2020年中考数学压轴题精讲:动点产生的直角三角形问题
动点直角三角形问题的解法

“动点直角三角形问题”的三种解法李永红中考数学压轴题中常会出现“动点直角三角形问题”,如2013年山西、成都、攀枝花、长春、济宁、绵阳、襄阳等省市中考数学试卷中均出现了“动点直角三角形问题”,对于这类问题的解决,即使是数学尖子生也感到很棘手.其实,解决“动点直角三角形问题”有“法”可循,并不算“难”.一、例题分析例1 在直角坐标系中,已知点)0,1(A ,)2,0(-B ,将线段AB 绕点A 按逆时针方向旋转090至AC ,如图1.(1)求点C 的坐标;(2)若抛物线2212++-=ax x y 经过点C .①求抛物线的解析式;②在抛物线上是否存在点P (点C 除外)使ABP ∆是以AB 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.分析(1)构造三垂图可求得点C 的坐标为)1,3(-C .(2)①将点C 的坐标代入2212++-=ax x y 可求得抛物线的解析式为221212++-=x x y . ②法1(利用数形结合):如图2,易求得直线AC 的解析式为2121+-=x y . 由⎪⎪⎩⎪⎪⎨⎧++-=+-=2212121212x x y x y 解得⎩⎨⎧=-=11y x 或⎩⎨⎧-==13y x (舍去).此时点P 的坐标为)1,1(-.设过点B 且与直线AC 平行的直线的解析式为b x y +-=21,将点)2,0(-B 代入,得2-=b ,所以过点B 且与直线AC 平行的直线的解析式为221--=x y .由⎪⎪⎩⎪⎪⎨⎧++-=--=221212212x x y x y 解得⎩⎨⎧-=-=12y x 或⎩⎨⎧-==44y x .此时点P 的坐标为)1,2(--或)4,4(-.综上,存在符合条件的点P ,其坐标为)1,1(-或)1,2(--或)4,4(-. 法2(构造三垂图):如图3,延长CA 交抛物线于点),(1n m P ,过点1P 作x D P ⊥1轴于点D ,易证DA P 1∆∽AOB ∆,∴OBAD OA D P =1.∵1=OA ,2=OB ,m AD -=1,n D P =1,∴211m n -=,即m n 2121-=.∵点),(1n m P 在抛物线上,∴221212++-=m m n .由⎪⎪⎩⎪⎪⎨⎧++-=-=2212121212m m n m n 解得⎩⎨⎧=-=11n m 或⎩⎨⎧-==13n m (舍去).此时点P 的坐标为)1,1(-.过点B 作直线AC 的平行线,交抛物线于点2P ,3P .过点2P 作y E P ⊥2轴于点E ,易证2BEP ∆∽AOB ∆,可求得点2P 的坐标为)1,2(--;过点3P 作y F P ⊥3轴于点F ,易证3BFP ∆∽AOB ∆,可求得点3P 的坐标为)4,4(-;综上,存在符合条件的点P ,其坐标为)1,1(-或)1,2(--或)4,4(-. 法3(利用勾股定理): 设抛物线上存在点)22121,(2++-m m m P ,使ABP ∆是以AB 为直角边的直角三角形.分别利用勾股定理可得52=AB ,,)22121()1(2222++-+-=m m m AP 2222)42121(++-+=m m m BP . 当点A 、B 分别为直角顶点时,分别由+2AB =2AP 2BP 、+2AB 2BP 2AP =得到关于m 的一元四次方程,用已学知识难以求解.例2 已知抛物线32++=bx ax y 与x 轴交于点)0,3(-A ,)0,1(B ,与y 轴交于点C ,如图4. (1)求抛物线的解析式及顶点的坐标;(2)在抛物线的对称轴l 上存在点Q ,使ACQ ∆为直角三角形,请求出点Q 的坐标.分析(1)易求得抛物线的解析式为322+--=x x y ,顶点坐标为)4,1(-.(2)法1(利用数形结合):由于不易求直线AQ 或CQ 的解析式,所以本题不适合利用数形结合来解决. 法2(构造三垂图):如图5,在对称轴l 上存在四个符合条件的点Q ,分别构造三垂图并利用三角形相似可求得)4,1(1-Q ,)2,1(2--Q ,)2173,1(3+-Q ,)2173,1(4--Q . 法3(利用勾股定理):设点Q 的坐标为),1(n -,分别利用勾股定理可得182=AC ,,422n AQ +=22)3(1-+=n CQ .当090=∠ACQ 时,由+2AC =2CQ 2AQ 得224)3(118n n +=-++,解得4=n ,所以)4,1(1-Q .当090=∠CAQ 时,由+2AC =2AQ 2CQ 得22)3(1418-+=++n n ,解得2-=n ,所以)2,1(2--Q .当090=∠AQC 时,由+2AQ =2CQ 2AC 得18)3(1422=-+++n n ,解得2173±=n ,所以)2173,1(3+-Q ,)2173,1(4--Q . 综上,符合条件的点Q 有四个,分别为)4,1(1-Q ,)2,1(2--Q ,)2173,1(3+-Q ,)2173,1(4--Q . 二、方法比较利用数形结合:该方法并不是对每一个题都适用,当相应的直线方程能较容易求出时,可以使用该方法,而且解法比较简捷.构造三垂图:该方法对每一个题都适用,但解法较繁,当考虑情况不周时容易漏解.利用勾股定理:当动点在曲线上时,利用勾股定理得到的方程是一元四次方程,用已学知识难以求解,该方法不适用;当动点在直线上时,利用勾股定理得到的三个方程是一元一次方程或一元二次方程,容易求解而且不易漏解.通过上述分析和比较可以看到,解“动点直角三角形问题”通常有三种解法,解题时应根据题设条件选择恰当的解法,才能使问题快速地得以解决.。
2020年中考数学压轴题精讲:动点产生的相似三角形问题

2020年中考数学压轴题精讲:动点产生的相似三角形问题例1:如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.图2此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4例2:如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1 图2满分解答(1)Rt△ABC中,AC=6,BC=8,所以AB=10.△BPQ与△ABC相似,存在两种情况:①如果BP BABQ BC=,那么510848tt=-.解得t=1.②如果BP BCBQ BA=,那么588410tt=-.解得3241t=.图3 图4(2)作PD ⊥BC ,垂足为D .在Rt △BPD 中,BP =5t ,cos B =45,所以BD =BP cos B =4t ,PD =3t . 当AQ ⊥CP 时,△ACQ ∽△CDP .所以AC CD QC PD =,即68443t t t -=.解得78t =.图5 图6(3)如图4,过PQ 的中点H 作BC 的垂线,垂足为F ,交AB 于E . 由于H 是PQ 的中点,HF //PD ,所以F 是QD 的中点. 又因为BD =CQ =4t ,所以BF =CF . 因此F 是BC 的中点,E 是AB 的中点.所以PQ 的中点H 在△ABC 的中位线EF 上.例3:如图1,已知抛物线211(1)444by x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1满分解答(1)B 的坐标为(b , 0),点C 的坐标为(0,4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x). 如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b .解得165x =.所以点P 的坐标为(1616,55).图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1. ①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA . 所以2()14bb =-.解得843b =±Q 为(1,23+.②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。
中考数学压轴题---因动点产生的相似三角形问题[含答案]
![中考数学压轴题---因动点产生的相似三角形问题[含答案]](https://img.taocdn.com/s3/m/52f3b304de80d4d8d15a4fac.png)
