动点直角三角形问题的解法
三角形、四边形中动点问题

§1. 三角形、四边形中的动点问题【解题思路与方法】1.关注变化因素和不变因素以及图形的特殊性,寻找常量和变量;2.化动为静 (由一般到特殊),以静制动;3.数学建模:确定图形运动中的变量关系时常常建立函数模型,确定图形运动中的特殊位置关系 时常常建立方程模型;4.关注运动问题的三个要素:运动方向、速度、范围(直线、射线、线段、折线);5.注重分类讨论,通过分别画图与分离图形使问题简单化;6.根据运动元素的不同分为动点问题、动线问题、动图问题三大类型(包括点、线、图同时运动).◆典例解析一、三角形中的动点问题例1. 已知,如图△ABC 是边长3cm 的等边三角形.动点P 以1cm/s 的速度从点A 出发,沿线段AB 向点B 运动.设运动时间为t (s ),(1)如图1,当t 为何值时,△PBC 是直角三角形?(2)如图2,若另一动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发.那么 当t 为何值时,△DCQ 是等腰三角形?(3)如图3,若另一动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D ,连接PC.如果动点P 、Q 都以1cm/s 的速度同时出发. 请探究:在点P 、Q 的运动过程中△PCD 和 △QCD 的面积是否相等?BCPA QDBCPAQDBCPA已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC 方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:(1)当t为何值时,△PBQ是直角三角形?(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC 的面积是△ABC面积的三分之二?如果存在,求出相应的t值;若不存在,请说明理由。
例2.如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)若点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A 点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?如图(1)△ABC 为等边三角形,动点D 在边CA 上,动点P 边BC 上,若这两点分别从C 、B 点同时出发,以相同的速度由C 向A 和由B 向C 运动,连接AP ,BD 交于点Q ,两点运动过程中AP=BD 。
2020届中考数学压轴题全揭秘 专题15 动点综合问题(含解析)

的速度向点 C 运动,其中一个动点到达终点时,另一个动点也随之停动,过点 N 作 NQ 垂直于 BC 交 AC
于点 Q,连结 MQ.
①求△ AQM 的面积 S 与运动时间 t 之间的函数关系式,写出自变量的取值范围;当 t 为何值时,S 有最大 值,并求出 S 的最大值; ②是否存在点 M,使得△ AQM 为直角三角形?若存在,求出点 M 的坐标;若不存在,说明理由.
【例 2】(模型建立) (1)如图 1,等腰直角三角形 ABC 中,ACB 90 ,CB CA ,直线 ED 经过点 C ,过 A 作 AD ED 于点 D ,过 B 作 BE ED 于点 E .求证: BEC CDA ;
(模型应用)
(2)已知直线 l1 : y
4 3
x
4
与坐标轴交于点
AQ=OB=4,于是得到 Q1(7,0),Q2(-1,0),②当∠APQ=90°时,如图 2,根据全等三角形
的性质得到 AQ=AB=5,于是得到 Q3(8,0),Q4(-2,0),③当∠PAQ=90°时,这种情况不存
在.
