实验4 磁旋光效应

实验4  磁旋光效应
实验4  磁旋光效应

实验4 磁旋光效应

磁旋光效应(法拉第效应)实验,对不同物质的旋光特性有所认识。实验发现,磁旋光性物质具有左旋和右旋之分,而且它的旋光方向是由磁场的方向来决定。根据实验数据分析获得磁场强度与偏振角之关系,观察磁场电流与旋光方向的关系,进一步了解不同介质的旋光特性。

[实验目的]

1.观察和了解磁旋光现象及其基本特征。

2.学习测量介质的磁旋光费尔德常数V的数值的方法。

3.思考磁旋光效应的应用。

[实验内容]

对给定的两个样品进行下面测量

1、在350nm-750nm波长范围内,分散选取5个以上不同波长,对其在不同磁场强度(在50mT-600mT范围内取10个以上点)下测量样品的磁旋光角。

2、对两个样品,做不同波长的磁旋光角-磁场强度关系图,并由图确定相应的费尔德常数值。

3、分析实验所得磁旋光角--磁场强度关系是否符合式(1)线性关系,以及费尔德常数值随光波长变化的色散关系。

[导引问题]

1.磁旋光现象具有什么特征?它与天然旋光现象有什么相同和不同的地方?

2.如何理解磁旋光效应的物理本质?

3、实验中所使用的磁场并非均匀场,这对V值的精确测量有影响吗?如果有,你能提出改

进意见吗?

4、许多材料除了有法拉第旋光效应外,还有自然旋光、双折射等效应。它们的存在是否会

影响本实验测量的准确度?如果影响,你能提出消除影响的办法吗?

[实验原理]

1845年由M.法拉第发现。当线偏振光(见光的

偏振)在介质中传播时,若在平行于光的传播方向上

加一强磁场,则光振动方向将发生偏转,偏转角图1

法拉第效应示意图度ψ与磁感应强度B和光穿越介质

的长度l的乘积成正比,即ψ=VBl,比例系数V称

为费尔德常数,与介质性质及光波频率有关。偏转方

向取决于介质性质和磁场方向。这种现象称为法拉第效应或磁致旋光效应

当一束平面偏振光穿过某介质时,如果对介质在沿光的传播方向加上磁场,就会观察到光经过样品后偏振面转过一个角度(见图1),亦即磁场使介质具有了旋光性,这种现象就是磁旋光效应,也称为法拉第效应。

实验表明,在磁场不很强时,偏振面旋转的角度F θ与光波在介质中走过的路程l 及加在介质中的磁感应强度沿光传播方向上的分量B 成正比,即

F VBl θ=

比例系数V 称为费尔德(Verdet) 常数, 表征着物质的磁光特性,其值由介质和光波长决定。几乎所有的物质(气体、液体,固体)都存在法拉第效应,不过大多不显著。不同的物质,偏振面旋转的方向也可能不同。习惯上规定,旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(0V >);反之叫负旋(0V <)。表1、2 给出某些物质的费尔德常数V 的数值。

表1 一些物质的费尔德常数

表2 若干旋光玻璃的旋光特性

磁旋光与自然旋光有不同的地方,也有相同的地方。

不同的地方是磁旋光效应是不可逆的光学过程,即对于给定的物质偏振面的旋转方向相对于实验室坐标,只由B 的方向决定,和光的传播方向无关,光线往返一次,旋转角将是单方向的2倍,而自然旋光则是可逆的,光线往返一次,累积旋转角为零。

相同的地方是旋光存在色散。对磁旋光效应,色散表现为费尔德常数V 值随入射光波长λ而变(见图2),称为旋光色散。如介质是含有三价稀土离子的玻璃,旋光色散可用下式近似表示

221()t V K λλ-=-

式中K 是跃迁波长t λ、有效的电偶极矩阵元t C 、温度和浓度等物理量的函数,但与人射光波长λ无关。

[实验装置]

本实验所使用的实验装置是NDFA-20A 型磁旋光效应仪,其功能部件如图4所示。

下面对几个主要部件予以简介。

1、光源及照明系统:光源使用有足够亮度的白炽灯。白光通过单色仪分光得到可见光波段的近单色光。为保证在不同波段有一定的单色性和适当的亮度,设备设计有一宽度可调狭缝。同时入射狭缝前和出射狭缝后加有透镜组,以便起偏器的视场获得尽可能均匀的照明。

2、起偏器:位于单色仪处口,其位置固定,需要时可以微调。

3、斩光器:由在同一圆周上具有间歇透明的可旋转斩光盘构成,斩光盘旋转时,进入起偏器的光成通断交替状态,相当于被一方波调制。斩光器可以在提供射入样品光时也提供一路参考光,以减小实验误差。

4、电磁铁、电源与特斯拉计:电磁铁用直流电源供电,最大电流10A。电磁铁间的磁场强度由安装在那里的特斯拉计给出。

5、检偏器:用面板上的检偏调节旋钮调节其检偏角,调节范围180度,分辩率为0.1度,角度由面板上的角度指示度盘读出。

6、接收装置:经检偏器输出的光强用光电倍增管接收器接收并转化为电信号,电信号经放大器放大后在面板上的输出指示表上显示出来。

[实验方法]

1.将待测样品玻璃放入样品抽屉上的圆孔内,轻轻旋紧样品,防止压碎样品。

2.将输出电流调节和倍增管电压调节旋钮逆时针方向调到最小,打开电源。

3.调节磁场调节旋钮,使磁场为0,将倍增管电压调到最小,并且将输出指针调节至0。

4.微调减测灵敏度旋纽(即倍增管电压调节)观察输出指示到满刻度2/3附近,再微调检偏器角度,使锁定示出电压最小,再重新缓慢调节高检测灵敏度,使得输出指示再次增大,重新调节检偏器角度,使输出指示电压最小。以此依次反复调节几次,当检偏器的角度微小变化都会带来输出增加时,记录下此时的检偏器的角度,此时检偏器角度被认作为与偏振光无偏振时的原偏振角相差90度。

5.微调磁场调节旋钮,使输出磁场50mT注意观察输出数据在增,如果增加的过多或接近饱和,则停止增加电流,逆时针方向调低灵敏度。当磁场到达50mT时,重复步骤4的开始方法,检测磁化时的最小输出偏振角,并记录数据。

6.按照步骤5的方法,分别测量50mT100mT150mT200mT250mT300mT350m400mT450mT500mT 注意事项

(1)磁极间距要固定好,使刚好能放下样品又不使样品受压力

(2)施加或撤除磁化电流时,应先将电源输出电位器逆时针旋回到零,以防止接通或切断电源时磁体电流的突变。

(3)为了保证能重复测得磁感应强度及与之相应的磁体激磁电流的数据,磁体电流应从零上升到正向最大值,否则要进行消磁。

(4)半荫式起偏器的粘合缝最好水平放置,否则当狭缝较宽时,用单色仪分光,出射光颜色左右两半不同,不利于比较它们的亮度。

[相关背景]

引言法拉第效应的发现:1845年法拉第用一束偏振光通过重玻璃,然后用尼科耳棱镜进行细致的观察。他发现原来没有旋光性的重玻璃在强磁场的作用下产生旋光性,使偏振光的偏振面发生偏转。这就是磁旋光效应的发现,这是人类第一次认识到电磁现象与光现象之间的关系。

法拉第效应可用于混合碳水化合物成分分析和分子结构研究。近年来在激光技术中这一效应被利用来制作光隔离器和红外调制器。

该效应可用来分析碳氢化合物,因每种碳氢化合物有各自的磁致旋光特性;在光谱研究中,可借以得到关于激发能级的有关知识;在激光技术中可用来隔离反射光,也可作为调制光波的手段。

因为磁场下电子的运动总附加有右旋的拉穆尔进动,当光的传播方向相反时,偏振面旋转角方向不倒转,所以法拉第效应是非互易效应。这种非互易的本质在微波和光的通信中是很重要的。许多微波、光的隔离器、环行器、开关就是用旋转角大的磁性材料制作的。

[相关人物]

法拉第出身在美国的一个非常贫困的家庭。法拉第形容自己的童年是在“饥饿和寒冷中度过的”。法拉第是家里唯一读过二年半小学的子女,由于他诚实、聪明、能干,阅读各种各样的书籍,越来越被物理、化学领域的成果所吸引。