因动点产生的相似三角形问题例1(2011年上海市闸北区中考模拟第25题)直线113y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点.(1) 写出点A 、B 、C 、D 的坐标;(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标;(3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.图1满分解答(1)A (3,0),B (0,1),C (0,3),D (-1,0).(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=⎧⎪=⎨⎪-+=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4).(3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG .因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°. 因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么22(3)10BQ x x x =+=±.Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况: ①当3B Q B A =时,10310x ±=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --.②当13B Q B A=时,101310x ±=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是22(3)10BQ x x x =+=±.我们换个思路解答第(3)题:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,1sin 110∠=,3cos 110∠=.①当3B Q B A=时,310B Q =.在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=. 当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --. ②当13B Q B A=时,1103B Q =.同理得到31(,2)3Q ,41(,0)3Q -.例2(2011年上海市杨浦区中考模拟第24题)Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x =≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系; (2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式;(3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.图1满分解答(1)如图1,因为点D (4,m )、E (2,n )在反比例函数ky x =的图像上,所以4,2.m k n k =⎧⎨=⎩ 整理,得n =2m .(2)如图2,过点E 作EH ⊥BC ,垂足为H .在Rt △BEH 中,tan ∠BEH =tan ∠A =12,EH =2,所以BH =1.因此D (4,m ),E (2,2m ),B (4,2m +1).已知△BDE 的面积为2,所以11(1)2222B D E H m ⋅=+⨯=.解得m =1.因此D (4,1),E (2,2),B (4,3).因为点D (4,1)在反比例函数k y x=的图像上,所以k =4.因此反比例函数的解析式为4y x=.设直线AB 的解析式为y =kx +b ,代入B (4,3)、E (2,2),得34,22.k b k b =+⎧⎨=+⎩ 解得12k =,1b =.因此直线AB 的函数解析式为112y x =+.图2 图3 图4(3)如图3,因为直线112y x =+与y 轴交于点F(0,1),点D 的坐标为(4,1),所以FD // x 轴,∠EFP =∠EAO .因此△AEO 与△EFP 相似存在两种情况:①如图3,当E A EF A O F P =时,2552FP =.解得FP =1.此时点P 的坐标为(1,1).②如图4,当E A F P A OE F=时,2525F P =.解得FP =5.此时点P 的坐标为(5,1).考点伸展本题的题设部分有条件“Rt △ABC 在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m 与n 的数量关系不变.第(2)题反比例函数的解析式为12y x=-,直线AB 为172y x =-.第(3)题FD 不再与x 轴平行,△AEO 与△EFP 也不可能相似.图5例3(2010年义乌市中考第24题)如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x 1,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图2(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-).(2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3).(3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD . 由于3tan 4G A F ∠=,tan 5DQ t PQD QPt∠==-,所以345t t=-.解得207t =.图3 图4考点伸展第(3)题是否存在点G 在x 轴上方的情况?如图4,假如存在,说理过程相同,求得的t 的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.例4(2010年上海市宝山区中考模拟第24题)如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y m x m x n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.图1满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y m x m x n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =.(2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B = AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4.因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B ′ (6,0),可得A B ′=45. 如图2,由AM //CN ,可得''''B N B C B MB A=,即2'845B C =.解得'5B C =.所以35AC =.根据菱形的性质,在△ABC 与△B ′CD 中,∠BAC =∠CB ′D .①如图3,当''A B B C A C B D =时,55'35B D=,解得'3B D =.此时OD =3,点D 的坐标为(3,0).②如图4,当''A B B D A CB C=时,5'355B D =,解得5'3B D =.此时OD =133,点D 的坐标为(133,0).图3 图4考点伸展在本题情境下,我们还可以探求△B ′CD 与△ABB ′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B ′CD 与△C B B ′相似,这两个三角形有一组公共角∠B ,根据对应边成比例,分两种情况计算.例5(2009年临沂市中考第26题)如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.图1满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AO PM AM ,那么24)4)(1(21=----xx x .解得5=x 不合题意.如果21==COAO PMAM ,那么214)4)(1(21=----xx x .解得2=x .此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---xx x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y .设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m mm ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m mDE m m2212+-=.因此4)221(212⨯+-=∆m mS DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6考点伸展第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S .由于225212-+-=m mn ,所以m m S 42+-=.例6(2009年上海市闸北区中考模拟第25题)如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域;(2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图备用图满分解答(1)如图2,作BH⊥AC,垂足为点H.