【详解】(1)在 y=- 4 x+4 中, 3
令 y=0,则 0=- 4 x+4, 3
【答案】(1)见解析;(2)y=−7x−21;(3)D(4,−2)或( 20 , 22 ). 33
【解析】(1)根据△ ABC 为等腰直角三角形,AD⊥ED,BE⊥ED,可判定 BEC CDA ;
(2)①过点 B 作 BC⊥AB,交 l2 于 C,过 C 作 CD⊥y 轴于 D,根据△ CBD≌△ BAO,得出 BD=AO=3, CD=OB=4,求得 C(−4,7),最后运用待定系数法求直线 l2 的函数表达式; (3)根据△ APD 是以点 D 为直角顶点的等腰直角三角形,当点 D 是直线 y=−2x+6 上的动点且在第四象 限时,分两种情况:当点 D 在矩形 AOCB 的内部时,当点 D 在矩形 AOCB 的外部时,设 D(x,−2x+6), 分别根据△ ADE≌△DPF,得出 AE=DF,据此列出方程进行求解即可. 【详解】解:(1)证明:∵△ABC 为等腰直角三角形, ∴CB=CA,∠ACD+∠BCE=90°, 又∵AD⊥ED,BE⊥ED, ∴∠D=∠E=90°,∠EBC+∠BCE=90°, ∴∠ACD=∠EBC,
动点问题题型方法归纳

动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP图(3)B图(1)B图(2) 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60° 当△BCPQ 的面积最小。
勾股定理动点问题解题技巧

勾股定理动点问题的解题技巧包括以下几种:
配方法。
将一个二次式通过配方转化为几个完全平方式,再利用平方式的非负性进行计算。
等面积法。
把同一个图形的面积用不同的方法表示出来,最后再利用同一个图形的面积不变,得到等式。
这种方法在几何中,通常用于求垂线段的长度以及证明垂线段之间的关系。
分类讨论思路。
在运用勾股定理时,当斜边或直角未定时,需要分类讨论。
例如,在解决有关高线的问题中,当三角形的形状未定时,需要注意分类讨论,一般分为锐角三角形(高在三角形内部)和钝角三角形(高在三角形外部)两种情况,分别画图计算即可。
在一些几何综合探究题和存在性问题中也经常需要应用分类讨论思路。
整体转化思路。
在解题中,当需要的数据或关系式不能直接得出时,可以考虑整体替换思路。
方程思想。
当题目中的未知量较多或给定的条件不能直接利用,如已知两线段之间的和、差、倍、分、比关系,但两线段长度均未知时,可以考虑利用方程来解题。
在直角三角形中,由于“知二可推一”,可以设其中一条未知线段长度为x,再用含有x的代数式表示出相关线段的长度,再利用勾股定理列写等式方程,将求解边长转化为解方程。
动点问题题型方法归纳

动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.提示:第(2)问按点P到拐点B所有时间分段分类;第(3)问是分类讨论:已知三定点O、P、Q,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ为边。
然后画出各类的图形,根据图形性质求顶点坐标。
图(3)B图(1)B图(2)2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的运动.面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
2023年中考数学重难点复习:三角形中的”动“问题-中考数学中的“动”问题(附答案解析)

2023年中考数学重难点复习:三角形中的“动”问题
例题
如图,在等边三角形ABC中,BC边上的高AD=6,E是高AD上的一个动点,F是边AB的中点,在点E 运动的过程中,存在EB+EF的最小值,则这个最小值是
A.3 B.4 C.5 D.6
【参考答案】D
【试题解析】如图,连接CF,
∵等边△ABC中,AD是BC边上的中线,
∴AD是BC边上的高线,即AD垂直平分BC,
∴EB=EC,
当B、F、E三点共线时,EF+EC=EF+BE=CF,
∵等边△ABC中,F是AB边的中点,∴AD=CF=6,
∴EF+BE的最小值为6,故选D.
【方法点拨】点的运动会引起距离的变化,距离最大或最小的问题一般需要考虑两点之间线段最短或垂线段最短等结论.本题主要考查了等边三角形的轴对称性质和勾股定理的应用等知识,熟练掌握和运用等边三角形的性质以及轴对称的性质是解决本题的关键.
