空间两点间的距离公式说课稿

合集下载

空间两点间的距离公式教案

空间两点间的距离公式教案

空间两点间的距离公式教案一、教学目标:1. 让学生掌握空间两点间的距离公式的推导过程。

2. 能够运用空间两点间的距离公式解决实际问题。

3. 培养学生的空间想象能力和抽象思维能力。

二、教学重点与难点:1. 教学重点:空间两点间的距离公式的推导过程及应用。

2. 教学难点:空间两点间的距离公式的灵活运用。

三、教学方法:1. 采用问题驱动法,引导学生主动探究空间两点间的距离公式。

2. 利用多媒体课件,直观展示空间两点间的距离公式的推导过程。

3. 运用案例分析法,让学生在实际问题中运用空间两点间的距离公式。

四、教学准备:1. 多媒体课件。

2. 教学案例。

3. 练习题。

五、教学过程:1. 导入新课:通过提问方式引导学生回顾平面两点间的距离公式,为新课的学习做好铺垫。

2. 探究空间两点间的距离公式:(1)引导学生观察空间坐标系中两点A(x1, y1, z1)和B(x2, y2, z2)的坐标。

(2)引导学生思考如何求解AB两点的距离。

(3)引导学生利用勾股定理推导出空间两点间的距离公式。

3. 案例分析:(1)出示典型案例,让学生运用空间两点间的距离公式解决问题。

(2)引导学生总结解题步骤和注意事项。

4. 巩固练习:出示练习题,让学生独立完成,巩固空间两点间的距离公式的运用。

5. 课堂小结:总结本节课的主要内容,强调空间两点间的距离公式的应用。

6. 布置作业:让学生课后总结空间两点间的距离公式的推导过程,并用所学知识解决实际问题。

六、教学拓展:1. 引导学生思考空间两点间的距离公式在现实生活中的应用,如测量身高、计算物体间的距离等。

2. 探讨空间两点间的距离公式在其他领域的应用,如计算机图形学、工程设计等。

七、课堂互动:1. 组织学生进行小组讨论,分享彼此对空间两点间的距离公式的理解和应用。

2. 邀请学生上台演示空间两点间的距离公式的推导过程,并讲解其应用。

八、评价与反馈:1. 通过课堂提问、练习题和小组讨论等方式,评价学生对空间两点间的距离公式的掌握程度。

两点间的距离公式说课稿

两点间的距离公式说课稿

两点间的距离公式说课稿温县职业技术教育中心王红保大家好,今天我向大家说课的内容是:中等职业教育课程改革国家规划新教材(基础模块)下册、第八章第一单元第一节《两点间的距离与线段中点的坐标公式》,我将从教材分析、学生分析、教学方法和手段的选用、教学过程设计以及关于教学设计的说明六个方面进行说课一、教材分析1、教材作用:直线作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.直线的方程是解析几何的基础知识,对直线的方程的理解,直接影响学生能否培养起解析几何的思想方法,对后续研究的线性规划、圆、直线与圆的位置关系、圆锥曲线及直线与圆锥曲线的位置关系等内容有着很重要的作用.本章首先在平面直角坐标系中,介绍直线的倾斜角、斜率等概念;然后建立直线的方程:点斜式、斜截式、两点式、截距式等;通过直线的方程,研究直线间的位置关系:平行和垂直,以及两条直线的交点坐标、点到直线的距离公式等.从本节来看,两点间的距离与线段中点的坐标公式,在直线方程中占有重要位置.同时,同学们将迈出探究几何学知识的第一步,在“数”和“形”之间建立联系.2、教学目标:根据教学内容的特点,依据中职教材课程标准的具体要求,结合学生的认知规律与已有的认知水平,本节课通过设置轻松的师生互动、生生互动的探究问题让学生在民主、和谐的课堂氛围中,自主探究两点间的距离公式;通过自主合作的互动探究及解决问题的过程,激发学生的参与意识与强烈的求知欲望,培养学生的问题意识与创新思维;同时,在探索解决一系列问题的过程中,培养学生的抽象、概括、分析问题和解决问题的能力,磨练学生敢于面对挑战和勇于克服困难的意志.由此我确定了本节课的知识能力目标、方法目标和情感态度价值观目标.知识与技能:;理解平面直角坐标系中两点间的距离公式和中点坐标公式的结构特点;能熟练应用这两个公式解决相关问题.3、教学重点和难点:两点间的距离公式是直线方程的基础,直线的方程是解析几何的基础,对直线的方程的理解,直接影响学生能否培养起解析几何的思想方法,对后续研究的内容有着很重要的作用,将数与形紧密地结合起来,这样许多代数问题就转化为学生熟知的几何问题,这也是中学数学课中学习解几何的目的之一,所以两点间的距离公式是本节课的重点.教学难点:两点间的距离公式的应用.本节课是通过与刚刚学习的向量的有关知识进行联系,引出两点间的距离公式,进一步由特殊到一般,得出线段中点的坐标公式,对公式的深刻理解和灵活应用,熟练解决相关问题是本节课的学习目标之一,所以是本节课的一个教学难点,二、谈一谈学生情况1、学生已经掌握了向量的基本知识,为本节课的学习奠定了必要的知识基础;2、高一的学生已经具备了学习数学的基本能力,同时也已经掌握了一些如:观察、猜想、推理验证等基本的数学学习方法,这为新课的教学提供思想基础3、高一的学生虽已具备了学习数学的能力基础,但学生对数学学习的兴趣不高,这也是中一学生学习中存在的普遍问题,为新课的教学带来了一定的难度.三、教学方法和手段本节课主要采用的是“目标教学法”、引导发现法”、“小组竞赛法”的教学方法与“合作探究”的学习方法.针对本节课内容难度不高,但知识点之间的衔接不够紧凑,对初学者来说容易产生杂乱无章的感觉. 本节课以教学目标为核心,以探究问题、小组合作为载体,以师生合作探究为主线,以训练思维、发展能力为目标,充分调动一切可利用的因素,激发学生的参与意识,使学生通过观察、思考、猜想、验证、应用等方式,经历知识的形成过程,同时在教师的指引下寻求知识间的联系,理清众多的思路,从而顺利地突破重、难点.通过合作探究使学生在和谐、愉悦的氛围中获取知识,掌握方法.整个教学中既能突出学生主体地位,又能发挥教师的指导作用.教学手段:多媒体课件四、重点说明本节课的教学过程设计本节课共设计了六个环节:1、明确目标;2、温故知新;3、合作探究与应用;4、小组合作应用巩固;5、归纳小结;6、布置作业.1.第一个环节:明确目标:近年来,以教师为主导、以学生为主体、教学目标为主线的目标教学法,已成为新课改下一种重要教学方法,目标教学法是一种以教学目标为核心和主线实施课堂教学的方法,这种方法的突出特点是教学活动过程中,首先确立具体的学习目标,有的放矢地培养学生的期待心理,倡导教学过程中以教学目标为主线来探究教学内容,最终完成教学任务,实现教学目标.基于此,我将教学的开始环节确定为:明确目标.目的就在于让学生在探究新知之前,就能明确本节课的学习目标,并将这根线贯穿学习始终,以此来激发学生的学习兴趣与积极性,激励学生为实现教学目标而努力学习.2.在温故知新这一环节中设置了两道小题,教学过程中,以提问的方式完成对旧知识的复习巩固及对本节内容的引入.我的设计意图是 1.通过复习回顾已学知识,为得出两点间的距离公式和线段中点的坐标公式做好铺垫.2.通过复习提问,也可由此自然的过渡到第三个环节——合作探究与引导应用.3.合作探究与引导应用:这个环节共设置了两个探究问题及知识应用,通过设置问题、引导发现、合作探究、指导应用的模式,精心设计、层层铺垫,启发、调整、激励学生在教师的引导下全员参与、全程参与,经历知识的形成过程,从而达到对知识的深刻理解.探究一:平面直角坐标系中两点间的距离公式.这个探究问题在温故知新的环节中已经引导学生复习了向量的模长公式,这为得出两点间的距离公式做好了铺垫,同时再经过教师的引导便可进一步理解公式的结构特点.紧接着进行练习,通过小组合作达到熟练运用公式的目的。

