二维随机变量的函数

合集下载

《概率论》二维随机变量及其分布函数的定义、基本性质

《概率论》二维随机变量及其分布函数的定义、基本性质

定义3-1 n个随机变量X1,X2,…,X n构成的整体X=(X1,X2,…,X n)称为一个n维随机变量或n维随机向量,X i称为X的第i(i=1,2,…,n)个分量.
定义3-2 设(x,Y)为一个二维随机变量,记
F(x,y)=P{X≤x,Y≤y},-∞<z<+∞,-∞<y<+∞,< p="" style="padding: 0px; list-style: none;">
称二元函数F(x,y)为X与y的联合分布函数或称为(X,Y)的分布函数.
(X,Y)的两个分量X与y各自的分布函数分别称为二维随机变量(X,Y)关于X与关于y的边缘分布函数,记为F X(x)与F Y(y).
边缘分布函数可由联合分布函数来确定,事实上,一元函数
几何上,若把(X,Y)看成平面上随机点的坐标,则分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在以(x,y)为顶点、位于该点左下方的无穷矩形D内的概率.
分布函数F(x,y)具有下列性质:
(1)F(x,y)是变量x(或y)的不减函数.
(2)0≤F(x,y)≤l,
对任意固定的y,F(-∞,y)=0
对任意固定的x,F(x,-∞)=0;
F(-∞, -∞)=0,F(+∞,+∞)=1. (3)F(x,y)关于x和关于y均右连续,即F(x,y)=F(x+0,y);F(x,y)=F(x,y+0). (4)对任意固定的x1<x2,y1<y2
F(x2 ,y2)-F(x2,yl)-F(xl,y1)+F(x1+yl)≥0.。

二维随机变量及其分布函数

二维随机变量及其分布函数

设二维离散型随机变量 ( X ,Y ) 所有可能取的 值为 ( x i , y j ), i , j 1, 2,, 记 P{ X x i , Y y j } pij , i , j 1, 2,, 称此为二维离散型随机 变量 ( X ,Y ) 的分布律 , 或随机变量 X 和 Y 的联合分布律 .
对于任意固定的x ,当y2 y1时F ( x, y2 ) F ( x, y1 ).
2o
0 F ( x, y ) 1, 且有
lim F ( x , y ) 0, 对于任意固定的 y, F ( , y ) x
对于任意固定的 x , F ( x,) lim F ( x, y ) 0,
( 2)
f ( x , y ) d x d y F (, ) 1.

(3) 设 G 是 xOy 平面上的一个区域 , 点 ( X , Y ) 落在 G 内的概率为
P {( X ,Y ) G } f ( x , y ) d x d y .
G
2 F ( x, y) (4) 若 f ( x , y ) 在 ( x , y ) 连续, 则有 f ( x, y) . xy
例2 从一个装有3支蓝色、2支红色、3支绿色圆珠
笔的盒子里, 随机抽取两支, 若 X、Y 分别表示 抽出的蓝笔数和红笔数,求 ( X, Y ) 的分布律. 解 ( X, Y ) 所取的可能值是
( 0,0), ( 0,1), (1,0 ), (1,1), ( 0,2), ( 2,0).
3 2 3 8 3 抽取两支都是绿笔 抽取一支绿笔 , 一支红笔 P { X 0,Y 0} , 0 0 2 2 28 3 2 3 8 3 P { X 0,Y 1} , 0 1 1 2 14