第1 页共6 页。
三角形与动点问题
三角形与动点问题在数学的世界里,三角形一直是一个重要且基础的几何图形,而当三角形与动点结合起来时,就形成了一类充满挑战和趣味的问题。
这类问题常常出现在中学数学的学习中,不仅考验着我们对三角形知识的掌握程度,还锻炼着我们的思维能力和空间想象力。
让我们先来了解一下什么是动点。
动点,顾名思义,就是在平面或空间中不断运动的点。
在三角形中,动点的位置可能会随着时间、条件或者其他因素的变化而改变,从而导致三角形的形状、大小或者某些性质也随之发生变化。
比如,在一个直角三角形中,有一个动点在斜边或者直角边上运动。
那么,随着这个动点的移动,三角形的周长、面积或者某些角度的大小可能会发生改变。
我们需要根据已知条件,找出这些变化中的规律,从而解决相关的问题。
为了更好地理解三角形与动点问题,我们来看一个具体的例子。
假设有一个等腰三角形 ABC,AB = AC = 5,BC = 6。
点 P 从点B 出发,沿着 BC 边以每秒 1 个单位的速度向点 C 运动,与此同时,点 Q 从点 C 出发,沿着 CA 边以每秒 2 个单位的速度向点 A 运动。
当点 P 到达点 C 时,两点均停止运动。
设运动时间为 t 秒。
首先,我们需要分析在运动过程中,三角形的哪些量会发生变化。
很明显,BP 的长度会随着时间 t 的增加而增加,CP 的长度则会相应减少。
同时,CQ 的长度也会随着时间增加。
那么,我们可以先表示出 BP = t,CP = 6 t,CQ = 2t。
接下来,考虑三角形的面积。
由于三角形 ABC 的面积是固定的,但是随着动点 P 和 Q 的运动,三角形 BPQ 的面积会发生变化。
三角形 BPQ 的面积可以用 BP 乘以三角形 BPQ 在 BP 边上的高再除以 2 来计算。
而这个高可以通过三角形的相似关系求得。
通过相似三角形的性质,我们可以得到三角形 BPQ 在 BP 边上的高为 4 / 5 t。
所以三角形 BPQ 的面积 S = 1 / 2 t 4 / 5 t = 2 / 5 t²。
《三角形动点问题》教学设计
《三角形动点问题》教学设计1.如图,已知在 Rt ∆ACB 中,∠C = 90︒,AC = 8 cm,BC = 6 cm,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2 cm/s;连接PQ 。
若设运动的时间为t(s)(0<t≤4),解答下列问题:(1)当t = 时,PQ ∥CB ;(2)当t = 时,PQ ⊥AB ;(3)当t = 时,∆APQ 为直角三角形;【方法点拨】1.利用“路程=速度×时间”的关系式表示图中相关线段的长度;2.化“动”为“静”,研究基本图形,利用平行、三角形相似建模.教学过程教学环节教学内容教师活动学生活动设计意图初探动点【参考答案】在Rt ∆ABC 中,由勾股定理得,AC 2 +BC 2 =AB2即82 +62 =AB2 ,所以AB =10 .由题意可知,BP =t ,AQ = 2t ,则AP =AB -BP =10 -t ,QC =AC -AQ = 8 - 2t .(1)如右图所示, PQ ∥CB∴Rt ∆AQP ~Rt ∆ACB∴AP : AB =AQ : AC 即(10 -t) :10 = 2t : 8解得t =207(2)如右图所示, PQ ⊥AB∴Rt ∆APQ ~Rt ∆ACB∴A P : AC =AQ : AB 即(10 -t) : 8 = 2t :10解得t =5013(3)由(1)(2)可知,当PQ ∥CB或PQ⊥AB时,∆APQ 均为直角三角形.所以当t =20或50时,∆APQ7 13为直角三角形.动点构成特殊图形解题方法:1、根据已知条件,将动点的移动距离以及解决问题时所需要的条件用含t 的代数式表示出来;2、确定特定图形中动点的位置,画出符合题意的图形——化动为静;3、根据所求,利用特殊图形的性质或相互关系,找出等量关系列出方程来解决动点问题。
根据第(4)题的题意可画出如下两个静态图:提醒学生抓住等腰三角形“三线合一”这一性质,把问题转化为第一环节的内容。
七年级数学三角形全等之动点问题(框架)(北师版)(专题)(含答案)