在Rt△ABH中,AB=5,cosA=310A HA B=,所以AH=32=12AC.所以BH垂直平分AC,△ABC 为等腰三角形,AB=CB=5.因为DE//BC,所以A B A CD BE C=,即53y x=.于是得到53y x=,(0x>).(2)如图3,图4,因为DE//BC,所以D E A EB C A C=,M N A NB C A C=,即|3|53D E x-=,1|3|253xM N-=.因此5|3|3xD E-=,圆心距5|6|6xM N-=.图2 图3 图4在⊙M中,115226Mr B D y x===,在⊙N中,1122Nr C E x==.①当两圆外切时,5162x x+5|6|6x-=.解得3013x=或者10x=-.如图5,符合题意的解为3013x=,此时5(3)15313xD E-==.②当两圆内切时,5162x x-5|6|6x-=.当x<6时,解得307x=,如图6,此时E在CA的延长线上,5(3)1537xD E-==;当x>6时,解得10x=,如图7,此时E在CA的延长线上,5(3)3533xD E-==.图5 图6 图7(3)因为△ABC 是等腰三角形,因此当△ABC 与△DEF 相似时,△DEF 也是等腰三角形.如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534B F =.图8 图9 图10 图11考点伸展第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例7(2008年杭州市中考第24题)如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.满分解答(1)因为平移2tx y -=的图象得到的抛物线F 的顶点为Q (t ,b ),所以抛物线F 对应的解析式为b t x t y +--=2)(.因为抛物线与x 轴有两个交点,因此0>b t .令0=y ,得-=t OB tb ,+=t OC tb .所以-=⋅t OC OB (|||||tb )( +t tb )|-=2|t22|OA ttb ==.即22b t t t-=±.所以当32t b =时,存在抛物线F 使得||||||2OC OB OA ⋅=.(2)因为AQ //BC ,所以t =b ,于是抛物线F 为t t x t y +--=2)(.解得1,121+=-=t x t x . ①当0>t 时,由||||OC OB <,得)0,1(-t B .如图2,当01>-t 时,由=∠ABO tan 23=||||OB OA =1-t t ,解得3=t .此时二次函数的解析式为241832-+-=x x y .如图3,当01<-t 时,由=∠ABO tan 23=||||OB OA =1+-t t ,解得=t 53.此时二次函数的解析式为-=y 532x +2518x +12548.图2 图3②如图4,如图5,当0<t 时,由||||OC OB <,将t -代t ,可得=t 53-,3-=t .此时二次函数的解析式为=y 532x+2518x -12548或241832++=x x y .图4 图5考点伸展第(2)题还可以这样分类讨论:因为AQ //BC ,所以t =b ,于是抛物线F 为2()y t x t t =--+.由3tan 2O A A B O O B∠==,得23O B O A =.①把2(,0)3B t 代入2()y t x t t =--+,得3t =±(如图2,图5).②把2(,0)3B t -代入2()y t x t t =--+,得35t =±(如图3,图4).。
2020年中考数学压轴题之动点产生的定值和最值专题Word版无答案

2020年中考数学压轴题之动点产生的定值和最值专题Word版无答案中考数学压轴题专题动点产生的定值与最值问题中考数学压轴题——动点产生的定值与最值问题目录第1 讲角为定值的常规解法第2 讲角为定值的高级解法第3 讲边为定值的动点问题第4 讲线段的和或差为定值的动点问题第5 讲比值为定值的动点问题第6 讲乘积为定值的动点问题第7 讲面积为定值的动点问题第8 讲动点产生的几何最值问题【几何法证明角为定值】(1)三角形内角和定理(2)三角形外角定理第 1 讲 角为定值的常规解法(3)等腰三角形底角相等(4)直角三角形两锐角互余(5)平行线的同位角相等、内错角相等、同旁内角互补(6)平行四边形的对角相等、邻角互补(7)等腰梯形底角相等(8)圆所涉及的角的关系:圆心角、圆周角、弦切角定理等【例】如图,平面内两条互相垂直的直线相交于点 O,∠MON=90°,点 A 、B 分别在射线 OM 、 ON 上移动,AC 是△BAO 的角平分线,BD 为∠ABN 的角平分线,AC 与 BD 的反向延长线交于 点 P.试问:随着点 A 、B 位置的变化,∠APB 的大小是否会变化?若保持不变,请求出∠APB 的度数;若发生变化,求出变化范围。
、【例】如图所示,O 的直径 AB=4,点 P 是 AB 延长线上的一点,过 P 点作 O 的切线,切点为 C , 连接 AC.(1)若∠CPA=30°,求 PC 的长;(2)若点 P 在 AB 的延长线上运动,∠CPA 的平分线交 AC 于点 M ,你认为∠CMP 的大小是否发 生变化?若变化,请说明理由;若不变化,求出∠CMP 的大小。
【代数法求角为定值】一般在直角坐标系中,可以用坐标的方法表示出边或角,从而求解具体角为定值的问题。
【例】如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y = ax2 + bx + c 经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B(1,−5),D(4,0).(1)求c,b (用含t的代数式表示):(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP 的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,S=218;(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”。
2020年九年级数学中考第二轮压轴题复习:解直角三角形(含答案)

2020年中考九年级数学第二轮压轴题复习:解直角三角形1、如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.( 1.414,CF结果精确到米)2、如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E (点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.3、某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)4、如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=43°,求飞机A与指挥台B的距离(结果取整数)(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)5、某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)6、在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.如图,现测得∠ABC=30°,∠CBA=15°,AC=200米,请计算A,B两个凉亭之间的距离(结果精确到1米)(参考数据:≈1.414,≈1.732)7、为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查,一测量船在A岛测得B岛在北偏西30°,C岛在北偏东15°,航行100海里到达B岛,在B岛测得C岛在北偏东45°,求B,C两岛及A,C两岛的距离(≈2.45,结果保留到整数)8、如图,AB是长为10m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).(参考数据:sin37°≈,tan37°≈,sin65°≈,tan65°≈)9、某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.10、“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡A E的长度.(结果精确到0.1m)11、为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度。
2020-2021九年级中考数学直角三角形的边角关系解答题压轴题提高专题练习附答案解析