3.6二维随机变量的函数的分布

3.6二维随机变量的函数的分布
类似地,可得 N min( X ,Y )的分布函数为
Fmin (z) P{N z} 1 P{N z} 1 P{ X z,Y z} 1 P{ X z}P{Y z} 1 [1 P{ X z}][1 P{Y z}] 1 [1 FX (z)][1 FY (z)]
(2
2 z)2
,
z
0
.
0,
z0
二维随机变量的函数的分布
四、常见的二维随机变量的函数的分布
4、 Z XY 的分布
类似推导可得
fZ (z)
+
f
( x,
z) x
1 x
dx
当 X 与Y 独立时,
fZ (z)
+
fX (x)
fY
(
z) x
1 x
dx
二维随机变量的函数的分布
四、常见的二维随机变量的函数的分布
一、 二维随机变量的函数的分布引言
设( X ,Y )为一个二维随机变量,z g( x, y)为一个已知的二
元连续函数,则 Z g( x, y)是随机变量 X ,Y 的函数,它也是一
个随机变量.
边缘
分布
条件 分布
联合 分布
函数 分布
独立 性
二维随机变量的函数的分布
二、二维离散型随机变量的函数的分布
二维随机变量的函数的分布
推广到n个相互独立的随机变量,设 X1, X2 ,L , Xn是n个相互独立的随机变量
Fmax (z) FX1 (z)FX2 (z)L FXn (z) Fmin (z) 1 [1 FX1 (z)][1 FX2 (z)]L [1 FXn (z)]
当 X1, X 2 , , X n相互独立且具有相同分布函数F ( x)时,有

第05章 二维随机变量

第05章 二维随机变量

第五章 二维随机变量第一节 二维随机变量及其分布一、二维随机变量1、定义:设),,(P S F 为一概率空间,X 、Y 均为S 上的一维随机变量,称二维向量X ),(Y X =为S 上的二维随机变量.2、X 的分布:}{B P ∈X , 2B ∈B . 其中可证:=∈}{B X F ∈∈∈},))(),((|{S e B e Y e X e .若取},|),{(2121y y y x x x y x B ≤<≤<=,那么},{}{2121y Y y x X x P B P ≤<≤<=∈X},{22y Y x X P ≤≤=},{21y Y x X P ≤≤- },{},{1112y Y x X P y Y x X P ≤≤+≤≤-.3、分布函数(1)定义:设),,(P S F 为一概率空间,),(Y X 为S 上的二维随机变量,R ∈∀y x ,,规定:},{),(y Y x X P y x F ≤≤=. 称),(y x F 为),(Y X 的分布函数.显然: },{2121y Y y x X x P ≤<≤<),(),(),(),(11122122y x F y x F y x F y x F +--=.(2)性质① R ∈∀y x ,,1),(0≤≤y x F .② ),(y x F 关于y x ,均为单调不减函数.③ 0),(=-∞y F ,0),(=-∞x F ,0),(=-∞-∞F ,1),(=+∞+∞F . ④ ),(y x F 关于y x ,均为为右连续函数.⑤ R ∈<<∀2121,y y x x ,0),(),(),(),(11122122≥+--y x F y x F y x F y x F .注:①~⑤为分布函数的特征性质.反之亦然.例1掷硬币三次,X 表示出现正面的次数,|)3(|X X Y --=,求),(Y X 的分布函数),(y x F .解:(1) X 的所有可能取值为3,2,1,0,依次记为4321,,,x x x x ,Y 的所有可能取值为3,1,依次记为21,y y .列表如下X样 本 点Y0 (反反反)3 1 (正反反) (反正反) (反反正) 1 2(正正反) (正反正) (反正正)13 (正正正)3(2) 概率情况列表 81},{21===y Y x X P ,83},{12===y Y x X P , 83},{13===y Y x X P ,81},{24===y Y x X P ,其他0},{===j i y Y x X P .(3)求分布. 记}2,1 ,3,2,1|),{(===j i y x A j i ,YX1 3 0 0 8/1 1 8/3 02 8/3 0 38/1A B BA B +=, 显然φ=∈}),{(A B Y X ,那么}),{(}),{(}),{(A B Y X P BA Y X P B Y X P ∈+∈=∈∑∈===∈=By x j i j i y Y x XP BA Y X P )(,},{}),{((4)求分布函数. ∑≤≤===≤≤=yy x x j i j i y Y x XP y Y x X P y x F ,},{},{),(.⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥≥<≤<≤≥≥<≤<≤<≤≥<≤<<<<=.3 ,3 1, ,3 ,32 ,8/7 ;31 ,3 ,8/6 ;3 ,21 ,8/4 ;31 ,21 ,8/3 ;3 ,10 ,8/1;3 ,1 1 0 0,),(y x y x y x y x y x y x y x y x y x F 或或二、边缘分布1、),(Y X 关于X 的边缘分布: ),(lim }{)(y x F x X P x F y X +∞→=≤=.证明:取}{},{},{x X Y x X n Y x X A n ≤=+∞<≤→≤≤=不减,由①②知),(lim y x F y +∞→存在,故)(}{)lim ()(lim ),(lim ),(lim x F x X P A P A P n x F y x F X n n n n n y =≤====∞→∞→∞→+∞→.2、),(Y X 关于Y 的边缘分布: ),(lim }{)(y x F y Y P y F x Y +∞→=≤=. (略)三、随机变量相互独立、定义:设),(y x F 为),(Y X 的分布函数,X 、Y 的分布函数分别为 )(x F X 、)(y F Y ,若R ∈∀y x ,,恒有=),(y x F )(x F X )(y F Y , 则称X 与Y 相互独立.2、X 与Y 相互独立⇔R ∈<<∀2121,y y x x ,恒有}{}{},{21212121y Y y P x X x P y Y y x X x P ≤<≤<=≤<≤<.证明:“⇐” R ∈∀y x ,,由于},{},{y Y x X y Y n x X n ≤≤→≤<-≤<-, }{}{x X x X n ≤→≤<-, }{}{y Y y Y n ≤→≤<-均不减,则},{),(y Y x X P y x F ≤≤=},{lim y Y n x X n P n ≤<-≤<-=∞→}]{}{[lim y Y n P x X n P n ≤<-≤<-=∞→}]{lim }{lim y Y n P x X n P n n ≤<-≤<-=∞→∞→)()(}{}{y F x F y Y P x X P Y X =≤≤=.“⇒”R ∈<<∀2121,y y x x ,有 },{2121y y x x P ≤<≤<ηξ ),(),(),(),(11122122y x F y x F y x F y x F +--=)()()()()()()()(11122122y F x F y F x F y F x F y F x F Y X Y X Y X Y X +--= )]()()][()([1212y F y F x F x F Y Y X X --= }{}{2121y y P x x P ≤<≤<=ξξ.3、X 与Y 相互独立⇔R ⊂∀21,B B ,恒有}{}{},{2121B Y P B X P B Y B X P ∈∈=∈∈.第二节 二维离散型随机变量一、二维离散型随机变量 1、定义:设),,(P S F 为一概率空间,),(Y X 为S 上的二维随机变量,若),(Y X 的取值为有限个或可数个(至多可数),称),(Y X 为S 上的二维离散型随机变量. 显然:),(Y X 为S 上的二维离散型随机变量⇔X 与Y 均为S 上的一维离散型随机变量.2、概率分布:设),(Y X 所有可能取的值为),(j i y x ,令 },{j i ij y Y x X P p ===,称其为二维随机变量),(Y X 的概率分布(分布率)。