三角形全等之动点问题(框架)(北师版)(专题)一、单选题(共11道,每道9分)1.已知:如图,AB=16cm,动点P从点A出发,沿AB以2cm/s的速度向点B运动.设点P 运动的时间为t秒,请解答下列问题:(1)运动状态分析图如下:空缺处依次所填正确的是( )A.①1cm/s;②A;③BB.①2cm/s;②B;③AC.①2cm/s;②A;③BD.①2cm/s;②A;③P答案:C解题思路:点A速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:①研究基本图形,标注:②研究动点运动状态,包括起点,终点,状态转折点,速度,时间范围,如图:③表达线段长,建等式.根据运动状态分析,选C.试题难度:三颗星知识点:动点问题2.(上接第1题)(2)用含t的式子表达线段AP,PB长分别为( )cm.A.t;16-tB.t;16-2tC.2t;16-tD.2t;16-2t答案:D解题思路:由1题可知,线段AP为已走路程,故AP=2t,PB为未走路程,故BP=16-2t.故选D.试题难度:三颗星知识点:动点问题3.(上接第1,2题)(3)点P出发____秒到达AB的中点.( )A.2B.4C.5D.8答案:B解题思路:点P到达AB中点,即AP=8建等式得,2t=8解得t=4故选B.试题难度:三颗星知识点:动点问题4.已知:如图,AB=18cm,动点P从点A出发,沿AB以2cm/s的速度向点B运动,动点Q 从点B出发,沿BA以1cm/s的速度向点A运动.P,Q两点同时出发,当点P到达点B时,点P,Q同时停止运动.设点P运动的时间为ts,请解答下列问题:(1)运动状态分析图如下空缺处依次所填正确的是( )A.①9s;②18s;③0≤t≤9B.①9s;②9s;③0≤t≤18C.①9s;②18s;③0≤t≤18D.①18s;②9s;③0≤t≤9答案:A解题思路:点P,Q的速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:①研究基本图形,标注:②研究动点运动状态,包括起点,终点,状态转折点,速度,时间范围,如图:③表达线段长,建等式.根据运动状态分析,选A.试题难度:三颗星知识点:动点问题5.(上接第4题)(2)用含t的式子表达线段AP,QB长分别为( )cm.A.18-2t;2tB.t;18-tC.t;2tD.2t;t答案:D解题思路:由4题可知,线段AP为点P已走路程,故AP=2t,BQ为点Q已走路程,故BQ=t.故选D.试题难度:三颗星知识点:动点问题6.(上接第4,5题)(3)在P,Q相遇之前,若P,Q两点相距6cm,则此时t的值为( )A.4B.6C.8D.9答案:A解题思路:由4,5题可知,当P,Q相遇时,AB+BQ=AB,即:2t+t=18,解得t=6,因此,在P,Q相遇之前,即:0≤t<6,PQ=6,即:2t+t=18-6,解得t=4.(符合题意)故选A.试题难度:三颗星知识点:动点问题7.已知:如图,在直角三角形ABC中,AB=6 cm,BC=4 cm.点P从点A出发,以2 cm/s的速度沿AB-BC向点C运动,设点P运动的时间为ts,请回答下列问题:(1)运动状态分析图如下:空缺处依次所填正确的是( )A.①6s;②4s;③0≤t≤10B.①3s;②2s;③0≤t≤3C.①3s;②2s;③0≤t≤5D.①3s;②5s;③0≤t≤5答案:C解题思路:点P速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:①研究基本图形,标注:②研究动点运动状态,包括起点,终点,状态转折点,速度,时间范围,如图:③表达线段长,建等式.根据运动状态分析,选C.试题难度:三颗星知识点:动点问题8.(上接第7题)(2)在点P运动的过程中,当△BCP的面积为时,对应的t的值为( )A.2sB.1sC.sD.s答案:A解题思路:有状态转折,根据状态转折点进行分类:(1)点P在AB上时,即:0≤t≤3,画图,可得:AP=2t,BP=6-2t,当△BCP的面积为时,即:,解得:t=2;(2)点P在BC上时,不符合题意,舍去.故选A.试题难度:三颗星知识点:动点问题9.已知:如图,在长方形ABCD中,AB=6厘米,BC=9厘米.点P从点A出发,沿AB边向终点B以1厘米/秒的速度移动,同时点Q从点B出发沿BC边向终点C以2厘米/秒的速度移动,连接PQ.如果P,Q两点同时出发,当其中一点到达终点后,另一点也随之停止运动,设点P的运动时间为t秒,请回答下列问题:(1)运动状态分析图如下:空缺处依次所填正确的是( )A.①6s;②9s;③0≤t≤6B.①6s;②4.5s;③0≤t≤6C.①3s;②4.5s;③0≤t≤4.5D.①6s;②4.5s;③0≤t≤4.5答案:D解题思路:点P,Q速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:①研究基本图形,标注:②研究动点运动状态,包括起点,终点,状态转折点,速度,时间范围,如图:③表达线段长,建等式.