空间两点间的距离公式说课稿 教案 教学设计

空间两点间的距离公式说课稿 教案 教学设计
师:注意引导类比平面直角坐标系中,方程 表示的图形,让学生有种回归感。
生:猜想说出理由
(4)如果是空间中任意一点 到点 之间的距离公式会是怎样呢?
[2]
人的认知是从特殊情况到一般情况的
师生:一起推导,但是在推导的过程中要重视学生思路的引导。
得出结论:
[1]
从特殊的情况入手,化解难度
师:为了验证一下同学们的猜想,我们来看比较特殊的情况,引导学生用勾股定理来完成
学生:在教师的指导下作答得出
问题
问题设计意图
师生活动
(3)如果 是定长r,那么 表示什么图形?
任何知识的猜想都要建立在学生原有知识经验的基础上,学生可以通过类比在平面直角坐标系中,方程 表示原点或圆,得到知识上的升华,提高学习的兴趣。
4、情景பைடு நூலகம்计
问题
问题设计意图
师生活动
在平面上任意两点A ,B 之间距离的公式为|AB|= ,那么对于空间中任意两点A ,B 之间距离的公式会是怎样呢?你猜猜?
通过类比,充分发挥学生的联想能力。
师:、只需引导学生大胆猜测,是否正确无关紧要。
生:踊跃回答
(2)空间中任意一点P 到原点之间的距离公式会是怎样呢?
空间两点间的距离公式
1.教学任务分析
通过特殊到一般的情况推导出空间两点间的距离公式
2.教学重点和难点
重点:空间两点间的距离公式
难点:一般情况下,空间两点间的距离公式的推导。
3.教学基本流程
由平面上两点间的距离公式,引入空间两点距离公式的猜想
先推导特殊情况下的空间两点间的距离公式
推导一般情况下的空间两点间的距离公式

最新两点间距离公式说课稿

最新两点间距离公式说课稿

课题介绍选自人教版《普通高中课程标准实验教科书•数学•必修 2 • A版》第3章第3 节第二课时.下面我将通过教材分析、教学方法、教学过程、板书设计和教学评价五个部分,阐述本课的教学设计。

一、教材分析1教材的地位和作用两点间的距离是中学学习的主要内容之一,在高中数学中占有重要地位•点是组成空间几何体最基本的元素之一,两点间的距离也是最简单的一种距离■本章是用坐标法研究平面中的直线,而点是确定直线位置的几何要素之一.对本节的研究,为点到直线的距离公式、两条平行直线的距离公式的推导以及后面空间中两点间距离和圆锥曲线的进一步学习,奠定了基础,具有重要作用.2、目标分析根据大纲要求及教材的地位与作用,考虑到学生已有的知识结构及心理特征,制定如下三维教学目标:(1)知识目标:理解平面内两点间的距离公式的推导过程,掌握两点间的距离公式及其应用.(2)能力目标:通过两点间距离公式的推导,培养学生探索问题的能力和运用知识的能力,加深对数形结合以及由特殊到一般的思想的认识•(3)情感目标:通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的条理性和严谨性,激发学生的学习兴趣.3、教学重点与难点根据数学学习理论及学生的认知水平,本节注重培养学生数形结合及由特殊到一般的思想•因此我确定如下重点与难点:(1)教学重点:两点间距离公式的理解及应用.(2)教学难点:两点间距离公式的推导.二、教学方法数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,理性思考•为此我设计如下教法、学法及教学手段:1教法分析现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点.根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用探究研讨法及讲练精品文档结合法,以问题的提出、问题的解决为主线来展开教学•2、学法指导新课标的理念倡导“以人为本”,强调“以学生发展为核心” •考虑到这节课主要通过老师的引导让学生发现规律,并在自己的发现中学到知识,提高能力,我主要引导学生自己观察、归纳、分析,采用自主探究的方法进行学习,使学生从中体会学习的乐趣•3、教学手段在教学过程中,我采用三角板、彩色粉笔、小黑板、多媒体辅助教学,以直观呈现教学素材,突出教学重点,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