从1840年开始常去英国皇家学院听科学家的演讲,1812年他听了戴维的四次报告,每次均作详细的记录,回家后把所听材料精心整理,绘制了许多图表,再装订成册,把该书寄给戴维,并附上请求在皇家学院谋职的信。接信后,戴维答应法拉第以皇家研究所助手的名义,在他的实验室工作。戴维对法拉第严格要求、精心培养,而法拉第则是刻苦学习、虚心求教,1813年他随同戴维出访欧洲大陆一年多,其间,使他有机会会见当时许多著名的科学家,开阔了眼界、增长了见识。回国后法拉第开始独立搞科学研究工作,表现出了惊人的才干,从此在物理和化学方面取得了一个又一个令人瞩目的成绩。1816年,法拉第在戴维的帮助下发表了第一篇论文,接着又发表了六篇论文。1821年成为皇家学院实验室总监和实验室主任,1824年被推选为皇家学会会员,1825年接替戴维任实验室主任,1833年任教授。1831年法拉第发明了电磁感应产生电流的原理,

1834年发表了著名的以他名字命名的电解定律……。

[相关理论]

法拉第效应的经典理论

从光波在介质中传播的图像看,法拉第效应可以做如下

的理解:一束平行于磁场方向传播的平面偏振光,可以看做是

两束等幅的左旋和右旋圆偏振光的叠加,这里左旋和右旋是

相对于磁场方向而言的。如果磁场的作用是使左旋圆偏振光

的折射率L n 和右旋圆偏振光的折射率R n 不相等,于是通过厚度为l 的介质后,便产生不同的相位滞后,

2,R R n l π

=

2L L n l π

=

(1)

上式中λ为真空中的波长。圆偏振光的相位即旋转矢量的角位移,相位滞后即角位移的倒转。在介质的人射面上,入射的平面偏振光E 可分解为图4(a)所示的两个旋转方向不同的圆偏振光L E 和R E 。通过介质后,它们的相位滞后不同,旋转方向也不同。在出射面,两个圆偏振光的旋转矢量如图4(b)所示,从图上容易看出,从介质出射以后,两个圆偏振光的合成矢量E 的偏振方向相对于原来的方向转过的角度为 1()()2F R L R L n n l π

θ??λ

=

-=- (2) 微观上怎样来理解磁场会使左、右旋圆偏振光的折射率不同呢?本质上说,应归结为在磁场作用下原子、分子能级和量子态的变化,这已越出了我们课程的范围;其实,从经典电动力学中的介质极化和色散的振子模型也可以得到法拉第效应的唯象理解问.在这个模型中,把原子中被束缚的电子看作是一些偶极振子,把光波产生的极化和色散看作是这些振子在外场作用下作强迫振动的结果。现在除了光波以外,还有一个静磁场B 作用在电子上,于是电子的运动方程是

22()d r dr

m kr eE e dt dt

β+=--? (3)

式中,r 是电子离开平衡位置的位移,m 和e 分别是电子的质量和电荷,k 是这个偶极子的弹性恢复力。上式等号右边第一项是光波的电场对电子的作用,第二项是磁场作用于电子的洛伦兹力。为简化起见,略去了光波中磁场分量对电子的作用及电子振荡的阻尼(当人射光波长位于远离介质的共振吸收峰的透明区时成立),因为这些小的效应对于理解法拉第效应的主要特征并不重要。

假定人射光波场具有通常的简谐波的时间变化形式i t

e

ω,因我们要求的特解是在外加光

波场作用下受迫振动的稳定解,所以r 的时间变化形式也应是i t

e

ω。因此式(3)可以写成

22

0()e e

r i

r B E m m

ωωω-+?=- (4)

式中0ω=+z 方向,又设光波也沿此方向传播并且是右旋圆偏振光,用复数形式裘示为

i t i t x y E E e iE e ωω=+

将式(4)写成分量形式

22

0()x e e

x i By E m m ωωω-+=- (5) 22

0()y e e y i Bx E m m

ωωω-+=- (6) 再将上式乘以i ,并与式(5)相加可得

22

0()()()()x y e e

x iy B x iy E iE m m

ωωω-++

+=-+ (7) 因此,电子振荡的复振幅为 2

20/()()X y e m x iy E iE e B

m

ωωω+=

+-+ (8)

设单位体积内有N 个电子,则介质的电极化强度矢量P Ner =-。由宏观电动力学的物质关系式0P E εχ= (χ为有效的极化率张量)可得

000()()i t

P

E i t x y Ner Ne x iy e E E iE e ωεωχεε--+===+ (9)

将式(7)代入式(9)得到

20

220/Ne m e B

m

εχω

ωω=-+

令/c eB m ω= (c ω称为回旋加速角频率),则

20

2

20/c

Ne m εχωωωω=-+ (10) 由于20/1n εεχ==+,因此

220

220/1R

c

Ne m n εωωωω=+-+ (11)

对于可见光,ω为151

(2.7 4.7)10s --?,当1B T =时,1111.710c s ωω-≈?

,这种

情况下式(11)可以表示为:

220

22

0/1()R

L Ne m n εωωω

=++- (12) 式中/2(/2)L c e m B ωω==,为电子轨道磁矩在外磁场中经典拉莫尔(Larmor )进动频率。 若入射光改为左旋圆偏振光,结果只是使L ω前的符号改变,即有

220

22

0/1()L

L Ne m n εωωω

=++- (13) 对比无磁场时的色散公式

22

22

0/1Ne m n εωω

=+- (14) 可以看到两点:一是在外加磁场的作用下,电子作受迫振动,振子的固有频率由0ω变成

0L ωω±,这正对应于吸收光谱的塞曼效应(倒塞曼效应);二是由于0ω的变化导致了折射

率的变化,并且左圆和右圆偏振的变化是不相同的,尤其在ω接近0ω时,差别更为突出,这便是法拉第效应。由此看来,法拉第效应和吸收光谱的塞曼效应乃是起源于同一物理过程。

实际上,通常L n ,R n 和n 相差甚微,近似有

222R L

L R n n n n n

--≈ (15)

将式(12)-(15)代人式(2),得到

02222222

00032

2222

011()2()()1

2()F

R L L L n n Ne l n m Ne B

cm n θππλλεωωωωωωωεωω-==-+---=

- (16)

由于2

2L ωω

,在上式的推导中略去了2

L

ω项。由式(14)得 02222

0()

dn Ne d m n ω

ωεωω=- (17) 由式(16)和(17)得

1122F

e dn e dn

B B l c m d c m d θωλωλ

-=

= (18) 式中λ为观测波长,dn

d λ

为介质在无磁场时的色散。在上述推导中,左旋和右旋都只是相对

于磁场方向而言的,与光波的传播方向同磁坊方向相同或相反无关。因此,法拉第效应便有与自然旋光现象完全不同的不可逆性

[资料附录]

下面介绍一种测量法拉第旋转角的光电方法。将一块3e C +玻璃放在一个正弦交变磁场中就构成一个偏振调制器。当一束线偏振光通过它时,由于法拉第效应,偏振面将发生小幅度的摆动,摆动角为

??sin sin c c VlB t t θωθω== (19)

式冲?B 为外加磁感应强度的峰值,ω以为交变场的角频率。如一块长2cm 的3e

C + 玻璃,在?B

为45010-?T 时,就可产生20'左右的摆角。激磁电流可由音频信号发生器提供。线偏振光经调制后,即可得到一个很好的鉴别消光位置的方法。其原理方框图如图5所示。 经过调制后的线偏振光通过样品,当样品被磁化时,偏振面将旋转F θ角,并在0F C θθ±范围内摆动,如图7所示,若检偏器允许通过的光的偏振方向P 2与F θ的夹角为0θ,则光透过检偏器后的强度

图5:光电接受实验装置示意图

200cos ()C I I θθ=± (20) 22

0002

2

2

2

0000cos ()(cos cos sin sin )cos cos 2cos cos sin sin sin sin C C C C C C C

θθθθθθθθθθθθθθ±==+

图6:检偏原理

由千C θ很小,所以有?sin sin C C C

t θθθω≈=以及cos 1C θ≈。因此,上式可以写成

222200000

2

2

2

0000??c o s ()

c o s 2c o s s i n s i n s i n s i n

1??c o s 2c o s

s i n s i n s i

n (1c o s 2)

2

C C C C

C

t t

t t θθθθθθωθθ

ωθθθθωθθω±=+=+- (21)

上式等号右边第三项为倍频信号。

当0/2θπ≠,即远离消光位置时(图6(a)),式(23)等号右边第三项与第二项相比可以忽略,故只有频率为ω的基频信号。

当0/2θπ≠,但接近/2π (图6(b)),即接近消光位置时, 0002cos sin sin 20θθθ= 故基频信号减小,并出现倍频信号。

当0/2θπ=,即在消光位置时(图7(C)),00cos 0,sin 1θθ==式(23)等号右边变成

2

1?(1cos 2)2

C t θω-,这时式(22)可写成 20?(1cos 2)2

C

I I t θω=-

说明在消光位置时,基频信号消失,只剩下倍频信号。

采用光电方法,可用一般的起偏器。对可见光可用光电倍增管接收输出的信号,再经过选频放大,馈送到示波器进行观察。转动检偏器的位置,待只剩下倍频信号时,即为消光位置。如果检偏器刻度盘的读数精度足够高,采用这种方法,可使测量精度大大提高。

[拓展问题]

1.根据磁旋光效应的特点你能设计一些应用技术吗?