2020-2021九年级中考数学直角三角形的边角关系解答题压轴题提高专题练习附答案解析一、直角三角形的边角关系1.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8.(1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y .【解析】【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BO PD MO =,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32.【详解】解:(1)把0x =代入4y kx =+,4y =,∴4BO =,又∵4ABO S ∆=, ∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+,得044k =-+,解得1k =.故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒,∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC ,∴90POC ∠=︒,OP OC =,∴90POD EOC ∠+∠=︒,∴OPD EOC ∠=∠,∴POD OCE ∆≅∆,∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒,∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠,∴BT TO =,∵90BTO ∠=︒,∴90TPO TOP ∠+∠=︒,∵PO BM ⊥,∴90BNO ∠=︒,∴BQT TPO ∠=∠,∴QTB PTO ∆≅∆,∴QT TP =,PO BQ =,∴PQT QPT ∠=∠,∵PO PK KB =+,∴QB PK KB =+,QK KP =,∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠,∴KPB BPN ∠=∠,设KPB x ∠=︒,∴BPN x ∠=︒,∵2PMB KPB ∠=∠,∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,∴PO PM =,过点P 作PD x ⊥轴,垂足为点D ,∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,tan tan OPD BMO ∠=∠,OD BO PD MO =,442t t t=+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==,∴CM y P 轴,∵90PNM POC ∠=∠=︒,∴BM OC P , ∴四边形BOCM 是平行四边形,∴4832BOCM S BO OM =⨯=⨯=Y .故答案为32.【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.2.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN 是水平线,MN ∥AD ,AD ⊥DE ,CF ⊥AB ,垂足分别为D ,F ,坡道AB 的坡度为1:3,DE =3米,点C 在DE 上,CD =0.5米,CD 是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF 的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41, 3≈1.73)【答案】该停车库限高约为2.2米.【解析】【分析】据题意得出3tan B =,即可得出tan A ,在Rt △ADE 中,根据勾股定理可求得DE ,即可得出∠1的正切值,再在Rt △CEF 中,设EF =x ,即可求出x ,从而得出CF 3的长.【详解】解:由题意得,3tan 3B =∵MN ∥AD ,∴∠A =∠B ,∴tan A=33,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=33.在Rt△CEF中,设EF=x,CF=3x(x>0),CE=2.5,代入得(52)2=x2+3x2,解得x=1.25,∴CF=3x≈2.2,∴该停车库限高约为2.2米.【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.3.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF AE=,连接DE,DF,EF. FH平分EFB∠交BD于点H.(1)求证:DE DF⊥;(2)求证:DH DF=:(3)过点H作HM EF⊥于点M,用等式表示线段AB,HM与EF之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。
2020年(河南)中考数学压轴题全揭秘精品专题19 动点问题与几何图形综合题型(带答案解析)

专题19 动点问题与几何图形综合题型题型一、动点问题与几何图形最值问题主要有:线段最值;点到直线距离的最值;周长最值;面积最值等等.题型二、动点问题与几何问题相结合主要有:相似三角形的存在性;角平分线存在性;角度间的关系问题;面积关系问题等等.【例1】(2018·河南第一次大联考)如图,将矩形MNPQ放置在矩形ABCD中,使点M,N分别在AB,AD边上滑动,若MN=6,PN=4,在滑动过程中,点A与点P的距离AP的最大值为().A.4B.13C.7D.8【答案】D.【分析】如图所示,取MN中点E,当点A、E、P三点共线时,AP最大,利用勾股定理及直角三角形中斜边上的中线等于斜边的一半分别求出PE与AE的长,由AE+EP求出AP的最大值即可.【解析】解:如图所示,取MN中点E,当点A、E、P三点共线时,AP最大,在Rt△PNE中,PN=4,NE=12MN=3,根据勾股定理得:PE=5,在Rt△AMN中,AE为斜边MN上的中线,△AE =12MN =3, 则AP 的最大值为:AE +PE =3+5=8, 故选D .【点评】此题考查了勾股定理,直角三角形斜边上的中线性质,以及矩形的性质,熟练掌握勾股定理是解本题的关键.【变式1-1】(2019·济源一模)如图,△ABC 是等边三角形,AB =3,E 在 AC 上且 AE =23AC ,D 是直线 BC 上一动点,线段 ED 绕点 E 逆时针旋转 90°,得到线段 EF ,当点 D 运动时, 则线段 AF 的最小值是.【答案】322. 【解析】解:先确定F 点的轨迹,过E 作的直线BC 的平行线,分别过D 、F 作该平行线的垂线,垂足为G ,H , 如图所示,BCDEG由折叠性质,知△DEG △△EFH , △EH =DG ,△△ABC 是等边三角形,AE =2,CE =1,△DG =CE ·sin 3, 即EH 为定值,△点F 落在直线FH 上,且FH △BC ,根据垂线段最短,当AF △FH 时,AF 的值最小, 如下图所示,过A 作AN △FH ,延长AC 交FH 于点M ,AN 的长即为所求线段AF 的最小值,△EH =DG 3,△AMN =30°, △EM =2EH 3,△AM 3+2,△AN =12AM 32+,32+. ABCDEGNM【例2】(2019·开封二模)如图1,在平面直角坐标系中,直线y=43x﹣4与抛物线y=43x2+bx+c交于坐标轴上两点A、C,抛物线与x轴另一交点为点B;(1)求抛物线解析式;(2)若动点D在直线AC下方的抛物线上,如图2,作DM△直线AC,垂足为点M,是否存在点D,使△CDM 中某个角恰好是△ACO的一半?若存在,直接写出点D的横坐标;若不存在,说明理由.图1 图2【答案】见解析.【解析】解:(1)在y=43x﹣4中,当x=0,y=﹣4,即C(0,﹣4);当y=0,x=3,即A(3,0);把点A、C坐标代入y=43x2+bx+c,并解得:b=83-,c=-4,△抛物线解析式为:y=43x283-x-4;(2)存在,作△ACO的平分线CP交x轴于点P,过P作PH△AC于点H,则CH=CO=4,OP=PH,设OP=PH=x,则P A=3﹣x,△OC=4,OA=3,△AC=5,AH=1,在Rt△PHA中,PH2+AH2=AP2,即x2+12=(3﹣x)2,解得:x=43,△tan△PCH=tan△PCO=13,△过点D作DG△x轴于点G,过点M作ME△x轴,与y轴交于点E,与DG交于点F.设M(m,43m﹣4),则ME=m,FG=OE=4﹣43m,CE=43m,可得:△CEM△△MFD,△当△DCM=12△ACO时,可得:3CE ME CMMF DF DM ===, 即MF =49m ,DF =13m , △DG =DF +GF =13m +4﹣43m =4-m ,EF =EM +FM =139m ,即点D (139m , m -4),将其坐标代入y =43x 283-x -4得: 2413813443939m m m ⎛⎫⨯-⨯-=- ⎪⎝⎭, 解得:m =0(舍)或m =1179676, △D 点横坐标为:139m =13152. △当△MDC =12△ACO =△PCH 时, 同理可得:MF =4m ,DF =3m , △EF =EM +MF =m +4m =5m , DG =DF +FG =3m ﹣43m +4=53m +4, △D (5m ,﹣53m ﹣4), △﹣53m ﹣4=()()24855433m m ⨯-⨯-,解得m =0(舍去)或m =720, 此时D 点横坐标为:5m =74; 综上所述,点D 横坐标为13152或74. 