2=(p+q)AD 2+pq(p+q)+pq(p+q),即,即AD 2=注:在(注:在(11)式中,若p=q p=q,则为中线长公式,则为中线长公式(2)海伦公式:因为b 2c 2sin 2A=b 2c 2 (1-cos 2A)=b 2c 2[(b+c)-a 2][a 2-(b-c) 2]=p(p-a)(p-b)(p-c).这里所以S △ABC =二、方法与例题 1.面积法。

高中数学竞赛基础知识-集合与简单逻辑

高中数学竞赛基础知识-集合与简单逻辑

高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。

集合分有限集和无限集两种。

集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。

例如{有理数},}0{>x x 分别表示有理数集和正实数集。

定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。

规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。

如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。

定义3 交集,}.{B x A x x B A ∈∈=且定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。

定义6 差集,},{\B x A x x B A ∉∈=且。

定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =;(3));(111B A C B C A C = (4)).(111B A C B C A C =【证明】这里仅证(1)、(3),其余由读者自己完成。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学竞赛教材讲义 第六章 三角函数讲义

高中数学竞赛教材讲义 第六章 三角函数讲义

高中数学竞赛教材讲义 第六章 三角函数讲义一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。

若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。

角的大小是任意的。

定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。

360度=2π弧度。

若圆心角的弧长为L ,则其弧度数的绝对值|α|=rL ,其中r 是圆的半径。

定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=r y ,余弦函数co s α=r x ,正切函数tan α=xy,余切函数cot α=y x ,正割函数se c α=xr,余割函数c s c α=.y r定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=αcsc 1,co s α=αsec 1;商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α, cot (π-α)=-cot α; (Ⅳ)s in ⎪⎭⎫⎝⎛-απ2=co s α, co s ⎪⎭⎫ ⎝⎛-απ2=s in α, tan ⎪⎭⎫⎝⎛-απ2=cot α(奇变偶不变,符号看象限)。

高中数学竞赛_平面向量【讲义】

高中数学竞赛_平面向量【讲义】

第八章 平面向量一、基础知识定义 1 既有大小又有方向的量,称为向量。

画图时用有向线段来表示,线段的长度表示向量的模。

向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。

书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。

零向量和零不同,模为1的向量称为单位向量。

定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。

定理 1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。

加法和减法都满足交换律和结合律。

定理2 非零向量a, b 共线的充要条件是存在实数≠λ0,使得a=.b λ f定理3 平面向量的基本定理,若平面内的向量a, b 不共线,则对同一平面内任意向是c ,存在唯一一对实数x, y ,使得c=xa+yb ,其中a, b 称为一组基底。

定义3 向量的坐标,在直角坐标系中,取与x 轴,y 轴方向相同的两个单位向量i, j 作为基底,任取一个向量c ,由定理3可知存在唯一一组实数x, y ,使得c=xi+yi ,则(x, y )叫做c 坐标。

定义4 向量的数量积,若非零向量a, b 的夹角为θ,则a, b 的数量积记作a ·b=|a|·|b|cos θ=|a|·|b|cos<a, b>,也称内积,其中|b|cos θ叫做b 在a 上的投影(注:投影可能为负值)。

定理4 平面向量的坐标运算:若a=(x 1, y 1), b=(x 2, y 2), 1.a+b=(x 1+x 2, y 1+y 2), a-b=(x 1-x 2, y 1-y 2), 2.λa=(λx 1, λy 1), a ·(b+c)=a ·b+a ·c ,3.a ·b=x 1x 2+y 1y 2, cos(a, b)=222221212121yx y x y y x x +⋅++(a, b ≠0),4. a//b ⇔x 1y 2=x 2y 1, a ⊥b ⇔x1x2+y 1y 2=0.定义5 若点P 是直线P 1P 2上异于p 1,p 2的一点,则存在唯一实数λ,使21PP P P λ=,λ叫P 分21P P 所成的比,若O 为平面内任意一点,则λλ++=121OP OP 。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学竞赛基本知识集锦广州市育才中学数学科 邓军民 整理一、三角函数 常用公式由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。

但是由于现在的教材中常用公式删得太多,有些还是不能不写。

先从最基础的开始(这些必须熟练掌握): 半角公式2cos 12sinαα-±= 2cos 12cosαα+±= αααααααcos 1sin sin cos 1cos 1cos 12tan+=-=+-±=积化和差()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos()()[]βαβαβα-++=cos cos 21cos cos()()[]βαβαβα--+-=cos cos 21sin sin和差化积2cos2sin2sin sin βαβαβα-+=+2sin2cos 2sin sin βαβαβα-+=- 2cos2cos 2cos cos βαβαβα-+=+ 2sin2sin 2cos cos βαβαβα-+-=- 万能公式ααα2tan 1tan 22sin +=ααα22tan 1tan 12cos +-= ααα2tan 1tan 22tan -=三倍角公式()()αααααα+-=-=οο60sin sin 60sin 4sin 4sin 33sin 3 ()()αααααα+-=-=οο60cos cos 60cos 4cos 3cos 43cos 3二、某些特殊角的三角函数值三、三角函数求值给出一个复杂的式子,要求化简。