[参考文献]

1、《近代物理实验》吴思诚 王祖铨主编

2、《近代物理实验》张天哲 董有尔主编

3、伏肯斯坦,分子结构及物理性质,第八章321一326页,科学出版社(1960)。

4、兰茨别尔格,光学,下册157,人民教育出版社(1957)。

(赵美蓉 编)

旋光法测定蔗糖转化反应的速率常数实验报告

旋光法测定蔗糖转化反应的速率常数 实验报告 院(系) 生化系 年级 10级 专业 化工 姓名 学号 课程名称 物化实验 实验日期 2012 年 9 月 9 日 实验地点 3栋 指导老师 一、实验目的: 1·测定蔗糖转化放映的速率常数k ,半衰期t1/2,和活化能Ea 。 2·了解反应的反应物溶度与旋光度之间的关系。 3·了解旋光仪的基本原理,掌握旋光仪的正确使用方法。 二、实验原理: 1、 蔗糖在水中转化成葡萄糖和果糖,器反应为: C 12H 22011+H 2O C 6H 12O 6+C 6H 12O 6 (蔗糖) (葡萄糖) (果糖) 这是一个二级反应,但在H+浓度和水量保持不变时,反应可视为一级反 应,速率方程式可表示为: ,积分后可得: 由此可知:在不同时间测定反应物的相对浓度,并以㏑c 对t 作图,可得一直线,由直线斜率即可求得反应速率常数 k 。 当c=时 T1/2=ln2/K 2、本实验中的反应物及产物均有旋光性,且旋光能力不同,在溶剂性质、溶液浓度、样品管长度及温度等条件均固定时,旋光度与反应物浓度呈线性关系,即: kc dt dc =-kt c c -=0 ln

。 反应时间 t=0,蔗糖尚未转化: ; 反应时间为 t ,蔗糖部分转化: ; 反应时间 t=∞,蔗糖全部转化: , 联立上述三式并代入积分式可得: 对t作图可得一直线,从直线斜率可得反应速率常数k 。 三、仪器与试剂: WZZ-2B 型旋光仪 1台 501超级恒温水浴 1台 烧杯100ml 2个 移液管(25ml ) 2只 蔗糖溶液 (分析纯)(100ml) Hcl 溶液(分析纯)(dm -3) 四、实验步骤: ①恒温准备: 1) 2 c βα=00c 反βα=)(生反c t -+=0c c ββα0c 生βα=∞) ln()ln(0∞∞-+-=-ααααkt t )ln(∞-ααt 以

法拉第效应实验报告

法拉第效应 一.实验目的 1.初步了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 二.实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度F θ与光波在介质中走过的路程l 及介质中的磁感应强度在光的传播方向上的分量H B 成正比,这个规律又叫法拉第一费尔得定律,即 F H VB l θ= ()1 比例系数V 由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得常数,它与光频和温度有关。几乎所有的物质都有法拉第效应,但一般都很不显著。不同物质的振动面旋转的方向可能不同。一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(0V >)反之叫负旋(0V <)。 法拉第效应与自然旋光不同,在法拉第效应中,对于给定的物质,偏振面相对于实验室坐标的旋转方向,只由B 的方向决定和光的传播方向无关,这个光学过程是不可逆的。光线往返一周,旋光角将倍增。而自然旋光则是可逆的,光线往返一周,累积旋光角为零。与自然旋光类似,法拉第效应也有色散。含有三价稀土离子的玻璃,费尔德常数可近似表示为: ()1 22t V K λλ-=- ()2 这里K 是透射光波长t λ,有效的电偶极矩阵元,温度和浓度等物理量的函数,但是与入射波长λ无关。这种V 值随波长而变的现象称为旋光色散。 2.法拉第效应的经典理论 从光波在介质中传播的图像看,法拉第效应可以这样理解:一束平行于磁场方向传播的平面偏振光,可以看作是两柬等幅的左旋和右旋偏振光的叠加,左旋和右旋是相对于磁场方向而言的。介质中受原子核束缚的电子在人射光的两旋转电矢量作用下,作稳态的圆周运动。在与电子轨道平面相垂直的方向上加一个磁场B ,则在电子上将引起径向力M F ,力的方向决定于光的旋转方向和磁场方向。因此,电子所受的总径向力可以有两个不同的值。轨道半径

实验4 磁旋光效应

实验4 磁旋光效应 磁旋光效应(法拉第效应)实验,对不同物质的旋光特性有所认识。实验发现,磁旋光性物质具有左旋和右旋之分,而且它的旋光方向是由磁场的方向来决定。根据实验数据分析获得磁场强度与偏振角之关系,观察磁场电流与旋光方向的关系,进一步了解不同介质的旋光特性。 [实验目的] 1.观察和了解磁旋光现象及其基本特征。 2.学习测量介质的磁旋光费尔德常数V的数值的方法。 3.思考磁旋光效应的应用。 [实验内容] 对给定的两个样品进行下面测量 1、在350nm-750nm波长范围内,分散选取5个以上不同波长,对其在不同磁场强度(在50mT-600mT范围内取10个以上点)下测量样品的磁旋光角。 2、对两个样品,做不同波长的磁旋光角-磁场强度关系图,并由图确定相应的费尔德常数值。 3、分析实验所得磁旋光角--磁场强度关系是否符合式(1)线性关系,以及费尔德常数值随光波长变化的色散关系。 [导引问题] 1.磁旋光现象具有什么特征?它与天然旋光现象有什么相同和不同的地方? 2.如何理解磁旋光效应的物理本质? 3、实验中所使用的磁场并非均匀场,这对V值的精确测量有影响吗?如果有,你能提出改 进意见吗? 4、许多材料除了有法拉第旋光效应外,还有自然旋光、双折射等效应。它们的存在是否会 影响本实验测量的准确度?如果影响,你能提出消除影响的办法吗? [实验原理] 1845年由M.法拉第发现。当线偏振光(见光的 偏振)在介质中传播时,若在平行于光的传播方向上 加一强磁场,则光振动方向将发生偏转,偏转角图1 法拉第效应示意图度ψ与磁感应强度B和光穿越介质 的长度l的乘积成正比,即ψ=VBl,比例系数V称 为费尔德常数,与介质性质及光波频率有关。偏转方

旋光仪测定糖溶液的浓度

用旋光仪测定糖溶液的浓度 【实验目的】 熟悉旋光仪的结构、原理和使用方法;测量旋光溶液的旋光率和百分浓度 【实验器材】 旋光仪,盛液玻璃管,温度计,已知和未知浓度的葡萄糖溶液。 [实验原理] 对于透明的固体来说.旋光角φ与光透过物质的厚度L 成正比;而对于液体来说.除了厚度之外,还与溶液的浓度c 成正比。同时,旋转的角度,还与溶液的温度t 以及光的波长λ有关。实验证明.在给定波长(单色光)和一定温度下,如旋光物质为溶液,则旋光角由下式表示: []L C t 100 λ α?= 在上式中[]t λα为旋光率,C 为100毫升溶液中含有溶质的克数,L 为溶液厚度,以分米为单位。旋光率随不同的溶液而异,对于同一种溶液来说,它是随波长而异的常数,实验室的旋光仪常以钠光作光源,故波长已定。而温度的改变,对旋光率稍有影响,就大多数物质来讲,当温度升高摄氏1度时,旋光率约减小千分之几。 通过对旋光角的测定,可检验溶液的浓度、纯度和溶质的含量,因此旋光测定法在药物分析、医学化验和工业生产及科研等领域内有着广泛地应用。在医、药学中常用的分析方法有比较法和间接测定法。 一、比较法 已知浓度为C 1的某种旋光性溶液,其厚度为L 1,可测出其旋光角φ1。要测同种未知浓度的溶液,只要测定该溶液在厚度为L 2时的旋光角就可计算出未知浓度。 []11100L C t λ α?=[]22100 L C t λα?= 得1 2 11 22C L L C ??= 如果两溶液厚度相同,则1 1 2 2C C ??= 二、间接测定法 对于已知旋光率[]t λα的某种旋光性溶液,测出溶液厚度为L 时的旋光角φ,就可由式(9 —1)计算出浓度C 。 测定物质旋光角的仪器叫旋光仪。旋光仪外形如图9—1。其工作原理如图9—2所示。