【变式2-1】(2019·洛阳模拟)如图,已知抛物线y =13x 2+bx +c 经过△ABC 的三个顶点,其中点A (0,1),点B (9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标和四边形AECP 的最大面积;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)将A (0,1),B (9,10)代入y =13x 2+bx +c 得: 127810c b c =⎧⎨++=⎩,解得:12c b =⎧⎨=-⎩∴抛物线的解析式为:y =13x 2-2x +1. (2)由y =13x 2-2x +1知,抛物线的对称轴是x =3,l∵AC∥x轴,A(0,1),∴A与C关于对称轴对称,C(6,0),AC=6由A(0,1),B(9,10)得直线AB的解析式为:y=x+1,设P(m,13m2-2m+1),则E(m,m+1),∴PE=-13m2+3m,∴S四边形AECP=S△AEC+S△APC=12·AC·EF+12·AC·PF=12×6×(-13m2+3m)=298124m⎛⎫--+⎪⎝⎭,∴当m=92时,四边形AECP的面积取最大值814,此时点P(92,54-).(3)存在,点Q坐标为(4,1)或(-3,1).由y=13x2-2x+1知点P(3, -2),∴PF=3,CF=3,∴∠PCF=45°,同理,∠EAF=45°,即∠PCF=∠EAF,由勾股定理得:AB=92AC=6,PC=32,设Q(n,1),①当△CPQ∽△ABC时,CQ PC AC AB=,即632692n-=,解得:t=4,即Q(4,1).②当△CQP∽△ABC时,CQ PC AB AC=,即3292=,解得:t=-3,即Q(-3,1).综上所述,符合题意的点Q坐标为:(4,1)或(-3,1).1.(2019·济源一模)如图1,在平面直角坐标系中,直线3944y x=-+与x轴交于点A,与y轴交于点B;抛物线29 4y ax bx=++(a≠0)过A,B两点,与x轴交于另一点C(-1,0),抛物线的顶点为D.(1)求抛物线的解析式;(2)在直线AB上方的抛物线上有一动点E,求出点E到直线AB的距离的最大值;(3)如图2,直线AB与抛物线的对称轴相交于点F,点P在坐标轴上,且点P到直线BD,DF的距离相等,请直接写出点P的坐标.图1 图2【答案】见解析.【解析】解:(1)在3944y x =-+中,当x =0时,y =94;当y =0时,x =3,即A (3,0),B (0,94), 将A (3,0),C (-1,0)代入294y ax bx =++得: 99304904a b a b ⎧++=⎪⎪⎨⎪-+=⎪⎩,解得:3432a b ⎧=-⎪⎪⎨⎪=⎪⎩,△抛物线的解析式为:2339424y x x =-++.(2)过点E 作EM △x 轴交AB 于M ,过E 作EN △AB 于N ,点E 到AB 的距离为EN , 可得△ENM △△AOB ,△EN EMOA AB=, 在Rt △AOB 中,OA =3,OB =94, 由勾股定理得:AB =154, △1534EN EM=, 即EN =45EM ,设E (m ,2339424m m -++),M (m ,3944m -+),则EM =2339424m m -++-(3944m -+)=23944m m -+,△EN =45EM =2439544m m ⎛⎫-+ ⎪⎝⎭=233275220m ⎛⎫--+ ⎪⎝⎭, △当m =32时,E 到直线AB 的距离的最大值为2720. (3)△点P 到直线BD ,DF 的距离相等,△点P 在△BDF 或△BDF 邻补角的平分线上,如图所示,由2339424y x x =-++知D 点坐标为(1,3),△B (0,94), △BD =54, △DP 平分△BDF ,△△BDP=△PDF,△DF△y轴,△△BPD=△PDF,△△BPD=△BDP,△BD=DP,△P(0,1),设直线PD的解析式为:y=kx+n,△n=1,k+n=3,即直线PD的解析式为:y=2x+1,当y=0时,x=12 -,△当P在△BDF的角平分线上时,坐标为(0,1)或(12-,0);同理可得:当P在△BDF邻补角的平分线上时,坐标为:(0,72)或(7,0),综上所述,点P的坐标为:(0,1),(12-,0),(0,72),(7,0).2.(2019·洛阳二模)如图,抛物线y=ax2+5x+c交x轴于A,B两点,交y轴于点C.直线y=x-4经过点B,C. 点P是直线BC上方抛物线上一动点,直线PC交x轴于点D.(1)直接写出a,c的值;(2)当△PBD的面积等于△BDC面积的一半时,求点P的坐标;(3)当△PBA= 12△CBP时,直接写出直线BP的解析式.【答案】见解析.【解析】解:(1)△直线y=x-4经过点B,C,△B(4,0),C(0,-4),将B(4,0),C(0,-4)代入y=ax2+5x+c得:c=-4,a=-1,(2)抛物线解析式为:y=-x2+5x-4,过点P作PH△x轴于H,如图所示,设P(m, -m2+5m-4),△△PBD的面积等于△BDC面积的一半,△PH=12OC=2,即-m2+5m-4=2,或-m2+5m-4=-2,解得:m=2或m=3或m 517+或m517-,△0<m<4,△m=2或m=3或m 517 -(3)y=-x+4或y=(23)x38,理由如下:△当点P在x轴上方时,此时由△PBA= 12△CBP可得:△PBA=△ABC=45°,可得直线BP的解析式为:y=-x+4;△当点P在x轴下方时,此时△PBA= 13△ABC=15°,△CBP=30°,设直线BP交y轴于点Q,过点Q作QE△BC于E,如图所示,设Q(0,m),则OQ=-m,QC=4+m,△QE=CE=22(4+m),BE36(4+m),△CE+BE2,2(4+m)6(4+m)2,解得:m38,即Q(0,38),由B(4,0),可得直线BP的解析式为:y=(23)x38,综上所述,直线BP的解析式为:y=-x+4或y=(23x3-8.3.(2019·洛阳三模)在平面直角坐标系中,直线y=12x-2与x轴交于点B,与y轴交于点C,二次函数y=12x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)求二次函数的解析式;(2)如图1,点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D的横坐标为m.过点D作DM△BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;【答案】见解析.【解析】解:(1)△直线y=12x-2与x轴交于点B,与y轴交于点C,△B(4,0),C(0,-2),△B、C在抛物线y=12x2+bx+c上,△8402b cc++=⎧⎨=-⎩,解得:b=32-,c=-2,即抛物线解析式为:y=12x232-x-2.(2)过点D作DF△x轴于F,交BC于E,△D(m, 12m232-m-2),E(m,12m-2),F(m,0),其中0<m<4,△DE=12-m2+2m,△DM△BC,△△DME=△BFD=90°,△△BOC=△DME=90°,△△OBC△△MDE,△DM OB DE BC=,即25 DM OBDE BC==△DM25=)2545255m -+, △5<0, △当m =2时,DM 454.(2019·周口二模)如图,在平面直角坐标系中,抛物线y =ax 2+bx +4与x 轴交于A (-1,0),B (4,0)两点,与y 轴交于点C .(1)求这个抛物线的解析式;(2)若D (2,m )在该抛物线上,连接CD ,DB ,求四边形OCDB 的面积;(3)设E 是该抛物线上位于对称轴右侧的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点E 作EH △x 轴于点H ,再过点F 作FG △x 轴于点G ,得到矩形EFGH .在点E 的运动过程中,当矩形EFGH 为正方形时,直接写出该正方形的边长.【答案】见解析.【解析】解:(1)△抛物线y =ax 2+bx +4与x 轴交于A (-1,0),B (4,0)两点,△4016440a b a b -+=⎧⎨++=⎩,CBA O xy解得:a=-1,b=3,即抛物线的解析式为:y=-x2+3x+4.(2)△抛物线y=-x2+3x+4与y轴交于点C △C(0,4),△D(2,m)在抛物线上,△m=6,即D(2,6),S四边形OCDB=S△OCD+S△OBD= 12×4×2+12×4×6=16,即四边形OCDB的面积为16.