两点间的距离公式说课稿

两点间的距离公式说课稿

两点间的距离公式
一、教学目标
1.知识技能目标:经历探索两点间的距离公式的过程,了解公式的
几何背景,熟记两点之间的距离公式,运用两点之间的距离公式,解决相关数学问题。

2.过程方法与目标:培养学生严密而准确的数学表达能力;培养学
生的观察能力,逻辑推理能力和合作学习能力,使学生明白从特殊推出一般的思想。

3.情感态度价值观:通过观察、对比体会数学的对称美和谐美,培
养学生良好的数学表达和思考能力,学会从已有知识出发主动探索未知世界的意识及对待新知识的良好情感态度。

二、教学重、难点
4.教学重点:两点间距离公式的推导过程及运用。

5.教学难点:使学生明白推导两点之间距离公式时辅助线的构造,
运用勾股定理推导两点间距离公式,使学生明白如何用特殊推出一般的思想,以及两点间的距离公式灵活运用。

三、教学过程
(一)复习式导入:
6.回顾上一节课提到得到存在两点A,B,若这两点都在X轴或Y轴
上,两点间的距离是:
7.若两点都在X轴上,切已知A(-x1,0),B(x2,0)时,有|AB|=|x2-(-x1)|
8.若两点都在Y轴上,切已知A’(0,y1),B’(0,y2)时,有
|A’B’|=|y2-(-y1)|。