实验十 用旋光仪测定糖溶液的浓度

实验十 用旋光仪测定糖溶液的浓度 物理学与信息学教研室 方玉盛 【实验目的】 熟悉旋光仪的结构、原理和使用方法;测量旋光溶液的旋光率和百分浓度 【实验器材】 旋光仪,盛液玻璃管,温度计,已知和未知浓度的葡萄糖溶液。 [实验原理] 对于透明的固体来说.旋光角φ与光透过物质的厚度L 成正比;而对于液体来说.除了厚度之外,还与溶液的浓度c 成正比。同时,旋转的角度,还与溶液的温度t 以及光的波长λ有关。实验证明.在给定波长(单色光)和一定温度下,如旋光物质为溶液,则旋光角由下式表示: []L C t 100 λ α?= 在上式中 []t λα 为旋光率,C 为100毫升溶液中含有溶质的克数,L 为溶液厚度,以分米 为单位。旋光率随不同的溶液而异,对于同一种溶液来说,它是随波长而异的常数,实验室的旋光仪常以钠光作光源,故波长已定。而温度的改变,对旋光率稍有影响,就大多数物质来讲,当温度升高摄氏1度时,旋光率约减小千分之几。 通过对旋光角的测定,可检验溶液的浓度、纯度和溶质的含量,因此旋光测定法在药物分析、医学化验和工业生产及科研等领域内有着广泛地应用。在医、药学中常用的分析方法有比较法和间接测定法。 一、比较法 已知浓度为C 1的某种旋光性溶液,其厚度为L 1,可测出其旋光角φ1。要测同种未知浓度的溶液,只要测定该溶液在厚度为L 2时的旋光角就可计算出未知浓度。 []11100L C t λ α?= []22100 L C t λα?= 得 1 2 11 22C L L C ??= 如果两溶液厚度相同,则 1 1 2 2C C ??= 二、间接测定法 对于已知旋光率[]t λα的某种旋光性溶液,测出溶液厚度为L 时的旋光角φ,就可 由式(9—1)计算出浓度C 。 测定物质旋光角的仪器叫旋光仪。旋光仪外形如图9—1。其工作原理如图9—2所 示。

旋光仪实验报告

旋光仪实验报告 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一、实验目 旋光仪实验报告 的与实验仪 器 1.实验目的 (1)加深对旋光现象的理解,观察线偏振光通过旋光物质的旋光现象; (2)掌握旋光仪的构造原理和使用方法; (3)测定糖溶液的比旋光率及其浓度。 2.实验仪器 WXG-4圆盘旋光仪、电子天平、温度计、量筒、烧杯、玻璃棒、温度计、滤纸、盐酸(4mol/L)、蔗糖、去离子水。 二、实验原理 1.物质的旋光性 当线偏振光通过某些透明物质(例如糖溶液)后,偏振光的振动面将以光的传播方向为轴线旋转一定角度,这种现象称为旋光现象。旋转的角度φ称为旋光度。能使其振动面旋转的物质称为旋光性物质。若面对光源,使振动面顺时针旋转的物质称为右旋物;使振动面逆时针旋转的物质称为左旋。蔗糖、葡萄糖、乳糖、麦芽糖等为右旋物质,果糖、转化糖为左旋物质。 对某一温度下的旋光溶液,旋光度θ与入射光的波长、溶液的长度L溶液的浓度C成正比,即 θ= α·C·L 式中旋光度θ的单位为“度”,L的单位为dm ,溶液浓度的单位为g/ml;α为该物质的旋光率,即长度1dm、浓度1g/ml时溶液引起的振动面的旋转角度,其与温度有关。

几种糖对钠黄光(λ=)在不同温度和浓度下的旋光率关系如下: ①蔗糖: α(20℃)= + , Z = 0~500g/ml α(t )= α(20℃)[(t-20)], t = 14~30℃ ①转化糖: α(20℃)= - , Z = 90~350g/ml α(t )= α(20℃)+ (t-20), t = 3~30℃ 式中指100ml 溶液所含溶质质量,若长度以cm 做单位,则旋光度 θ= α· Z 100·L 10 蔗糖的水解产物是转化糖,它是果糖和葡萄糖的混合物,具有左旋性。 2.蔗糖纯度的计算 设纯蔗糖在t 1℃时旋转角为θ1,则 θ1 = ( + )·[(t 1-20)]· Z1100·L 10 式中,Z 1为蔗糖的质量; 设转化糖在t ’ ℃时旋转角为θ2,则 θ2 = ( - + (t ’-20))· Z2100·L 10 式中,Z 2为转化糖的质量。 设蔗糖溶液中杂质旋光度为β,则40ml 溶液的总旋光度γ1为: γ1 = θ1 + β 往蔗糖中加入盐酸使其完全变成转化糖,稀释至44ml. 则40ml 的转化糖 溶液旋光度为: γ2 = θ2 +40 44 β 由以上两式可得: γ1 – γ2 = θ1 – θ2

最新法拉第旋光效应实验报告资料

法拉第旋光效应实验报告 一.实验目的: 1.了解和掌握法拉第效应的原理; 2.了解和掌握法拉第效应的实验装置结构及实验原理; 3.测量法拉第效应偏振面旋转角与外加磁场电流I的关系曲线。二.实验仪器: LED 发光二极管(或白光光源和滤波片),偏振片,透镜,直流励磁电源,导轨,偏振片,集成霍尔元件,稳压电源等。三.实验原理和操作步骤: 天然旋光现象。 当线偏振光通过某些透明物质(如石英、糖溶液、酒石酸溶液等)后.其振动面将以光的传播方 向为轴旋转一定的角度,这种现象称为旋光现象。1811 年阿拉果首先发现石英有旋光现象,以后 毕奥(J. B. Biot)和其他人又发现许多有机液体和有机物溶液也具有旋光现象。凡能使线偏振光 振动面发生旋转的物质称为旋光物质,或称该物质具有旋光性。 图3.1 石英的旋光现象 如图3.1 所示,1P 和2P 分别为起偏器和检偏器(正交)。显然,在没有旋光物质时,2P 后面的视场是暗的。当在1P 和2P 之间加入旋光物质后2P 后的视场将变亮,将2P 旋转某一角度后,视场又将变暗。这说明线偏振光透过旋光物质后仍然是线偏振光,只是其振动面旋转了一个角度。 振动面旋转的角度称为旋光度,用?表示。 线偏振光通过旋光晶体时,旋光度?和晶体厚度 d 成正比,即 d α ? = (3.1)式中,α是比例系数,与旋光晶体的性质、温度以及光的频率有关,称为该晶体的旋光率。 不同的旋光物质可以使线偏振光的振动面向不同的方向旋转.人们对旋光方