根据运动状态分析,选D.试题难度:三颗星知识点:动点问题10.(上接第9题)(2)用含t的式子表达线段BP,BQ的长分别为( )厘米.A.t;9-2tB.t;2tC.6-t;2tD.6-t;9-2t答案:C解题思路:由9题可知,AP为点P已走路程,故AP=t,∴BP=6-tBQ为点Q已走路程,故BQ=2t.故选C.试题难度:三颗星知识点:动点问题11.(上接第9,10题)(3)当△BPQ为等腰直角三角形时,t=( )A.1秒B.2秒C.3秒D.4秒答案:B解题思路:由9,10题可知,△BPQ为等腰直角三角形,∠B=90°,只需BP=BQ,即6-t=2t,解得t=2.故选B.试题难度:三颗星知识点:动点问题。
全等三角形动点问题解题技巧
全等三角形动点问题解题技巧在解决全等三角形动点问题时,需要灵活运用几何知识、函数图象性质、特殊位置规律、分类讨论思想、数形结合思想和整体思想等技巧,以便快速找到问题的突破口。
一、把握动点轨迹,运用几何知识求解最值动点轨迹是求解全等三角形动点问题的基础。
在解决此类问题时,需要先确定动点的运动轨迹,然后运用几何知识求解最值。
例如,在求解动点A在直线l上移动,求A点到定点B的距离最短值时,可以运用抛物线的定义,将AB沿直线l的投影作为A点的轨迹,然后根据抛物线的性质求解最值。
二、利用函数的图象性质求最值利用函数的图象性质求解全等三角形动点问题,主要是通过建立坐标系,确定动点的坐标,然后利用函数的图象性质求解最值。
例如,在求解一个直角三角形中的动点C,使得AC和BC的长度之和最小值时,可以建立直角坐标系,设A、B两点的坐标分别为(0,0)和(1,0),然后设C点的坐标为(x,y),最后利用函数的图象性质求出AC和BC 的长度之和的最小值。
三、借助特殊位置,寻找动点规律全等三角形动点问题中,常常涉及到动点的特殊位置。
借助这些特殊位置,可以寻找动点的规律,从而快速解决问题。
例如,在求解一个等边三角形中的动点D,使得AD和BD的长度之和最小值时,可以借助等边三角形的三条边的中垂线交点为D的特殊位置,然后根据中位线的性质求出AD和BD的长度之和的最小值。
四、运用分类讨论思想求解动点问题分类讨论思想是求解全等三角形动点问题的重要技巧之一。
在解决此类问题时,需要根据题目中给出的条件,将问题分成不同的情况进行讨论,然后分别求解。
例如,在求解一个矩形中的动点E,使得AE和BE的长度之和最小值时,需要考虑E点在矩形的边和角上两种情况分别进行讨论,然后分别求出最小值。
五、运用数形结合思想求解动点问题数形结合思想是求解全等三角形动点问题的常用技巧之一。
在解决此类问题时,需要根据题目中给出的条件,将问题转换成图形问题进行分析和求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“动点直角三角形问题”的三种解法
李永红
中考数学压轴题中常会出现“动点直角三角形问题”,如2013年山西、成都、攀枝花、长春、济宁、绵阳、襄阳等省市中考数学试卷中均出现了“动点直角三角形问题”,对于这类问题的解决,即使是数学尖子生也感到很棘手.其实,解决“动点直角三角形问题”有“法”可循,并不算“难”.
一、例题分析
例1 在直角坐标系中,已知点)0,1(A ,)2,0(-B ,将线段AB 绕点A 按逆时针方向旋转090至AC ,如图1.
(1)求点C 的坐标;
(2)若抛物线22
12++-=ax x y 经过点C .①求抛物线的解析式;②在抛物线上是否存在点P (点C 除外)使ABP ∆是以AB 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.
分析(1)构造三垂图可求得点C 的坐标为)1,3(-C .
(2)①将点C 的坐标代入22
12++-=ax x y 可求得抛物线的解析式为22
1212++-=x x y . ②法1(利用数形结合):
如图2,易求得直线AC 的解析式为2
121+-=x y . 由⎪⎪⎩
⎪⎪⎨⎧++-=+-=2212121212x x y x y 解得⎩⎨⎧=-=11y x 或⎩⎨⎧-==13y x (舍去).此时点P 的坐标为
)1,1(-.
设过点B 且与直线AC 平行的直线的解析式为b x y +-=2
1,将点
)2,0(-B 代入,得2-=b ,所以过点B 且与直线AC 平行的直线的解析式为
221--=x y .由⎪⎪⎩
⎪⎪⎨⎧++-=--=221212212x x y x y 解得⎩⎨⎧-=-=12y x 或⎩⎨⎧-==44y x .此时点P 的坐标为)1,2(--或)4,4(-.