空间两点间的距离公式 说课稿 教案 教学设计

空间两点间的距离公式    说课稿  教案 教学设计

空间两点间的距离公式【教学目标】1.掌握空间两点间的距离公式,会用空间两点间的距离公式解决问题.2.通过探究空间两点间的距离公式,灵活运用公式,初步意识到将空间问题转化为平面问题是解决问题的基本思想方法,培养类比、迁移和化归的能力.3.通过棱与坐标轴平行的特殊长方体的顶点的坐标,类比平面中两点之间的距离的求法,探索并得出空间两点间的距离公式,充分体会数形结合的思想,培养积极参与、大胆探索的精神.【重点难点】教学重点:空间两点间的距离公式.教学难点:一般情况下,空间两点间的距离公式的推导.【课时安排】1课时【教学过程】导入新课我们知道,数轴上两点间的距离是两点的坐标之差的绝对值,即d=|x 1-x 2|;平面直角坐标系中,两点之间的距离是d=212212)()(y y x x -+-.同学们想,在空间直角坐标系中,两点之间的距离应怎样计算呢?又有什么样的公式呢?因此我们学习空间两点间的距离公式.推进新课新知探究提出问题①平面直角坐标系中,两点之间的距离公式是什么?它是如何推导的?②设A(x,y,z)是空间任意一点,它到原点的距离是多少?应怎样计算?③给你一块砖,你如何量出它的对角线长,说明你的依据.④同学们想,在空间直角坐标系中,你猜想空间两点之间的距离应怎样计算?⑤平面直角坐标系中的方程x 2+y 2=r 2表示什么图形?在空间中方程x 2+y 2+z 2=r 2表示什么图形?⑥试根据②③推导两点之间的距离公式.活动:学生回忆,教师引导,教师提问,学生回答,学生之间可以相互交流讨论,学生有困难教师点拨.教师引导学生考虑解决问题的思路,要全面考虑,大胆猜想,发散思维.①学生回忆学过的数学知识,回想当时的推导过程;②解决这一问题,可以采取转化的方法,转化成我们学习的立体几何知识来解;③首先考虑问题的实际意义,直接度量,显然是不可以的,我们可以转化为立体几何的方法,也就是求长方体的对角线长.④回顾平面直角坐标系中,两点之间的距离公式,可类比猜想相应的公式;⑤学生回忆刚刚学过的知识,大胆类比和猜想;⑥利用③的道理,结合空间直角坐标系和立体几何知识,进行推导.讨论结果:①平面直角坐标系中,两点之间的距离公式是d=212212)()(y y x x -+-,它是利用直角三角形和勾股定理来推导的.图1②如图1,设A(x,y,z)是空间任意一点,过A 作AB ⊥xOy 平面,垂足为B,过B 分别作BD ⊥x 轴,BE ⊥y 轴,垂足分别为D,E.根据坐标的含义知,AB=z,BD=x,BE=OD=y,由于三角形ABO 、BOD 是直角三角形,所以BO 2=BD 2+OD 2,AO 2=AB 2+BO 2=AB 2+BD 2+OD 2=z 2+x 2+y 2,因此A 到原点的距离是d=222z y x ++.③利用求长方体的对角线长的方法,分别量出这块砖的三条棱长,然后根据对角线长的平方等于三条边长的平方的和来算.④由于平面直角坐标系中,两点之间的距离公式是d=212212)()(y y x x -+-,是同名坐标的差的平方的和再开方,所以我们猜想,空间两点之间的距离公式是d=212212212)()()(z z y y x x -+-+-,即在原来的基础上,加上纵坐标差的平方. ⑤平面直角坐标系中的方程x 2+y 2=r 2表示以原点为圆心,r 为半径的圆;在空间x 2+y 2+z 2=r 2表示以原点为球心,r 为半径的球面;后者正是前者的推广.图2⑥如图2,设P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)是空间中任意两点,我们来计算这两点之间的距离.我们分别过P 1P 2作xOy 平面的垂线,垂足是M,N,则M(x 1,y 1,0),N(x 2,y 2,0),于是可以求出|MN|=212212)()(y y x x -+-.再过点P 1作P 1H ⊥P 2N,垂足为H,则|MP 1|=|z 1|,|NP 2|=|z 2|,所以|HP 2|=|z 2-z 1|.在Rt △P 1HP 2中,|P 1H|=|MN|=212212)()(y y x x -+-,根据勾股定理,得|P 1P 2|=2221||||HP H P +=221221221)()()(z z y y x x -+-+-.因此空间中点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)之间的距离为|P 1P 2|=221221221)()()(z z y y x x -+-+-. 于是空间两点之间的距离公式是d=212212212)()()(z z y y x x -+-+-.