二维随机变量及其联合分布函数

二维随机变量及其联合分布函数

E-mail: xuxin@
实例1 炮弹的弹着点的 位置 (X,Y) 就是一个二维 随机变量. 实例2 考查某一地 区学 前儿童的发育情况 , 则儿 童的身高 H 和体重 W 就 构成二维随机变量(H,W). 说明 二维随机变量 ( X, Y ) 的性质不仅与X 、Y 有关,而且还依赖于这两个随机变量的相互关系.
0
+∞
−2 x
(1 − e )dx = [−e
−x
−2 x
2 −3x +∞ 2 1 + e ] |0 = 1 − = . □ 3 3 3
本例是一个典型题.大家应熟练掌握分析与计 算的方法。特别是会根据不同形状的概率密度非零 区域与所求概率的事件区域G来处理这类问题。 与所求概率的
E-mail: xuxin@
( x, y ) 处的函数值就是事件
“随机点(X,Y)落在以点
( x, y )为右上顶点的角形区
域”的概率.
E-mail: xuxin@
分布函数具有下列基本性质:
(1)0 ≤ F ( x, y ) ≤ 1 (−∞ < x < +∞, −∞ < y < +∞) F 且对于任意固定的y, (−∞, y) = xlim F ( x, y ) = 0, →−∞
P{( X , Y ) ∈ G} =
( xi , y j )∈G
∑ P{ X = x , Y = y }
i j
F ( x, y )
E-mail: xuxin@
三、二维连续型随机变量
1、概念
定义5 设二维随机变量(X,Y)的分布函数为 F ( x, y ) 如果存在非负函数 f ( x, y ),使得对任意的X, Y均有 y x