综上,存在符合条件的点P ,其坐标为)1,1(-或)1,2(--或)4,4(-. 法2(构造三垂图):
如图3,延长CA 交抛物线于点),(1n m P ,过点1P 作x D P ⊥1轴于点D ,
易证DA P 1∆∽AOB ∆,∴OB
AD OA D P =1.∵1=OA ,2=OB ,m AD -=1,n D P =1,∴211m n -=,即m n 2121-=.∵点),(1n m P 在抛物线上,∴22
1212++-=m m n .由⎪⎪⎩
⎪⎪⎨⎧++-=-=2212121212m m n m n 解得⎩⎨⎧=-=11n m 或⎩⎨⎧-==13n m (舍去).此时点P 的坐标为)1,1(-.
过点B 作直线AC 的平行线,交抛物线于点2P ,3P .过点2P 作y E P ⊥2轴于点E ,易证2BEP ∆∽AOB ∆,可求得点2P 的坐标为)1,2(--;过点3P 作y F P ⊥3轴于点F ,易证3BFP ∆∽AOB ∆,可求得点3P 的坐标为)4,4(-;
综上,存在符合条件的点P ,其坐标为)1,1(-或)1,2(--或)4,4(-. 法3(利用勾股定理): 设抛物线上存在点)22
121,(2++-
m m m P ,使ABP ∆是以AB 为直角边的直角三角形.分别利用勾股定理可得52=AB ,
,)22121()1(2222++-+-=m m m AP 2222)42
121(++-+=m m m BP . 当点A 、B 分别为直角顶点时,分别由+2AB =2AP 2BP 、
+2AB 2BP 2AP =得到关于m 的一元四次方程,用已学知识难以求解.
例2 已知抛物线32++=bx ax y 与x 轴交于点)0,3(-A ,)0,1(B ,与y 轴交于点C ,如图4. (1)求抛物线的解析式及顶点的坐标;
(2)在抛物线的对称轴l 上存在点Q ,使ACQ ∆为直角三角形,请求出点Q 的坐标.
分析(1)易求得抛物线的解析式为322+--=x x y ,顶点坐标为)4,1(-.
(2)法1(利用数形结合):
由于不易求直线AQ 或CQ 的解析式,所以本题不适合利用数形结合来解决. 法2(构造三垂图):
如图5,在对称轴l 上存在四个符合条件的点Q ,分别构造三垂图并利用三角形相似可求得)4,1(1-Q ,)2,1(2--Q ,)2173,1(3+-Q ,)2
173,1(4--Q . 法3(利用勾股定理):
设点Q 的坐标为),1(n -,分别利用勾股定理可得182=AC ,
,422n AQ +=22)3(1-+=n CQ .
当090=∠ACQ 时,由+2AC =2CQ 2AQ 得224)3(118n n +=-++,解
得4=n ,所以)4,1(1-Q .
当090=∠CAQ 时,由+2AC =2AQ 2CQ 得22)3(1418-+=++n n ,解
得2-=n ,所以)2,1(2--Q .
当090=∠AQC 时,由+2AQ =2CQ 2AC 得18)3(1422=-+++n n ,解得2
173±=n ,所以)2173,1(3+-Q ,)2173,1(4--Q . 综上,符合条件的点Q 有四个,分别为)4,1(1-Q ,)2,1(2--Q ,
)2173,1(3+-Q ,)2
173,1(4--Q . 二、方法比较
利用数形结合:该方法并不是对每一个题都适用,当相应的直线方程能较容易求出时,可以使用该方法,而且解法比较简捷.
构造三垂图:该方法对每一个题都适用,但解法较繁,当考虑情况不周时容易漏解.
利用勾股定理:当动点在曲线上时,利用勾股定理得到的方程是一元四次方程,用已学知识难以求解,该方法不适用;当动点在直线上时,利用勾股定理得到的三个方程是一元一次方程或一元二次方程,容易求解而且不易漏解.
通过上述分析和比较可以看到,解“动点直角三角形问题”通常有三种解法,解题时应根据题设条件选择恰当的解法,才能使问题快速地得以解决.。