向作下述约定: 迎着光传播方向观察,若出射光振动面相对于入射光扳动面沿顺时针方向旋转为右旋;沿逆时针方向旋转称为左旋.在图 3.1 中,若在1P 前加一个白色光源,由于不同波长的光旋转角度不同,因此到达2P 时有一部分光能透过去,有些光透不过去,有些能部分透过去,所以2P 后的视场是彩色的,旋转2P 其法拉第旋光效应25色彩会发生变化,这种现象叫做旋光色散。 2. 旋光现象的菲涅耳解释。 菲涅耳提出了一种唯象理论来解释物质的旋光性质。线偏振光可以分解为左旋圆偏振光和右旋圆偏振光。左旋圆偏振光和右旋圆偏振光以相同的角速度沿相反方向旋转,它们合成为在一直线上振动的线偏振光。在旋光物质中左旋圆偏振光和右旋圆偏振光传播的相速度不相同。假定右旋圆偏振光在某旋光物质中传播速度比左旋圆偏振光的速度快,在旋光物质出射面处观察,于右旋圆偏振光速度快,因此右旋圆偏振光振幅旋转过的角度较大,在出射面处,两圆偏光合成的线偏振光PE 的振动方向比起原来(进入旋光物质前)的振动方向0 PE 来,顺时针方向转过角度θ,这就是右旋。当材料中左旋圆偏振光的相速度较大时.就是左旋光材料。 3. 磁致旋光。 前面介绍的是物质的天然旋光性,实际上,有些物质本身不具有旋光性,但在磁场作用下就有旋光性了,就是前面介绍的法拉第旋光效应,也叫磁致旋光效应。磁致旋光中振动面的旋转角?和样品长度L 及磁感应强度B 成正比,即有VLB = ?(3.2)式中V 是—个与物质的性质、光的频率有关的常数,称为维尔德(Verdet)常数。某些物质的维尔德磁致旋光也有左右之分.我们规定:当光的传播方向和磁场方向平行时迎着光的方向观察,光的振动面向左旋转(逆时针),则维尔德常数为正。旋光现象的唯象解释 近代物理实验讲义 4. 磁致旋光的经典唯象解释。 可以用唯象模型来说明磁致旋光效应。电子在左旋圆偏振光和右旋圆偏振光的电场作用下作左旋和右旋圆周运动,电子运动平面与磁场垂直。电子在磁场中受到洛仑兹力,其方向向着电子轨道中心或背着轨道中心,视速度的方向而定注意:电子本身带负电荷。在洛仑兹力向着轨道中心的情况中,电子受到的向心力增加,电子旋转速率增大。在洛仑兹力背向轨道中心的情况中,电子旋转变慢。电子旋转快慢的变化影响了圆偏振光电场矢量旋转角速度。当光从磁光媒质出射时重新合成线偏振光。由于在媒质中左旋和右旋的速率不同,合成偏振光的振动面转过了一个角度。从图上可以看出,电子旋转速率变化只决定于磁场方向与电子旋转方向,而与光的传播方向无关。值得注意的是,天然旋光的旋转方向与光的传播方向有关,而磁致旋光的旋转方向与光的传播方向无关,而决定于外加磁场的方向。如图 3.5 所示,若将出射光再反射回晶体,则通过天然旋光晶体的线偏光沿原路返回后振动面将回复原位,而通过磁致旋光晶体的线偏光将继续旋光,其振动面与原振动面夹角更大。磁致旋转现象是由于外磁场存在时物质的原子或分子中的电子进动而引起的。这种进动的结果,使物体对顺时针与逆时针的圆偏振光产生不同的折射率。因此方向不同的圆偏振光的传播速度不同,引起了振动面的旋转。 四.

已交!2017磁致旋光效应实验讲义 (1) 第11周三 5-8节

法拉第效应实验 1845年法拉第(Michal Faraday)发现玻璃在强磁场中具有旋光性,加在玻璃棒上的磁场引起了平行于磁场方向传播的平面偏振光偏振面的旋转,此现象称为法拉第效应。法拉第效应第一次显示了光和电磁现象之间的联系,促进了人们对光本性的研究。之后费尔德(Verdet)对许多介质的磁致旋光进行了研究,发现法拉第效应在固体、液体和气体中广泛存在。 法拉第效应在许多方面都有应用。比如,根据结构不同的碳氢化合物其法拉第效应的表现不同来分析碳氢化合物;在测量技术中,利用它弛豫时间短(约10-10秒)的特点,制成磁光效应磁强计,可用来测量脉冲磁场和交变强磁场;在激光通讯、激光雷达技术中,利用法拉第效应可制成光频环行器、磁光调制器等重要器件;特别是在激光技术中,利用法拉第效应,可制成光波隔离器或单通器,这些在激光多级放大技术和高分辨激光光谱技术都是不可缺少的器件。 【实验目的】 1.通过实验了解磁致旋光现象的本质,加深对法拉第效应的理解。 2.测量材料的费尔德系数。 3.了解费尔德系数与入射光波长的关系。 【实验原理】 1.法拉弟效应 法拉弟效应所呈现的磁致旋光现象源于塞曼效应。介质分子中原来简并的基态或激发态在磁场作用下发生分裂,使左圆与右圆偏振光的共振吸收频率不同,从而使它们的吸收曲线和色散曲线相互错开。这导致两种效应:一是使介质对一定频率的左圆与右圆偏振光的吸收率不同,产生磁圆二色性;二是使通过介质的平面偏振光的偏振面旋转,产生法拉第效应。这两种效应总是同时存在的,但磁圆二色性只在吸收峰附近才显示出来,而法拉第效应对所有物质在所有波长都会出现。 实验表明,在磁场不是非常强时,法拉弟效应振动面偏转的角度φ与偏振光在介质中通过的路程l和介质中的磁感应强度在光的传播方向的分量B的乘积成正比,即 φ=V?l?B(1) 式中比例系数V与工作介质和光的波长λ有关,反映了介质材料的磁光特性,这个比例系数V 称为磁光介质的费尔德常数。 磁光介质的磁致旋光有右旋和左旋两种,顺着磁场的方向观察,振动面按顺时针方向旋转的称为右旋;按逆时针方向旋转的称为左旋。对于每一种给定的物质,磁致旋转的方向仅由磁场方向决定,与光线的传播方向无关。 法拉弟效应与天然旋光是有差别的。天然旋光性的振动面旋转方向取决于物质的结构,线偏振光往返两次通过天然旋光物质,振动面将恢复到原先的方位。而线偏振光往返两次通过磁致旋光物质情况就不同了,如果光沿磁场方向通过,振动面向右旋转了φ角,那么当它沿原路径逆着磁场返回时,振动面将朝同一方向旋转φ角,这样往返两次通过同一物质振动面共旋转了2φ角,即法拉弟效应是一个不可逆的光学过程。 2.旋光现象的解释

旋光效应实验报告

旋光效应 摘要:通过旋光仪利用光的偏振特性来测量旋光物质对振动转过角度来测量了溶液的溶度。并分析各因素对此实验的影响。 关键词:三分视场;旋光角;溶度 中图分类号O432 文献标识码A 一. 引言 1911年,阿喇果(D. F. JArago)发现,当线偏振光通过某些透明物质时,它的振动面将会绕光的传播方向转过一定的角度。这种现象就叫旋光效应,光的振动面转过的角度称为旋光度,使光的振动面产生旋转的物质叫做旋光物质(进一步地,迎着光的传播方向看,使光的振动面顺时针转动的物质叫右旋物质,反之则为左旋物质)。常见的旋光物质有:石英、朱砂、酒石酸、食糖溶液、松节油等。利用旋光仪可以测定这些物质的比重、纯度或浓度。 二. 实验原理及内容 2.1 实验原理 溶液的旋光度与溶液中所含旋光物质的旋光能力、溶液的性质、溶液浓度、样品管长度、温度及光的波长等有关。当其它条件均固定时,旋光度与溶液浓度C呈线性关系。如果已知待测物质浓度C和液

柱长度,只要测出旋光度就可以计算出旋光率。如果已知液柱长度为固定值,可依次改变溶液的浓度C,就可测得相应旋光度。并作旋光度与浓度的关系直线,从直线斜率、长度及溶液浓度C,可计算出该物质的旋光率;同样,也可以测量旋光性溶液的旋光度,确定溶液的浓度C。 对于晶体一类的旋光物质,旋光度Q与光所透过的晶体厚度成正比;若为溶液,则正比于溶液在玻璃管中的长度L和溶液的浓度C:Q=αCL. (1) 式中的比例系数α称为旋光率,其含义为当L=10cm, c=1g/cm3时光振动方向转过的角度(对糖溶液而言,α与入射光波长λ及温度T 有关,对某些物质还与物质的浓度有关)。实验采用钠灯作为光源,实验过程中通常温度变化很小,可以忽略。玻璃管长度L已知,转角Q需要测量出来,这样,根据已知浓度C即可算旋光率α,再根据已知的α即可测定未知糖溶液浓度C。 2.2 实验仪器