(3292292,理由如下:△EFGH为正方形,△EF=EH,设E(n,-n2+3n+4),则F(3-n,-n2+3n+4),△抛物线的对称轴为x=32,△n>3 2 ,△n-(3-n)=-n2+3n+4或n-(3-n)=-(-n2+3n+4),解得:n= 129+或n=129-(舍)或n=529+或n=529-(舍)△边长EF=2n-3,得:EF292292.5.(2019·濮阳二模)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的动点,当S△P AB=2S△AOB时,求点P的坐标.【答案】见解析.【解析】解:(1)将A(1,0)代入y=﹣3x+c,得:c=3,即B(0,3),将A(1,0),B(0,3)代入y=﹣x2+bx+c,得:-1+b+c=0,c=3,解得:b=-2,c=3,△抛物线解析式为:y=﹣x2﹣2x+3;(2)连接OP,抛物线的对称轴为:x =﹣1,设P (m ,﹣m 2﹣2m +3),其中m <﹣1, S △P AB =S △POB +S △ABO ﹣S △POA , △S △P AB =2S △AOB , △S △POB ﹣S △POA =S △ABO ,△()2111312313222m m m ⨯⨯--⨯⨯--+=⨯⨯, 解得:m =-2或m =3(舍), 即P 点坐标为(-2,3).6.(2019·商丘二模)如图.在平面直角坐标系中.抛物线y =12x 2+bx +c 与x 轴交于A 两点,与y 轴交于点C ,点A 的坐标为(﹣1,0),点C 的坐标为(0,﹣2).已知点E (m ,0)是线段AB 上的动点(点E 不与点A ,B 重合).过点E 作PE △x 轴交抛物线于点P .交BC 于点F .(1)求该抛物线的表达式;(2)当线段EF ,PF 的长度比为1:2时,请求出m 的值;(3)是否存在这样的m ,使得△BEP 与△ABC 相似?若存在,求出此时m 的值;若不存在,请说明理由.【答案】见解析.【解析】解:(1)将点A (﹣1,0)、C (0,﹣2)代入y =12x 2+bx +c 得: 2102c b c =-⎧⎪⎨-+=⎪⎩,解得:b =32-,c =-2, △抛物线的表达式为:y =12x 232-x ﹣2; (2)在y =12x 232-x ﹣2中,当y =0时,x =-1或x =4, 即B (4,0),设直线BC 的解析式为:y =kx +n ,将点C (0,﹣2)、B (4,0)代入y =kx +n ,得:2420n k =-⎧⎨-=⎩,解得:212n k =-⎧⎪⎨=⎪⎩△直线BC 的表达式为:y =12x ﹣2, △E (m ,0),△P (m ,12m 232-m ﹣2),F (m ,12m ﹣2) △当E 在线段AO 上时,EF >PF ,不符合题意; △当E 在线段OB 上时, EF =2-12m ,PF =12m ﹣2-(12m 232-m ﹣2)=-12m 2+2m ,△2EF =PF , △2(2-12m )=-12m 2+2m , 解得:m =2或m =4, △E 不与A 、B 重合, △m ≠4, 即m =2;(3)△A (﹣1,0)、C (0,﹣2)、B (4,0), △AB 2=25,AC 2=5,BC 2=20, △AB 2=AC 2+BC 2△△ABC 是直角三角形, 当△BEP 与△ABC 相似,则△EPB =△CAB 或△EPB =△ABC ,△tan △EPB =tan △CAB ,或tan △EPB =tan △ABC , △当tan △EPB =tan △CAB 时, 即:24213222mm m -=⎛⎫--- ⎪⎝⎭,解得:m =0或4(舍去), △当tan △EPB =tan △ABC , 即:241132222m m m -=⎛⎫--- ⎪⎝⎭,解得:m =3或4(舍去),综上所述,m 的值为0或3.7.(2019·开封二模)如图,抛物线y =ax 2+bx +2与直线y =﹣x 交第二象限于点E ,与x 轴交于A (﹣3,0),B 两点,与y 轴交于点C ,EC △x 轴.(1)求抛物线的解析式;(2)点P 是直线y =﹣x 上方抛物线上的一个动点,过点P 作x 轴的垂线交直线于点G ,作PH △EO ,垂足为H .设PH 的长为l ,点P 的横坐标为m ,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值.【答案】见解析.【解析】解:(1)由题意知:A (﹣3,0),C (0,2),EC △x 轴 △点E 的纵坐标为2, △点E 在直线y =﹣x 上, △点E (﹣2,2),△将A (﹣3,0)、E (﹣2,2)代入y =ax 2+bx +2,得:93204222a b a b -+=⎧⎨-+=⎩,解得:2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩ 抛物线的解析式为:224233y x x =--+;(2)△OC =CE =2,△△ECO =△CEO =45°, △PG △x 轴,PH △EO , △△PGH =45°,即△PGH 为等腰直角三角形,P (m ,224233m m --+),G (m ,﹣m ),△l 2PG 2(224233m m --++m ) =2214923448m ⎫-++⎪⎝⎭ △2<0, △当m =-14时,l 取最大值,最大值为:248.8.(2019·西华县一模)如图,在平面直角坐标系中,直线y =﹣2x +10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动;同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒,当t 为何值时,P A =QA ?【答案】见解析.【解析】解:(1)△直线y=﹣2x+10与x轴,y轴相交于A,B两点,△A(5,0),B(0,10),设抛物线解析式为y=ax2+bx+c,△抛物线过点B(0,10),C(8,4),O(0,0),△c=0,25a+5b=0,64a+8b=4,△a=16,b=56-,c=0抛物线解析式为y=16x256-x,△A(5,0),B(0,10),C(8,4),△AB2=52+102=125,BC2=82+(10﹣4)2=100,AC2=42+(8﹣5)2=25,△AC2+BC2=AB2,△△ABC是直角三角形.(2)由(1)知BC=10,AC=5,OA=5,OP=2t,BQ=t,CQ=10﹣t,△AC=OA,△ACQ=△AOP=90°,在Rt△AOP和Rt△ACQ中,AC=OA,P A=QA,△Rt△AOP△Rt△ACQ,△OP=CQ,即2t=10﹣t,解得:t=103,即当运动时间为103s时,P A=QA.9.(2019·中原名校大联考)如图,直线y=﹣x+5与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c与直线y=﹣x+5交于B,C两点,已知点D的坐标为(0,3)(1)求抛物线的解析式;(2)点M,N分别是直线BC和x轴上的动点,则当△DMN的周长最小时,求点M,N的坐标.【答案】见解析.【解析】解:(1)在y=﹣x+5中,当x=0,y=5,当y=0,x=5,点B、C的坐标分别为(5,0)、(0,5),将(5,0)、(0,5),代入y=﹣x2+bx+c,并解得:b=4,c=5即二次函数表达式为:y=﹣x2+bx+5.(2)在y=﹣x2+bx+5中,当y=0时,x=﹣1或5,△A(﹣1,0),OB=OC=2,∴△OCB=45°;过点D分别作x轴和直线BC的对称点D′(0,﹣3)、D″,△△OCB=45°,∴CD″△x轴,点D″(2,5),连接D′D″交x轴、直线BC于点N、M,此时△DMN的周长最小,设直线D’D’’的解析式为:y=mx+n将D′(0,﹣3),D″(2,5),代入解得:m=4,n=-3,直线D’D’’的解析式为:y=4x﹣3,∴N(34,0).联立y=4x﹣3,y=﹣x+5得:x=85,y=175,即M(85,175).10.(2019·郑州模拟)如图,二次函数y=x2+bx+c 的图象与x 轴交于A,B 两点,与y 轴交于点C,OB=OC.点D 在函数图象上,CD∥x 轴,且CD=2,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b,c的值.(2)如图1,连接BE,线段OC 上的点F 关于直线l 的对称点F′恰好在线段BE 上,求点 F 的坐标.(3)如图2,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN 与△APM 的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.图1 图2【答案】见解析.【解析】解:(1)∵CD∥x轴,CD=2,C在y轴上,∴抛物线的对称轴为:x=1,即b=-2,∵OB=OC,C(0,c),∴B(-c,0),即c2+2c+c=0,解得:c=0(舍)或c=-3,即b=-2,c=-3,(2)抛物线的解析式为:y= x2-2x-3,可得:E(1,-4),A(-1,0),B(3,0),C(0,-3),则直线BE的解析式为:y=2x-6,设F(0,m),则其关于直线l对称点为F’(2,m),∵F’在直线BE上,∴m=-2,即F(0,-2).