它是同名坐标的差的平方的和的算术平方根.应用示例例1 已知A(3,3,1),B(1,0,5),求:(1)线段AB 的中点坐标和长度;(2)到A,B 两点的距离相等的点P(x,y,z)的坐标满足的条件.活动:学生审题,教师引导学生分析解题思路,已知的两点A 、B 都是空间直角坐标系中的点,我们直接利用空间两点间的距离公式求解即可.知识本身不难,但是我们计算的时候必须认真,决不能因为粗心导致结果错误.解:(1)设M(x,y,z)是线段AB 的中点,则根据中点坐标公式得 x=213+=2,y=203+=23,z=215+=3.所以AB 的中点坐标为(2,23,3). 根据两点间距离公式,得 d(A,B)=29)15()30()31(222=-+-+-,所以AB 的长度为29.(2)因为点P(x,y,z)到A,B 的距离相等,所以有下面等式:222222)5()0()1()1()3()3(-+-+-=-+-+-z y x z y x .化简得4x+6y-8z+7=0,因此,到A,B 两点的距离相等的点P(x,y,z)的坐标满足的条件是4x+6y-8z+7=0. 点评:通过本题我们可以得出以下两点:①空间两点连成的线段中点坐标公式和两点间的距离公式是平面上中点坐标公式和两点间的距离公式的推广,而平面上中点坐标公式和两点间的距离公式又可看成空间中点坐标公式和两点间的距离公式的特例.②到A,B 两点的距离相等的点P(x,y,z)构成的集合就是线段AB 的中垂面.变式训练在z 轴上求一点M,使点M 到点A(1,0,2),B(1,-3,1)的距离相等.解:设M(0,0,z),由题意得|MA|=|MB|,2222222)1()30()30()10()2()00()10(-+++++-=++-+-z z ,整理并化简,得z=-3,所以M(0,0,-3).例2 证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的△ABC 是一等腰三角形.活动:学生审题,教师引导学生分析解题思路,证明△ABC 是一等腰三角形,只需求出|AB|,|BC|,|CA|的长,根据边长来确定.证明:由两点间距离公式得: |AB|=,72)12()31()47(222=-+-+- |BC|=6)23()12()75(222=-+-+-, |CA|=6)31()23()54(222=-+-+-.由于|BC|=|CA|=6,所以△ABC 是一等腰三角形.点评:判断三角形的形状一般是根据边长来实现的,因此解决问题的关键是通过两点间的距离公式求出边长.变式训练三角形△ABC 的三个顶点坐标为A(1,-2,-3),B(-1,-1,-1),C(0,0,-5),试证明△ABC 是一直角三角形.活动:学生先思考或交流,然后解答,教师及时提示引导,要判定△ABC 是一直角三角形,只需求出|AB|,|BC|,|CA|的长,利用勾股定理的逆定理来判定.解:因为三个顶点坐标为A(1,-2,-3),B(-1,-1,-1),C(0,0,-5),所以 |AB|=222)13()12()11(+-++-++=3, |BC|=23)15()10()10(222=+-++++, |CA|=222)53()02()01(+-+--+-=3.又因为|AB|2+|CA|2=|BC|2,所以△ABC 是直角三角形.例3 已知A(x,5-x,2x-1),B(1,x+2,2-x),则|AB|的最小值为( )A.0B.735C.75D.78活动:学生阅读题目,思考解决问题的方法,教师提示,要求|AB|的最小值,首先我们需要根据空间两点间的距离公式表示出|AB|,然后再根据一元二次方程求最值的方法得出|AB|的最小值.解析:|AB|=222)33()23()1(-+-+-x x x=1932142+-x x =73575)78(142≥+-x . 当x=78时,|AB|的最小值为735. 故正确选项为B.答案:B点评:利用空间两点间的距离公式转化为关于x 的二次函数求最值是常用的方法. 拓展提升已知三棱锥P —ABC(如图4),PA ⊥平面ABC,在某个空间直角坐标系中,B(3m,m,0),C(0,2m,0),P(0,0,2n),画出这个空间直角坐标系并求出直线AB 与x 轴所成的较小的角.图3解:根据已知条件,画空间直角坐标系如图3:以射线AC 为y 轴正方向,射线AP 为z 轴正方向,A 为坐标原点建立空间直角坐标系O —xyz,过点B 作BE ⊥Ox,垂足为E,∵B(3m,m,0),∴E(3m,0,0).在Rt △AEB 中,∠AEB=90°,|AE|=3m,|EB|=m,∴tan ∠BAE=mm AE EB 3||||==33.∴∠BAE=30°, 即直线AB 与x 轴所成的较小的角为30°.课堂小结。