旋光仪测定溶液的浓度及旋光度

实验二 旋光仪测定溶液的浓度及旋光度 【实验目的】 1、 加深对旋光现象的理解,观察线偏振光通过旋光物质的旋光现象。 2、 掌握旋光仪的构造原理和使用方法。 3、 测定糖溶液的比旋光率及其浓度。 【实验仪器】 4、 1、WXG-4小型旋光仪 5、 2、烧杯 3、蔗糖 4、葡萄糖 5、蒸馏水 6、物理天平 7、玻璃棒 8、温度计 等。 【实验原理】 光是电磁波,它的电场和磁场矢量互相垂直,且又垂直于光的传播方向。通常用电矢量代表光矢量,并将光矢量与光的传播方向所构成的平面称为振动面。在传播方向垂直的平面内,光矢量可能有各种各样的振动状态,被称为光的偏振态。若光的矢量方向是任意的,且各方向上光矢量大小的时间平均值是相等的,这种光称为自然光。若光 矢量可以采取任何方向,但不同的方向其振幅不同,某一方向振动的振幅最强,而与该方向垂直的方向振动最弱,则称为部分偏振光。若光矢量的方向始终不变,只是其振幅随位相改变,光矢量的末端轨迹是一条直线,则称为线偏振光。 当线偏振光通过某些透明物质(例如糖溶液)后,偏振光的振动面将以光的传播方向为轴线旋转一定角度,这种现象称为旋光现象。旋转的角度φ称为旋光度。能使其振动面旋转的物质称为旋光性物质。旋光性物质不仅限于像糖溶液、松节油等液体,还包括石英、朱砂等具有旋光性质的固体。不同的旋光性物质可使偏振光的振动面向不同方向旋转。若面对光源,使振动面顺时针旋转的物质称为右旋物质;使振动面逆时针旋转的物质称为左旋物质。 实验证明,对某一旋光溶液,当入射光的波长给定时,旋光度φ与偏振光通过溶液的长度l 和溶液的浓度c 成正比,即 cl φα= (1) 式中旋光度φ的单位为“度”,偏振光通过溶液的长度l 的单位为dm ,溶液浓度的单位为1 -?ml g 。α为该物质的比旋光率,它在数值上等于偏振光通过单位长度(m)单位浓度(1 -?ml g )的溶液后引起的振动面的旋转角度。其单位为度·ml ·dm-1·g-1由于测量时的温度及所用波长对物质的比旋光率都有影响,因而应当标明测量比旋光率时所用波长及测量时的温度。例如 C A ?505893][ α=66.5°, 它表明在测量温度为50°,所用光源的波长为5893A 时,该旋光物质的比旋光率为66.5°。 若已知某溶液的比旋光率,且测出溶液试管的长度l 和旋光度φ,可根据式1求出待测溶液的浓度,即 []t c l λ φ α= (2)

磁光效应实验报告讲解

磁光效应实验报告 班级:光信息31 姓名:张圳 学号:21210905023 同组:白燕,陈媛,高睿孺

近年来,磁光效应的用途愈来愈广,如磁光调制器,磁光开关,光隔离器,激光陀螺中的偏频元件,可擦写式的磁光盘。所以掌握磁光效应的原理和实验方法非常重要。 一.实验目的 1.掌握磁光效应的物理意义,掌握磁光调制度的概念。 2.掌握一种法拉第旋转角的测量方法(磁光调制倍频法)。 3.测出铅玻璃的法拉第旋转角度θ和磁感应强度B之间的关系。二.实验原理 1. 磁光效应 当平面偏振光穿过某种介质时,若在沿平行于光的传播方向施加一磁场,光波的偏振面会发生旋转,实验表面其旋转角θ正比于外加的磁场强度B,这种现象称为法拉第(Faraday)效应,也称磁致旋光效应,简称磁光效应,即: θ(9-1) = vlB 式中l为光波在介质中的路径,v为表征磁致旋光效应特征的比例系数,称为维尔德常数,它是表征物质的磁致旋光特性的重要参数。根据旋光方向的不同(以顺着磁场方向观察),通常分为右旋(顺时针旋转)和左旋(逆时针旋转),右旋时维尔德常数v>O,左旋时维尔德常数v<0。实验还指出,磁致旋光的方向与磁场的方向有关,由于磁致旋光的偏振方向会使反射光引起的旋角加倍,而与光的传播方向无关,利用这一特性在激光技术中可制成具有光调制、光开关、光隔离、光偏振等功能性磁光器件,在激光技术发展后,其应用价值倍增。如

用于光纤通讯系统中的磁光隔离器等。 2.在磁场作用下介质的旋光作用 从光波在介质中传播的图象看,法拉第效应可以做如下理解:一束平行于磁场方向传播的线偏振光,可以看作是两束等幅左旋和右旋圆偏振光的迭加。这里左旋和右旋是相对于磁场方向而言的。 图3 法拉第效应的唯象解释 如果磁场的作用是使右旋圆偏振光的传播速度c / n R 和左旋圆偏振光的传播速度c / n L 不等,于是通过厚度为d 的介质后,便产生不同的相位滞后: d n R R λπ ?2= , d n L L λ π?2= (2) 式中λ 为真空中的波长。这里应注意,圆偏振光的相位即旋转电矢量的角位移;相位滞后即角位移倒转。在磁致旋光介质的入射截面上,入射线偏振光的电矢量E 可以分解为图3(a)所示两个旋转方向不同的圆偏振光E R 和E L ,通过介质后,它们的相位滞后不同,旋转方向也不同,在出射界面上,两个圆偏振光的旋转电矢量如图5.16.3(b)所示。当光束射出介质后,左、右旋圆偏振光的速度又恢复一致,我们又可以将它们合成起来考虑,即仍为线偏振光。从图上容易看出,由介质

新版旋光仪实验报告(修订版).doc

旋光仪实验报告 一、实验目的与实验仪器 1.实验目的 (1)加深对旋光现象的理解,观察线偏振光通过旋光物质的旋光现象; (2)掌握旋光仪的构造原理和使用方法; (3)测定糖溶液的比旋光率及其浓度。 2.实验仪器 WXG-4圆盘旋光仪、电子天平、温度计、量筒、烧杯、玻璃棒、温度计、滤纸、盐酸(4mol/L)、蔗糖、去离子水。 二、实验原理 1.物质的旋光性 当线偏振光通过某些透明物质(例如糖溶液)后,偏振光的振动面将以光的传播方向为轴线旋转一定角度,这种现象称为旋光现象。旋转的角度φ称为旋光度。能使其振动面旋转的物质称为旋光性物质。若面对光源,使振动面顺时针旋转的物质称为右旋物;使振动面逆时针旋转的物质称为左旋。蔗糖、葡萄糖、乳糖、麦芽糖等为右旋物质,果糖、转化糖为左旋物质。 对某一温度下的旋光溶液,旋光度θ与入射光的波长、溶液的长度L溶液的浓度C成正比,即 θ= α·C·L 式中旋光度θ的单位为“度”,L的单位为dm ,溶液浓度的单位为g/ml;α为该物质的旋光率,即长度1dm、浓度1g/ml时溶液引起的振动面的旋转角度,其与温度有关。 几种糖对钠黄光(λ=589.3nm)在不同温度和浓度下的旋光率关系如下: ①蔗糖:α(20℃)= 66.473 + 0.0127Z,Z = 0~500g/ml α(t)= α(20℃)[1-0.00037(t-20)],t = 14~30℃ ①转化糖:α(20℃)= -19.8 - 0.036Z,Z = 90~350g/ml α(t)= α(20℃)+ 0.304(t-20),t = 3~30℃ 式中指100ml溶液所含溶质质量,若长度以cm做单位,则旋光度 θ= α·· 蔗糖的水解产物是转化糖,它是果糖和葡萄糖的混合物,具有左旋性。 2.蔗糖纯度的计算 设纯蔗糖在t1℃时旋转角为θ1,则 θ1 = (66.473 + 0.0127Z1)·[1-0.00037(t1-20)]·· 式中,Z1为蔗糖的质量; 设转化糖在t’ ℃时旋转角为θ2,则 θ2 = (-19.8 - 0.036Z2 + 0.304(t’-20))··

法拉第旋光效应实验报告

法拉第旋光效应实验报告 法拉第旋光效应实验报告 一.实验目的: 1.了解和掌握法拉第效应的原理; 2?了解和掌握法拉第效应的实验装置结构及实验原理; 3?测量法拉第效应偏振面旋转角与外加磁场电流I的关系曲线。 二.实验仪器: LED发光二极管(或白光光源和滤波片),偏振片,透镜,直流励磁电源,导轨,偏振片,集成霍尔元件,稳压电源等。 三.实验原理和操作步骤: 天然旋光现象。 当线偏振光通过某些透明物质(如石英、糖溶液、酒石酸溶液等)后.其振动面将以光的传播方 向为轴旋转一定的角度,这种现象称为旋光现象。1811年阿拉果首先发现石英有旋光现象,以后 毕奥(J. B Biot)和其他人又发现许多有机液体和有机物溶液也具有旋光现象。凡能使线偏振光 振动面发生旋转的物质称为旋光物质,或称该物质具有旋光性。