(3)存在,理由如下:过点Q作QD⊥PN于D,连接PQ、NQ,设点P(x,0),由B(3,0),C(0,-3)得直线BC的解析式为:y=x-3则M(x,x-3),N(x,x2-2x-3),AP=x+1,PM=3-x,PN= -x2+2x+3∵S△PQN=S△APM,∴PN·DQ=AP·PM,∴(-x2+2x+3)DQ=(x+1)(3-x),即DQ=1,①当点D在直线PN右侧时,D(x,x2-4),Q(x+1,x2-4),则DN=|2x-1|,在Rt△DNQ中,由勾股定理得:NQ2=(2x-1)2+12=4212x⎛⎫-⎪⎝⎭+1,当x=12时,NQ取最小值,此时Q(32,154-);②当点Q在直线PN的左侧时,由对称性求得:此时Q(12,154-);11.(2019·郑州模拟)如图,抛物线y=-x2+bx+c和直线y=x+1交于A、B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C.(1)求抛物线的解析式.(2)点P从点A出发,以每秒2个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.【答案】见解析.【解析】解:(1)∵B 点横坐标为3,在y =x +1上,∴B (3,4),∵A 点在y =x +1上,∴A (﹣1,0),将A (﹣1,0),B (3,4)代入y =﹣x 2+bx +c 得:10934b c b c --+=⎧⎨-++=⎩,解得:34b c =⎧⎨=⎩, ∴抛物线解析式为y =﹣x 2+3x +4(2)①过点P 作PE ⊥x 轴于点E ,由题意得:E (﹣1+t ,0),Q (3﹣2t ,0),∴EQ =4﹣3t ,PE =t∵∠PQE +∠NQC =90°,∠PQE +∠EPQ =90°,∴∠EPQ =∠NQC ,∴△PQE ∽△QNC ,∴12 PQ PENQ CQ==,∴S矩形PQNM=PQ•NQ=2PQ2∵PQ2=PE2+EQ2∴S=20t2﹣36t+18=2616 2055t⎛⎫-+ ⎪⎝⎭当t=65时,S最小为165.②由①知:△PQE∽△QNC,C(3﹣2t,0),P(﹣1+t,t),∴NC=2QO=8﹣6t,∴N(3,8﹣6t),∴M(3t﹣1,8﹣5t),(i)当M在抛物线上时,可得:8﹣5t=﹣(3t﹣1)2+3(3t﹣1)+4解得:t 1027+或t1027-;(ii)当点Q到A时,Q在抛物线上,此时t=2,(iii)当N在抛物线上时,8﹣6t=4,∴t=23,综上所述,当t 1027+1027-,2,23时,矩形PQNM的顶点落在抛物线上.12.(2019·郑州模拟)如图,在平面直角坐标系中,M、N、C三点的坐标分别为(12,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是【答案】14-≤b≤1.【解析】解:当点A与点N重合时,MN⊥AC,B、M、N共线,∵N(3,1)∴b=1;当点A与点M重合时,延长NM交y轴于E,易知∠CAN=∠BAE,即tan∠CAN=tan∠BAE,∴11252BE=,∴BE=54,即b=14-,∴b 的取值范围是:14 ≤b ≤1.。
中考数学压轴题精讲:因动点产生的等腰三角形问题(含试题-含详解)省公开课获奖课件市赛课比赛一等奖课件

D
②当 BP=BO=4 时,BP2=16.
X
所以 42 ( y 2 3)2 16 .解得 y1 y2 2 3 .
S
图1
③当 PB=PO 时,PB2=PO2.所以 42 ( y 2 3)2 22 y2 .
Z
解得 y 2 3 .
X
综合①、②、③,点 P 的坐标为(2, 2 3),如图 1 所示.
Z
所以 PM DM 4 .所以QN 3 PM , PM 4 QN .
X
QN DN 3
4
3
图1
1.2 因动点产生旳等腰三角形问题
例4 2023年上海市虹口区中考模拟第25题
(2)
①如图 2,当 BP=2,P 在 BM 上时,PM=1.
此时QN 3 PM 3 .所以CQ CN QN 4 3 19 .
Y
可以得到△ BDP 也是等腰三角形,PB=PD.在△ BDP 中可以
D
直接求解 BP 25 .
X
6
S
Z
X
图6
1.2 因动点产生旳等腰三角形问题
例3 2023年临沂市中考第26题 如图,点A在 x 轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB旳 位置.
(1)求点B旳坐标;
(2)求经过A、O、B旳抛物线旳解析式; (3)在此抛物线旳对称轴上,是否存在点P,使得以点P、O、B
Y
为顶点旳三角形是等腰三角形?若存在,求点 P 旳坐标;若 不存在,请阐明理由.
所以 ED CD tan C 5 3 15 , EC 25 .
44
4
Y D
(2)如图 1,过点 D 作 DM⊥AB 于 M,DN⊥AC 于 N,
X
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学压轴题精讲:动点产生的直角三角形问题例1:如图1,在R t △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式; (3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形, 所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2 由CM //AB ,得2CM CGAB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM . 所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在R t △ABC 中, AB =13,AC =5,所以BC =12.①如图 4,当∠AGE =90°时,延长EG 交AB 于N ,那么△AGE ≌△AGN . 所以G 是EN 的中点. 所以G 是BC 的中点,BG =6.②如图5,当∠AEG =90°时,由△CAF ∽△EGF ,得FC FAFE FG=. 由CE //AB ,得FC FBFE FA=.所以FA FBFG FA=.又因为∠AFG =∠BF A ,所以△AFG ∽△BF A . 所以∠F AG =∠B .所以∠GAB =∠B .所以GA =GB .作GH ⊥AH ,那么BH =AH =132. 在R t △GBH 中,由c os ∠B =BH BG ,得BG =132÷1213=16924.图5 图6例2:如图1,二次函数y =a (x 2-2mx -3m 2)(其中a 、m 是常数,且a >0,m >0)的图像与x 轴分别交于A 、B (点A 位于点B 的左侧),与y 轴交于点C (0,-3),点D 在二次函数的图像上,CD //AB ,联结AD .过点A 作射线AE 交二次函数的图像于点E ,AB 平分∠DAE .(1)用含m 的式子表示a ;(2)求证:ADAE为定值; (3)设该二次函数的图像的顶点为F .探索:在x 轴的负半轴上是否存在点G ,联结GF ,以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.图1满分解答(1)将C (0,-3)代入y =a (x 2-2mx -3m 2),得-3=-3am 2.因此21a m =. (2)由y =a (x 2-2mx -3m 2)=a (x +m )(x -3m )=a (x -m )2-4axm 2=a (x -m )2-4, 得A (-m , 0),B (3m , 0),F (m , -4),对称轴为直线x =m .所以点D 的坐标为(2m ,-3).设点E 的坐标为(x , a (x +m )(x -3m )).如图2,过点D 、E 分别作x 轴的垂线,垂足分别为D ′、E ′.由于∠EAE ′=∠DAD ′,所以''''EE DD AE AD =.因此()(3)33a x m x m x m m+-=+. 所以am (x -3m )=1.结合21a m =,于是得到x =4m . 当x =4m 时,y =a (x +m )(x -3m )=5am 2=5.所以点E 的坐标为(4m , 5). 所以'3'5AD DD AE EE ==.图2 图3(3)如图3,由E (4m , 5)、D (2m ,-3)、F (m ,-4), 可知点E 、D 、F 到x 轴的距离分别为5、4、3.那么过点F 作AD 的平行线与x 轴的负半轴的交点,就是符合条件的点G .证明如下:作FF ′⊥x 轴于F ′,那么'4'3GF FF AD DD ==. 因此534AE AD GF==.所以线段GF 、AD 、AE 的长围成一个直角三角形. 此时GF ′=4m .所以GO =3m ,点G 的坐标为(-3m , 0).例3:如图1,抛物线213442y x x =--与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.