复习:二维随机变量函数的分布

复习:二维随机变量函数的分布

的可能取值z 则Z=X+Y的可能取值 k=xi+yj (k=1,2,…),因此 的可能取值 , , ,因此Z 也是离散型随机变量, 也是离散型随机变量 其分布律为
P{ Z = zk } = P{ X + Y = zk } = ∑ ∑ P{ X = xi , Y = y j }
= ∑ ∑ pij
i j
1 f X ( x) = e , − ∞ < x < +∞ 2π y2 1 −2 fY ( y ) = e , − ∞ < y < +∞ 2π
+∞
x2 − 2
因此 ,由卷积公式有 f Z (z) = ∫
−∞
1 f X ( x ) fY ( z − x )dx = 2π

+∞
−∞
e
x2 − 2
⋅e
( z − x )2 − 2
Z3=max{X+Y}的分布律为 的分布律为 Z3 pk -1 0.25 1 0.1 2 0.65
已知随机X、 相互独立 相互独立, 例2 已知随机 、Y相互独立,且X~P(λ1) 、Y ~ P(λ2)。 λ λ 。 试求Z=X+Y的分布律。 的分布律。 试求 的分布律 解 因X与Y均服从泊松分布,所以X与Y的取值为任 与 均服从泊松分布,所以 与 的取值为任 均服从泊松分布 一非负整数,因此 的取值也为全体非负整数。 一非负整数,因此Z=X+Y的取值也为全体非负整数。 的取值也为全体非负整数 由概率的运算法则知,对一任非负整数k,有 由概率的运算法则知,对一任非负整数 ,
由于存在面积不为0的区域, 由于存在面积不为 的区域, 的区域 f (x, y) ≠ f X ( x) fY ( y) 故X和Y不独立 . 和 不独立

经济数学——概率论与数理统计 3.1 二维随机变量及其分布

经济数学——概率论与数理统计  3.1  二维随机变量及其分布
若(X,Y)的分布律为P{X=xi,Y=yj}=pij, i,j=1,2,… 则(X,Y)的分布函数为
其中和式是对一切满足xi≤x , yj≤y求和。
例 若(X,Y)的分布律如下表,求(X,Y)的分布函数。 Y 0 1 X 0 1/2 0 y 1 解 0 1/2
1
1 x
四、 二维连续型随机变量
1.定义:设(X,Y)的联合分布函数为F(x,y),若存在一非负 函数f(x,y),使得对于任意的实分布
二维随机变量及其分布 第二节 边缘分布 第三节 随机变量的独立性 第四节 二维随机变量函数的分布
第一节 二维随机变量及其分布
一、二维随机变量的定义
1.定义: 随机试验E的样本空间Ω={e},设X1(e), X2(e)为定 义Ω上的随机变量,由它们构成的一个向量(X1,X2)叫做 二维随机变量或二维随机向量。 对于二维随机变量, 需要考虑 ①二维随机变量作为一个整体的概率分布或称联合分布; ②还要研究每个分量的概率分布或称边缘分布; ③并且还要考察各分量之间的联系,比如是否独立等。
利用极坐标计算可得
从而有 Aπ=1,即可得A=1/π。
(2)依题意需求概率
下面我们介绍两个常见的二维分布.
设G是平面上的有界区域,其面积为A.若二 维随机变量( X,Y)具有概率密度
则称(X,Y)在G上服从均匀分布.

向平面上有界区域G上任投一质点,若质点落 在 G内任一小区域 B的概率与小区域的面积成正比, 而与B的形状及位置无关. 则质点的坐标 (X,Y)在G 上服从均匀分布.
0≤F(x,y)≤1。
因为{X≤x1,Y≤y}{X≤x2,Y≤y}. (2). 对于任意固定的y, F(-∞,y)=0;
对于任意固定的x, F(x,-∞)=0;

3.1 二维随机变量的定义、分布函数

3.1  二维随机变量的定义、分布函数
2 X
当 2 x, 且 1 y 0 时 F ( x , y ) P{ X x , Y y }
P{ X 2, Y 1} 1 1 4 6
0
-1
Y X
-1
0
1 2