图3.1石英的旋光现象 如图3.1所示,1P和2P分别为起偏器和检偏器(正交)。显然,在没有旋光物质时,2P后面的视场是暗的。当在1P和2P之间加入旋光物质后2P后的视场将变亮,将2P旋转某一角度后,视场又将变暗。这说明线偏振光透过旋光物质后仍然是线偏振光,只是其振动面旋转了一个角度。 振动面旋转的角度称为旋光度,用?表示。 线偏振光通过旋光晶体时,旋光度?和晶体厚度d成正比,即

d a ?(3.1)式中,a是比例系数,与旋光晶体的性质、温度以及光的频率有关,称为该晶体的旋光率。 不同的旋光物质可以使线偏振光的振动面向不同的方向旋转.人们对旋光方向作下述约定: 迎着光传播方向观察,若出射光振动面相对于入射光扳动面沿顺时针方向旋转为右旋;沿逆时针方向旋转称为左旋.在图 3.1中,若在1P前加一 个白色光源,由于不同波长的光旋转角度不同,因此到达2P时有一部分光能透过去,有些光透不过去,有些能部分透过去,所以2P后的视场是彩色 的,旋转2P其法拉第旋光效应25色彩会发生变化,这种现象叫做旋光色散。 2.旋光现象的菲涅耳解释。 菲涅耳提出了一种唯象理论来解释物质的旋光性质。线偏振光可以分解为左旋圆偏振光和右旋圆偏振光。左旋圆偏振光和右旋圆偏振光以相同的角速度沿相反方向旋转,它们合成为在一直线上振动的线偏振光。在旋光物质中左旋圆偏振光和右旋圆偏振光传播的相速度不相同。假定右旋圆偏振光在某旋光物质中传播速度比左旋圆偏振光的速度快,在旋光物质出射面处观察,于右旋圆偏振光速度快,因此右旋圆偏振光振幅旋转过的角度较大,在出射面处,两圆偏光合成的线偏振光PE的振动方向比起原来(进入 旋光物质前)的振动方向0 PE来,顺时针方向转过角度9 ,这就是右旋。当材料中左旋圆偏振光的相速度较大时.就是左旋光材料。 3.磁致旋光。 前面介绍的是物质的天然旋光性,实际上,有些物质本身不具有旋光性,但在磁场作用下就有旋光性了,就是前面介绍的法拉第旋光效应,也叫 磁致旋光效应。磁致旋光中振动面的旋转角?和样品长度L及磁感应强度B成正比,即有VLB = ? (3.2)式中V是一个与物质的性质、光的 频率有关的常数,称为维尔德(Verdet)常数。某些物质的维尔德磁致旋光也有左右之分.我们规定:当光的传播方向和磁场方向平行时迎着光的方向观察,光的振动面向左旋转(逆时针),则维尔德常数为正。旋光现象的唯象解释 近代物理实验讲义 4.磁致旋光的经典唯象解释。 可以用唯象模型来说明磁致旋光效应。电子在左旋圆偏振光和右旋圆偏振 光的电场作用下作左旋和右旋圆周运动,电子运动平面与磁场垂直。电子 在磁场中受到洛仑兹力,其方向向着电子轨道中心或背着轨道中心,视速 度的方向而定注意:电子本身带负电荷。在洛仑兹力向着轨道中心的情况中,电子受到的向心力增加,电子旋转速率增大。在洛仑兹力背向轨道中心的情况中,电子旋转变慢。电子旋转快慢的变化影响了圆偏振光电场矢量旋转角速度。当光从磁光媒质出射时重新合成线偏 振光。由于在媒质 中左旋和右旋的速率不同,合成偏振光的振动面转过了一个角度。从图上 可以看出,电子旋转速率变化只决定于磁场方向与电子旋转方向,而与光的传播方向无关。值得注意的是,天然旋光的旋转方向与光的传播方向有关,而磁致旋光的旋转方向与光的传播方向无关,而决定于外加磁场的方向。如图3.5所示,若将出射光再反射回晶体,则通过 天然旋光晶体的线偏光沿原路返回后振动面将回复原位,而通过磁致旋光晶体的线偏光将继

旋光仪 南昌大学,物理实验,ZX

南昌大学物理实验报告
课程名称:
普通物理实验(3)
实验名称:旋光仪的使用
学院:理学院
专业班级: 应用物理学
学生姓名:学号:
实验地点:
B415 座位号:
实验时间:第三周星期四上午九点四十五分 开始

一、实验目的:
1.了解旋光仪的原理、构造及使用; 2.观察旋光物质的旋光现象; 3.学会用旋光仪测糖溶液的旋光率和浓度。
二、实验仪器:
旋光仪、试管、糖溶液。
三、实验原理:
1. 偏振光的获得与检测 1) 偏振光的获得:使自然光通过偏振片就形成只有一个振动方向的线偏振光(平面偏振光) 。 2) 偏振光的检测:用偏振片观察偏振光时,转动偏振片,当偏振片的偏振化方向与偏振光的振动方 向一致时可看到最大的光强度,当偏振片的偏振化方向与偏振光的振动方垂直时,光强度为零。 用偏振片来观察自然光,转动偏振片观察时光强度保持不变。 3) 物质的旋光性质: 平面光通过旋物质时振动面相对入射光的振动面旋转了一定的角度, 角度的大 小(称旋光度)φ 与偏振光通过旋光物质的路程 l 成正比,对于旋光溶液,旋光度还与液体的浓 度 C 成正比。
? ? ? ?l ?对于旋光晶体
2.
? , ? ? ?lC?对于旋光溶液
其中а 为旋光率。 旋光溶液旋光率及浓度的测定方法 1) 用旋光仪测量一组不同浓度(浓度已知)的蔗糖溶液的旋光度φ ,用作图法处理数据,并求得 旋光率а , ? ? k 2)
l
用旋光仪测量未知浓度的旋光度 ? x ,可求得浓度 C x ? ? x
?l
;也可利用旋光关系曲线直接确定
对应的浓度。 3. 光学原理 从图 1 旋光仪的光路图可以看出,钠光灯射出的光线通过毛玻璃后,经聚光透镜成平行光,再
?7 经滤色镜变成波长为 5.893? 10 m 的单色光。这单色光通过起偏镜后成为平面偏振光,中间部分的
偏振光再通过竖条状旋光晶片,其振动面相对两旁部分转过一个小角度,形成三分视场。 仪器出厂时把三分场均匀暗作为零度视场并调在度盘零度位置, 三分场均匀暗的形成原理如图 2 所示。

法拉第效应实验报告

法拉第效应 【摘要】实验利用励磁电流产生磁场,首先测量磁场和励磁电流之间的关系,利用磁 场和励磁电流之间的线性关系,用电流表征磁场的大小,用消光的方法测定ZF6样品的旋光角和磁场的关系,用倍频法测量MR3样品的旋光角和磁场的关系。最后让偏振光分别两次通过MR3样品,区分自然旋光和法拉第旋光,验证法拉第旋光的非互易性。 关键词:法拉第旋光、旋光角、倍频法、消光法。 引言 法拉第效应1845年由法拉第发现。法拉第效应可用于混合碳水化合物成分分析和分子结构研究。近年来在激光技术中这一效应被利用来制作光隔离器和红外调制器。由于法拉第效应的其他性质,他还有其他更多的应用。 法拉第效应可用来分析碳氢化合物,因每种碳氢化合物有各自的磁致旋光特性;在光谱研究中,可借以得到关于激发能级的有关知识;在激光技术中可用来隔离反射光,也可作为调制光波的手段。 法拉第旋光在强磁场下具有非互易性,这种非互易的本质在微波和光的通信中是很重要的。许多微波、光的隔离器、环行器、开关就是用旋转角大的磁性材料制作的。 原理 当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,这种磁致旋光现象是1845年由法拉第首先发现的,故称为法拉第效应。振动面转过的角度称为法拉第效应旋光角。实验发现 θ=VBL (1)其中θ为法拉第效应旋光角;L为介质的厚度;B为平行与光传播方向的磁感强度分量;V称为费尔德(Verdet)常数。 一般约定,当光的旋转方向与产生磁场的电流的方向一致时,称法拉第旋转是左旋,v>0;反之则叫右旋,v<0。 法拉第效应与自然旋光不一样,不具备一般的光学过程可逆,对于给定的物质,旋转 的方向只由磁场的方向决定,和光的传播方向无关,这叫做法拉第效应的“旋光非互易性”。 法拉第效应的原理 一束平行于磁场方向传播的平面偏振光(表示电场强度矢量),可以看着是两束等幅的左旋和右旋圆偏振光的叠加,不加外磁场时,他们通过距离为的介质后,由于介质 对他们具有相同的折射率和传播速度,所以他们产生的相位移相同,不发生偏转;当有外磁场时,由于磁场使物质的光学性质改变,这两束光具有不同的折射率和传播速度,产生不同的相位移: (2) (3)