图1(1)由21314(2)(8)424y x x x x =--=+-,得A (-2,0),B (8,0),C (0,-4). (2)直线DB 的解析式为142y x =-+.由点P 的坐标为(m , 0),可得1(,4)2M m m --,213(,4)42Q m m m --.所以MQ =221131(4)(4)82424m m m m m -+---=-++.当MQ =DC =8时,四边形CQMD 是平行四边形. 解方程21884m m -++=,得m =4,或m =0(舍去). 此时点P 是OB 的中点,N 是BC 的中点,N (4,-2),Q (4,-6).所以MN =NQ =4.所以BC 与MQ 互相平分. 所以四边形CQBM 是平行四边形.图2 图3(3)存在两个符合题意的点Q ,分别是(-2,0),(6,-4).例4:如图1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E(4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 的解析式.图1(1)由23333(4)(2)848y x x x x =--+=-+-,得抛物线与x 轴的交点坐标为A (-4, 0)、B (2, 0).对称轴是直线x =-1.(2)△ACD 与△ACB 有公共的底边AC ,当△ACD 的面积等于△ACB 的面积时,点B 、D 到直线AC 的距离相等.过点B 作AC 的平行线交抛物线的对称轴于点D ,在AC 的另一侧有对应的点D ′. 设抛物线的对称轴与x 轴的交点为G ,与AC 交于点H .由BD //AC ,得∠DBG =∠CAO .所以34DG CO BG AO ==. 所以3944DG BG ==,点D 的坐标为9(1,)4-.因为AC //BD ,AG =BG ,所以HG =DG .而D ′H =DH ,所以D ′G =3DG 274=.所以D ′的坐标为27(1,)4.图2 图3(3)过点A 、B 分别作x 轴的垂线,这两条垂线与直线l 总是有交点的,即2个点M . 以AB 为直径的⊙G 如果与直线l 相交,那么就有2个点M ;如果圆与直线l 相切,就只有1个点M 了.联结GM ,那么GM ⊥l .在R t △EGM 中,GM =3,GE =5,所以EM =4.在R t △EM 1A 中,AE =8,113tan 4M A M EA AE ∠==,所以M 1A =6. 所以点M 1的坐标为(-4, 6),过M 1、E 的直线l 为334y x =-+.根据对称性,直线l 还可以是334y x =+.例5:在平面直角坐标系中,反比例函数与二次函数y =k (x 2+x -1)的图象交于点A (1,k )和点B(-1,-k ).(1)当k =-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y 随x 增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.(1)因为反比例函数的图象过点A (1,k ),所以反比例函数的解析式是k y x=. 当k =-2时,反比例函数的解析式是2y x=-.(2)在反比例函数ky x=中,如果y 随x 增大而增大,那么k <0.当k <0时,抛物线的开口向下,在对称轴左侧,y 随x 增大而增大.抛物线y =k (x 2+x +1)=215()24k x k +-的对称轴是直线12x =-.所以当k <0且12x <-时,反比例函数与二次函数都是y 随x 增大而增大. (3)抛物线的顶点Q 的坐标是15(,)24k --,A 、B 关于原点O 中心对称,当OQ =OA =OB 时,△ABQ 是以AB 为直径的直角三角形.由OQ 2=OA 2,得222215()()124k k -+-=+.解得1233k =(如图2),2233k =-(如图3).图2 图3例6:设直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2,若l 1⊥l 2,垂足为H ,则称直线l 1与l 2是点H 的直角线.(1)已知直线①122y x =-+;②2y x =+;③22y x =+;④24y x =+和点C (0,2),则直线_______和_______是点C 的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC 的顶点A (3,0)、B (2,7)、C (0,7),P 为线段OC 上一点,设过B 、P 两点的直线为l 1,过A 、P 两点的直线为l 2,若l 1与l 2是点P 的直角线,求直线l 1与l 2的解析式.图1 图1答案(1)直线①和③是点C 的直角线.(2)当∠APB =90°时,△BCP ∽△POA .那么BC PO CP OA =,即273POPO =-.解得OP =6或OP =1.如图2,当OP =6时,l 1:162y x =+, l 2:y =-2x +6. 如图3,当OP =1时,l 1:y =3x +1, l 2:113y x =-+.图2 图3例7:在平面直角坐标系xOy 中,抛物线22153244m my x x m m -=-++-+与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上.(1)求点B 的坐标;(2)点P 在线段OA 上,从点O 出发向点A 运动,过点P 作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当点P 运动时,点C 、D 也随之运动).①当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;②若点P 从点O 出发向点A 作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从点A 出发向点O 作匀速运动,速度为每秒2个单位(当点Q 到达点O 时停止运动,点P 也停止运动).过Q 作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当点Q 运动时,点M 、N 也随之运动).若点P 运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.图1满分解答(1) 因为抛物线22153244m my x x m m -=-++-+经过原点,所以2320m m -+=. 解得12m =,21m =(舍去).因此21542y x x =-+.所以点B 的坐标为(2,4).(2) ①如图4,设OP 的长为t ,那么PE =2t ,EC =2t ,点C 的坐标为(3t , 2t ).当点C 落在抛物线上时,2152(3)342t t t =-⨯+⨯.解得229t OP ==. ②如图1,当两条斜边PD 与QM 在同一条直线上时,点P 、Q 重合.此时3t =10.解得103t =. 如图2,当两条直角边PC 与MN 在同一条直线上,△PQN 是等腰直角三角形,PQ =PE .此时1032t t -=.解得2t =.如图3,当两条直角边DC 与QN 在同一条直线上,△PQC 是等腰直角三角形,PQ =PD .此时1034t t -=.解得107t =.图1 图2 图3例8:如图1,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =.(1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?图1满分解答(1)在△ABC 中,1=AC ,x AB =,x BC -=3,所以⎩⎨⎧>-+->+.31,31x x x x 解得21<<x .(2)①若AC 为斜边,则22)3(1x x -+=,即0432=+-x x ,此方程无实根. ②若AB 为斜边,则1)3(22+-=x x ,解得35=x ,满足21<<x . ③若BC 为斜边,则221)3(x x +=-,解得34=x ,满足21<<x . 因此当35=x 或34=x 时,△ABC 是直角三角形. (3)在△ABC 中,作AB CD ⊥于D ,设h CD =,△ABC 的面积为S ,则xh S 21=. ①如图2,若点D 在线段AB 上,则x h x h =--+-222)3(1.移项,得2221)3(h x h x --=--.两边平方,得22222112)3(h h x x h x -+--=--.整理,得4312-=-x h x .两边平方,得16249)1(222+-=-x x h x .整理,得16248222-+-=x x h x所以462412222-+-==x x h x S 21)23(22+--=x (423x <≤). 当23=x 时(满足423x <≤),2S 取最大值21,从而S 取最大值22.图2 图3②如图3,若点D 在线段MA 上,则x h h x =----2221)3(. 同理可得,462412222-+-==x x h x S 21)23(22+--=x (413x <≤). 易知此时22<S . 综合①②得,△ABC 的最大面积为22.。