小学四年级数学《两点间的距离》说课稿及教学教案设计模板

小学四年级数学《两点间的距离》说课稿及教学教案设计模板

小学数学《两点间的距离》说课稿及教学教案设计模板小学数学《两点间的距离》说课稿模板说课就是教师口头表述具体课题的教学设想及其理论依据,也就是授课教师在备课的基础上,面对同行或教研人员,讲述自己的教学设计,然后由听者评说,达到互相交流,共同提高的目的的一种教学研究和师资培训的活动。

所以说课稿本身没有太多要求,更多的是对说课者在口述过程中的思路和条理要求比较更多一些。

尊敬的各位评委、各位老师:一、教材与学情分析1.地位与作用点是组成空间几何体最基本的元素之一,两点间的距离也是最简单的一种距离。

本章是用坐标法研究平面中的直线,而点又是确定直线位置的几何要素之一。

对本节的研究,为点到直线的距离公式、两条平行直线的距离公式的推导以及后面空间中两点间距离的进一步学习,奠定了基础,具有重要作用。

2.学情分析(1)知识与能力:在上一节,学生已经在平面直角坐标系中建立了各种形式的直线方程,对坐标法解决几何问题有了初步的认识。

(2)学生实际:我校学生实际是基础扎实、思维活跃,但抽象思维的能力比较欠缺,所以需要老师循序渐进的引导。

二、目标分析1.教学目标根据新课程标准的理念,以及上述教材结构与内容的分析,考虑到学生已有的知识结构及心理特征,制定如下三维教学目标:【知识与技能】(直接性目标)(1)让学生理解平面内两点间的距离公式的推导过程,掌握两点间距离公式及其简单应用,会用坐标法证明一些简单的几何问题;(2)通过由特殊到一般的归纳,培养学生探索问题的能力。