Y 1


F ( x , y ) P{ X x , Y y } P{ X 1, Y 1}
二维连续型随机变量的联合概率密度的 性质
(1)非负性 (2)正则性
f ( x, y) 0
F ( ,)
(3)可导性


f ( x , y )dxdy 1
2 F ( x, y) f ( x, y) xy
(4)(X,Y)落在平面区域G上的概率
设二维随机变量(X,Y)的概率密度为
1 , SG 0, ( x , y ) G; ( x, y) G.
f ( x, y)
其中G是平面上的有界区域,其面积为SG 则称(X,Y)在D上服从均匀分布.
例题讲解
例1: 设二维随机变量(X,Y)在区域G上服从均匀分 布,其中G是曲线 y=x2 和y=x 所围成的区域,则
定义3.1.4 (二元连续型随机变量)
若存在非负函数 f(x,y),使对任意实数x,y, 二元随机变量(X,Y)的分布函数可表示成如下形式
F ( x , y ) PX x , Y y
f (u, v )dudv
x
y
则称(X,Y)是二元连续型随机变量。
f(x,y)称为二元随机变量(X,Y)的联合概率密度函数.
2 12 2 , 0.75时二元正态分布的 • 下图是当 钟形密度曲面图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
z

y f (uy, y )dy
在第二个积分

dy f (x, y )dx 中,作变换 x uy,
zy
0

则 dx ydu,当 x zy 时, u z;
当 x 时,注意到 y < 0,因而有 u ;

dy f (x, y )dx dy f (uy, y )ydu

f Z (z ) f X (x )* f Y (y )
称为卷积公式
例1 设随机变量 X 与Y 相互独立,都服从区间 (0, 1)上的 均匀分布,令 Z X Y,试求随机变量 Z 的密度函数.
解:
1, 0 < x < 1, f X (x ) 其它. 0, 1, 0 < y < 1, f Y (y ) 其它. 0,
(X,Y) pij
W=X+Y
V=max(X, Y) U=min(X, Y)
(0,0) q2 0
(0,1) pq 1
(1,0) pq 1
(1,1) p2 2
0
0
1 0 1
0
1
0
1
1
W V 0 1
0
q2
2
0
p2
0
2 pq
一、离散型分布的情形
若X、Y独立,P(X=k)=ak , k=0,1,2,…, P(Y=k)=bk , k=0,1,2,… ,求Z=X+Y的概率函数.
两个随机变量的函数的分布
在第二章中,讨论了一维随机变量函数 的分布,现在进一步讨论:
当随机变量X1, X2, …,Xn的联合分布已知时, 如何求出它们的函数 Yi=gi(X1, X2, …,Xn), i=1,2,…,m 的联合分布? 先讨论两个随机变量的函数的分布问题,然后 将其推广到多个随机变量的情形.
1, 0 < x < 1, f X (x ) 其它. 0, e y , f Y (y ) 0,
y > 0, y 0.
习题17
设随机变量 Z X Y 的密度函数为 f Z (z ),则有
f Z (z )


f (x )f (z x )dx
X Y
f Z (z )
一般情形求多维随机变量函数分布的方法
分布函数法
若(X1, X2, …, Xn)~f (x1, x2, …, xn),
(x1, x2, …, xn)Rn, Y=g(X1, X2, …, Xn),
先求Y的分布函数:
FY ( y) P{Y y} P{g ( X 1 ,..., X n ) y}
z
f Z (z )


y f (zy, y )dy
特别地,如果随机变量 X 与Y 相互独立,则有
f (x, y ) f X (x ) f Y (y )
f Z (z )



y f X (yz ) f Y (y )dy
补充结论:
a X
i 1 i
n
i
~ N ( ai i , a )
i 1 i 1 2 i 2 i
n
n
思考题:课本例3
( x) t


x 1 t
e dt
0
5 x
x e dx
0
(6)
( x 1) x( x)
(n 1) n(n) n!
1 ( ) p 2
e-1
i 0
i 0 r
i 1
i!
e-2
r
r2-i
(r - i)!