这样的题目经常考,而且一般化出来都是一个具体值。

要熟练应用上面的常用式子,个人认为和差化积、积化和差是竞赛中最常用的,如果看到一些不常用的角,应当考虑用和差化积、积化和差,一般情况下直接使用不了的时候,可以考虑先乘一个三角函数,然后利用积化和差化简,最后再把这个三角函数除下去 举个例子求值:76cos74cos 72cosπππ++ 提示:乘以72sin 2π,化简后再除下去。

求值:︒︒-︒+︒80sin 40sin 50cos 10cos 22来个复杂的 设n 为正整数,求证nn n i ni 21212sin1+=+∏=π 另外这个题目也可以用复数的知识来解决,在复数的那一章节里再讲四、三角不等式证明最常用的公式一般就是:x 为锐角,则x x x tan sin <<;还有就是正余弦的有界性。

例求证:x 为锐角,sinx+tanx<2x设12π≥≥≥z y x ,且2π=++z y x ,求乘积z y x cos sin cos 的最大值和最小值。

注:这个题目比较难 数列关于数列的知识可以说怎么学怎么有,还好我们只是来了解竞赛中最基本的一些东西,不然我可写不完了。

1给递推式求通项公式(1)常见形式即一般求解方法注:以下各种情况只需掌握方法即可,没有必要记住结果,否则数学就变成无意义的机械劳动了。

①q pa a n n +=+1若p=1,则显然是以a 1为首项,q 为公差的等差数列, 若p ≠1,则两边同时加上1-p q ,变为⎪⎪⎭⎫⎝⎛-+=-++111p q a p p q a n n 显然是以11-+p qa 为首项,p 为公比的等比数列 ②()n f pa a n n +=+1,其中f(n)不是常数 若p=1,则显然a n =a 1+()∑-=11n i i f ,n ≥2若p ≠1,则两边同时除以p n+1,变形为()111++++=n n n n n pn f p a p a 利用叠加法易得()∑-=++=1111n i i n n p i f p a p a ,从而()⎥⎦⎤⎢⎣⎡+=∑-=-1111n i i n n p i f a p a 注:还有一些递推公式也可以用一般方法解决,但是其他情况我们一般使用其他更方便的方法,下面我们再介绍一些属于数学竞赛中的“高级方法”。

(2)不动点法当f(x)=x 时,x 的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法。

典型例子:da c ba a a n n n +⋅+⋅=+1注:我感觉一般非用不动点不可的也就这个了,所以记住它的解法就足够了。

我们如果用一般方法解决此题也不是不可以,只是又要待定系数,又要求倒数之类的,太复杂,如果用不动点的方法,此题就很容易了 令dx c b x a x +⋅+⋅=,即()02=--+b x a d cx ,令此方程的两个根为x 1,x 2, 若x 1=x 2 则有p x a x a n n +-=-+11111其中k 可以用待定系数法求解,然后再利用等差数列通项公式求解。

注:如果有能力,可以将p 的表达式记住,p=da c+2 若x 1≠x 2则有212111x a x a q x a x a n n n n --⋅=--++其中k 可以用待定系数法求解,然后再利用等比数列通项公式求解。

注:如果有能力,可以将q 的表达式记住,q=21cx a cx a --(3)特征根法特征根法是专用来求线性递推式的好方法。

先来了解特征方程的一般例子,通过这个来学会使用特征方程。

①n n n qa pa a +=++12特征方程为x 2=px+q ,令其两根为x 1,x 2则其通项公式为nn n x B x A a 21⋅+⋅=,A 、B 用待定系数法求得。

②n n n n ra qa pa a ++=+++123特征方程为x 3=px 2+qx+r ,令其三根为x 1,x 2,x 3则其通项公式为nn n n x C x B x A a 321⋅+⋅+⋅=,A 、B 、C 用待定系数法求得。

注:通过这两个例子我们应当能够得到特征方程解线性递归式的一般方法,可以试着写出对于一般线性递归式的特征方程和通项公式,鉴于3次以上的方程求解比较困难,且竞赛中也不多见,我们仅需掌握这两种就够了。