偏振光实验报告

实验1. 验证马吕斯定律 实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振 光有强烈吸收,而对于光振动平行于光轴的线偏振光吸收很少(吸 收o 光,通过e 光),这种对线偏振光的强烈的选择吸收性质,叫 做二向色性。具有二向色性的晶体叫做偏振片。 偏振片可作为起偏器。自然光通过偏振片后,变为振动面平行 于偏振片光轴(透振方向),强度为自然光一半的线偏振光。如图1、图2所示: 图1中靠近光源的偏振片1P 为起偏器,设经过1P 后线偏振光 振幅为0A (图2所示),光强为I 0。2P 与1P 夹角为θ,因此经2P 后 的线偏振光振幅为θcos 0A A =,光强为θθ20220cos cos I A I ==, 此式为马吕斯定律。 实验数据及图形: P 1 P 2 线偏光 单色自然光 线偏光 图1 P 1 P 2 A 0 A 0cos θ θ 图2

从图形中可以看出符合余弦定理,数据正确。 实验2.半波片,1/4波片作用 实验原理:偏振光垂直通过波片以后,按其振动方向(或振 动面)分解为寻常光(o 光)和非常光(e 光)。它们具有相同的 振动频率和固定的相位差(同波晶片的厚度成正比),若将它们投 影到同一方向,就能满足相干条件,实现偏振光的干涉。 分振动面的干涉装置如图3所示,M 和N 是两个偏振片,C 是 波片,单色自然光通过M 变成线偏振光,线偏振光在波片C 中分 解为o 光和e 光,最后投影在N 上,形成干涉。 考虑特殊情况,当M ⊥N 时,即两个偏振片的透振方向垂直时,出射光强为:)cos 1)(2(sin 420δθ-= ⊥I I ;当M ∥N 时,即两个偏振片的透振方向平行时,出射光强为:M N 图3 分振动面干涉装置 I 0 波片 偏振片 偏振片 单色自然光

法拉第磁旋光效应

VBd =θ专业物理实验 法拉第磁旋光效应 一、 实验目的. 1. 通过对重火石玻璃磁光效应的测量,加深磁场对光学介质物性常数影响的理解; 2. 了解光波隔离器的工作原理。 二、 实验原理. 1845年,法拉第发现,当一束平面偏振光沿着磁场方向通过受磁场作用的物质,如玻璃、二硫化碳、汽油等时,透射光的偏振面会转过一个角度。这种磁致旋光现象称为法拉第效应。它和发生于糖溶液中的自然旋光效应是不同的。在法拉第效应中,对于给定的物质,偏振面的旋转方向相对于实验室坐标只由磁场B 的方向决定,和光的传播方向无关,是不可逆的光 一周,累积旋光角倍增。而自然旋光效应是可逆的,光线往返一周,累积旋光角为零。利用法拉第效应的这一特性,可制造一种不可逆的光学仪器:光波隔离器或单通器。此外,法拉第效应还可用于物质结构和半导体物理方面的研究。 当磁场不是非常强时,法拉第效应中偏振面转过的角度θ,与沿介质厚度方向所加磁场的磁感应强度B 及介质厚度d 成正比,即 (1) 式中比例常数V 叫做费尔德常数。 几乎所有的物质都存在法拉第效应。不同的物质偏振面旋转的方向可能不同。设想磁场B 是由绕在样品上的螺旋线圈产生的。习惯上规定:振动面的旋转方向和螺旋线圈中电流方向一致,称为正旋(V >0);反之,叫做负旋(V < 0);V 由物质和工作波长决定,它表征物质的磁光特性。 根据自然旋光的菲涅耳唯象描述,对于法拉第效应可作这样的经典解释:一束平行于磁场方向传播的平面偏振光可看作两束等幅的左旋和右旋圆偏振 光的叠加,进入介质后由于磁场的作用使得它们以稍微不同的速度??? ? ?l r n c n c ,向前传播,从介质出射后,合成线偏振光,偏振面相对于入射光转过了一定的角度。 图1 线偏振光沿磁场方向传播

旋光仪测旋光液体的浓度实验报告

实验19 旋光仪测旋光液体的浓度 林一仙 1实验目的 1) 观察光的偏振现象,加深对光偏振的认识; 2) 了解旋光仪的结构及测量原理; 3) 掌握旋光仪测定旋光液体浓度的方法。 2 实验仪器 WXG-4圆盘旋光仪、葡萄糖溶液样品试管 3 实验原理 3.1偏振光的获得与检测 1)偏振光的获得:使自然光通过偏振片就形成只有一个振动方向的线偏振光(平面偏振光)。 2)偏振光的检测:用偏振片观察偏振光时,转动偏振片,当偏振片的偏振化方向与偏振光的振动方向一致时可看到最大的光强度,当偏振片的偏振化方向与偏振光的振动方垂直时,光强度为零。用偏振片来观察自然光,转动偏振片观察时光强度保持不变。 3)物质的旋光性质:平面光通过旋物质时振动面相对入射光的振动面旋转了一定的角度,角度的大小(称旋光度)φ与偏振光通过旋光物质的路程l 成正比,对于旋光溶液,旋光度还与液体的浓度C 成正比。 ()()对于旋光溶液对于旋光晶体lC ,l α?α?== 其中а为旋光率。 3.2 旋光溶液旋光率及浓度的测定方法 ①用旋光仪测量一组不同浓度(浓度已知)的葡萄糖溶液的旋光度φ,用作图法处理数据,并求得旋光率а,l k =α ②用旋光仪测量未知浓度的旋光度x ?,可求得浓度l C x x α?=;也可利用 旋光关系曲线直接确定对应的浓度。 4 旋光仪的结构 4.1光学原理 从图1旋光仪的光路图可以看出,钠光灯射出的光线通过毛玻璃后,经聚光透镜成平行光,再经滤色镜变成波长为m 7 10893.5-?的单色光。这单色光通过起偏镜后成为平面偏振光,中间部分的偏振光再通过竖条状旋光晶片,其振动面相对两旁部分转过一个小角度,形成三分视场。 仪器出厂时把三分场均匀暗作为零度视场并调在度盘零度位置,三分场均匀暗的形成原理如图2所示。

南京大学 法拉第效应实验报告

法拉第效应 引言: 实验利用励磁电流产生磁场,首先测量磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小,用消光的方法测定ZF6样品的旋光角和磁场的关系,用倍频法测量MR3样品的旋光角和磁场的关系。最后让偏振光分别两次通过MR3样品,区分自然旋光和法拉第旋光,验证法拉第旋光的非互易性。 法拉第效应有许多方面的应用,它可以作为物质结构研究的手段,如根据结构不同的碳氢化合物其法拉第效应的表现不同来分析碳氢化合物导体物理的研究中,它可以用来测量载流子得得有效质量、迁移率和提供能带结构的信息;在激光技术中,利用法拉第效应的特性,制成了光波隔离、光频环形器、调制器等;在磁学测量方面,可以利用法拉第效应测量脉冲磁场。 实验目的: 1.了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 实验原理: 当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,这种磁致旋光现象是1845年由法拉第首先发现的,故称为法拉第效应。振动面转过的角度称为法拉第效应旋光角。实验发现 θ=VBL (1)其中θ为法拉第效应旋光角;L为介质的厚度;B为平行与光传播方向的磁感强度分量;V称为费尔德(Verdet)常数。 一般约定,当光的旋转方向与产生磁场的电流的方向一致时,称法拉第旋转是左旋,v>0;反之则叫右旋,v<0。 法拉第效应与自然旋光不一样,不具备一般的光学过程可逆,对于给定的物质,旋转 的方向只由磁场的方向决定,和光的传播方向无关,这叫做法拉第效应的“旋光非互易性”。 法拉第效应的原理 一束平行于磁场方向传播的平面偏振光(表示电场强度矢量),可以看着是两束等幅的左旋和右旋圆偏振光的叠加,不加外磁场时,他们通过距离为的介质后,由于介质

相关文档
最新文档