e
( 1 2 )
r!
r! i r -i i! (r - i)! 12 i 0

e
( 1 2 )
r!
(1 2 ) ,
r
r=0,1,…
即Z服从参数为 1 2 的泊松分布.
设X和Y相互独立,X~B(n1,p),Y~B(n2,p),求 Z=X+Y 的分布.
若X~ B(n1,p),则X 是在n1次独立重复试验中 事件A出现的次数,每次试验中A出现的概率 都为p.
同样,Y是在n2次独立重复试验中事件A出现 的次数,每次试验中A出现的概率为p.
故Z=X+Y 是在n1+n2次独立重复试验中事 件A出现的次数,每次试验中A出现的概 率为p,于是Z是以(n1+n2,p)为参数的 二项随机变量,即Z ~ B(n1+n2, p).
i! 2 j e 2 P (Y j ) j! 由卷积公式
r i 0
P ( X i)
e
1

i 1
i=0,1,2,… j=0,1,2,…
P ( Z r ) P ( X i ,Y r i )
由卷积公式 r P ( Z r ) P ( X i ,Y r i )
FZ (z ) P{Z z } P{X Y z }


f (x, y)dxdy
x y z
dx f (x, y )dy


z x

作变换:y u x, FZ (z )
dx f (x, u x )du

z
和的分布
f Z (z ) FZ (z )
解:
P( Z r) P( X Y r)
P ( X i,Y r i )
i 0 r i 0 r
由独立性
此即离散 卷积公式
P ( X i ) P (Y r i )
=a0br+a1br-1+…+arb0 r=0,1,2, …
例2 若X和Y相互独立,它们分别服从参数为 1, 2 的泊松分布, 证明Z=X+Y服从参数为 1 2 的泊松z ) F ( z ) f ( z y, y)dy


f (x, z x )dx

若X与Y相互独立,则Z=X+Y的密度函数

f Z ( z)

f
X
( z y ) fY ( y )dy= f X ( x) fY ( z x)dx.

设随机变量 Z X Y 的密度函数为 f Z (z ),则有
f Z (z )


f (x)f (z x)dx
X Y
例 1(续)
f Z (z )


f (x )f (z x )dx
X Y
z
2
1
z x 1
zx0
0 < x < 1, 0 < z x < 1 f Z (z) 0. ⑴ 若z 0 ,或 z 2,
如果随机变量 X 与Y 相互独立,且
X ~ N 1, , Y ~ N 2,
2 1
(
)
(
2 2
)
Z X Y,
则 Z ~ N 1 2,
2 1
(
2 2
)
一般地,设随机变量X1, X2,..., Xn独立且Xi 服从正态分布N(i ,i2),i=1,...,n, 则
zy z
0

0


du ( y )f (uy, y )dy

z
0


du y f (uy, y )dy

z
0
FZ (z )

du y f (uy, y )dy du y f (uy, y )dy
0
z

z
0
y f (uy, y ) dy du
返回主目录
y

f (x, y )dxdy
x z y
x yz

x z, y > 0 y
f (x, y )dxdy

x z, y < 0 y
f (x, y )dxdy
x
x yz


x zy,y > 0 zy 0

f (x, y )dxdy
x zy,y < 0

0 < x < 1, z x > 0 ⑴ 若z 0 ,
f Z (z ) 0
1
0

f (x ) f (z x )dx,
X Y
z
zx0
⑵ 若0 < z 1 ,
f Z (z ) 1 e
0 z ( z x )
1
x
dx e
z
e
0
z
x
dx
1e
z
⑶ 若 z > 1,
⑵ 若0 < z 1 , f Z (z ) 1dx z .
0 z
0
1
x
⑶ 若1 < z < 2 , f Z (z) 1dx 2 z.
z 1
1
0 < z 1, z, f Z (z ) 2 z , 1 < z < 2, 0, 其它.
f Z (z )
商的分布
设 ( X, Y )是二维连续型随机变量 ,其联合密度函 数为 f ( x, y ), X 令: Z , Y X Z 的密度函数 f Z (z ). 计算随机变量 Y 先计算随机变量 FZ (z ) P{Z z } X Z 的分布函数 FZ (z ). Y X P z Y
i ,k:g ( xi , y j ) zk
相关文档
最新文档