(4)数学归纳法简单说就是根据前几项的规律猜出一个结果然后用数学归纳法去证。

这样的题虽说有不少但是要提高不完全归纳的水平实在不易。

大家应当都会用数学归纳法,因此这里不详细说了。

但需要记得有这样一个方法,适当的时候可以拿出来用。

(5)联系三角函数三角函数是个很奇妙的东西,看看下面的例子2112nnn a a a -=+ 看起来似乎摸不着头脑,只需联系正切二倍角公式,马上就迎刃而解。

注:这需要我们对三角函数中的各种公式用得很熟,这样的题目竞赛书中能见到很多。

例数列{}n a 定义如下:21=a ,2142n n a a --=+,求{}n a 通项注:这个不太好看出来,试试大胆的猜想,然后去验证。

(6)迭代法先了解迭代的含义()()()()()()()()()()ΛΛ,,,,x f f f x f x f f x fx f x f x x f ====3210f 右上角的数字叫做迭代指数,其中()x f n-是表示()x f n 的反函数再来了解复合的表示()()()x g f x g f =ο,()()()()x h g f x h g f =οο如果设()()x g f gx F οο1-=,则()()x g f g x F nn οο1-=,就可以将求F(x)的迭代转变为求f(x)的迭代。

这个公式很容易证明。

使用迭代法求值的基础。

而在数列中我们可以将递推式看成()n n a F a =+1,因此求通项和求函数迭代就是一样的了。

我们尽量找到好的g(x),以便让f(x)变得足够简单,这样求f(x)的n 次迭代就很容易得到了。

从而再得到F(x)的n 次迭代式即为通项公式。

练习{}n n n n n n n a a a a a a a a a 212221221221221++-+=+===,,,满足已知数列,试求数列的通项公式。

注:此题比较综合,需熟练掌握各种求通项公式的常用方法。

下面是我的一个原创题目已知数列{}n a 满足1021==a a ,,()11-++⋅=n n n a a n a ,求该数列的通项公式。

2数列求和求和的方法很多,像裂项求和,错位相减等等,这些知识就算单纯应付高考也应该都掌握了,这里不再赘述。

主要写竞赛中应当掌握的方法——阿贝尔恒等式。

阿贝尔(Abel )恒等式 有多种形式,最一般的是()∑∑-=+=+-=1111n k n n k k k nk kk b S b b S ba其中∑==ki kk aS 1注:个人认为,掌握这一个就够了,当然还有更为一般的形式,但是不容易记,也不常用。

Abel 恒等式就是给出了一个新的求和方法。

很多时候能简化不少。

例:假设021≥≥≥≥n a a a Λ,且∑==n i i a 121,求证:∑=≥-+ni i i i a 111计数问题 1抽屉原则我第一次接触抽屉原则,是在一本奥赛书的答案上,有一步骤是:由抽屉原则可得……,于是我就问同学,什么是抽屉原则,同学告诉我,三个苹果放进两个抽屉,必有一个抽屉里至少有两个苹果。

后来才发现,抽屉原则不只是这么简单的,它有着广泛的应用以及许多种不同的变形,下面简单介绍一下抽屉原则。

抽屉原则的常见形式一,把n+k (k ≥1)个物体以任意方式全部放入n 个抽屉中,一定存在一个抽屉中至少有两个物体。

二,把mn+k (k ≥1)个物体以任意方式全部放入n 个抽屉中,一定存在一个抽屉中至少有m+1个物体。

三,把m 1+m 2+…+m n +k (k ≥1)个物体以任意方式全部放入n 个抽屉中,那么后在一个抽屉里至少放入了m 1+1个物体,或在第二个抽屉里至少放入了m 2+1个物体,……,或在第n 个抽屉里至少放入了m n +1个物体四,把m 个物体以任意方式全部放入n 个抽屉中,有两种情况:①当n|m 时(n|m 表示n 整除m ),一定存在一个抽屉中至少放入了nm个物体;②当n 不能整除m 时,一定存在一个抽屉中至少放入了[nm]+1个物体([x]表示不超过x 的最大整数) 五,把无穷多个元素分成有限类,则至少有一类包含无穷多个元素。

注:背下来上面的几种形式没有必要,但应当清楚这些形式虽然不同,却都表示的一个意思。

理解它们的含义最重要。

在各种竞赛题中,往往抽屉原则考得不少,但一般不会很明显的让人看出来,构造抽屉才是抽屉原则中最难的东西。

一般来说,题目中一旦出现了“总有”“至少有”“总存在”之类的词,就暗示着我们:要构造抽屉了。

例:从自然数1,2,3,…99,100这100个数中随意取出51个数来,求证:其中一定有两个数,它们中的一个是另一个的倍数.用2种颜色涂5×5共25个小方格,证明:必有一个四角同色的矩形出现. 2容斥原理容斥原理常常使用,其实说简单点,就是从多的往下减,减过头了在加回来,又加多了再减,减多了再加……,最终得到正确结果。

相关文档
最新文档