【过程与方法】(发展性目标)(1)利用勾股定理推导出两点间的距离公式,并由此用坐标法推证其它问题。

通过推导公式方法的发现,培养学生观察发现、分析归纳、抽象概括、数学表达等基本数学思维能力;(2)在推导过程中,渗透数形结合的数学思想。

【情感态度价值观】(可持续性目标)培养学生思维的严密性和条理性,同时感受数学的形式美与简洁美,从而激发学生学习兴趣。

2.教学重点、难点根据教学目标,应有一个让学生参与实践——探索发现——总结归纳的探索认知过程。

两点之间距离公式教案

两点之间距离公式教案

两点之间距离公式教案一、教学目标:1. 让学生理解两点之间距离公式的含义和应用。

2. 让学生掌握两点之间距离公式的推导过程。

3. 培养学生运用两点之间距离公式解决实际问题的能力。

二、教学内容:1. 两点之间距离公式的定义及表达式。

2. 两点之间距离公式的推导过程。

3. 两点之间距离公式的应用实例。

三、教学重点与难点:1. 教学重点:两点之间距离公式的推导过程及应用。

2. 教学难点:两点之间距离公式的灵活运用。

四、教学方法:1. 采用问题驱动法,引导学生思考和探索。

2. 使用多媒体辅助教学,直观展示两点之间距离公式的推导过程。

3. 实例教学,让学生在实际问题中运用两点之间距离公式。

五、教学过程:1. 导入新课:通过生活中的实例,引导学生思考两点之间距离的意义。

2. 讲解两点之间距离公式:介绍两点之间距离公式的定义、表达式及推导过程。

3. 互动环节:学生分组讨论,探讨如何运用两点之间距离公式解决实际问题。

4. 实例分析:教师展示几个实例,引导学生运用两点之间距离公式进行解答。

六、课后作业:1. 复习两点之间距离公式的推导过程及表达式。

2. 运用两点之间距离公式解决几个实际问题。

3. 思考如何将两点之间距离公式应用到其他学科或生活中。

七、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况。

2. 课后作业:检查学生完成作业的质量,评估学生对知识点的掌握程度。

3. 学生反馈:收集学生对教学过程和内容的意见和建议,不断优化教学方法。

八、教学资源:1. 多媒体课件:展示两点之间距离公式的推导过程及应用实例。

2. 实例素材:提供几个实际问题,供学生探讨和解答。

3. 课后作业:布置具有代表性的作业,帮助学生巩固知识点。

九、教学进度安排:1. 第一课时:介绍两点之间距离公式的定义及表达式。

2. 第二课时:讲解两点之间距离公式的推导过程。

3. 第三课时:探讨两点之间距离公式的应用实例。

4. 第四课时:学生分组讨论,解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学与信息科学学院


稿
课题空间两点间的距离公式专业数学与应用数学
指导教师王新民
班级20XX级3班
姓名谢燕生
学号20080241066
“空间两点间的距离公式”说课稿
大家好!我是来自数信08级3班的谢燕生。

今天我说课的课题选自人教版数学必修(2)“4.3.2空间两点间的距离公式”。

本节课我将通过教材分析、教学分析、教学过程和板书设计四个部分,阐述本节课的教学设计。

一一、、教教材材分分析析
1.地位与作用
距离是几何中的基本度量,几何问题和一些实际问题经常涉及距离,如建筑设计中常常需要计算空间两点间的距离。

点又是确定直线、平面的几何要素之一,所以对以后点、直线、平面的距离公式的推导和进一步学习,奠定了基础,具有重要作用。

2.教学目标
根据新课程标准的理念,以及上述教材结构与内容的分析,考虑到学生已有的知识结构及心理特征,制定如下三维教学目标: 【知识目标】
让学生理解空间内两点间的距离公式的推导过程 ,掌握两点间距离公式及其简单应用,会用坐标法证明一些简单的几何问题; 【能力目标】
(1)通过推导公式发现,由特殊到一般,由空间到平面,由未知到已知的基本解题思想,培养学生观察发现、分析归纳等基本数学思维能力; (2)通过猜想,培养学生类比、迁移和化归的能力。

【情感目标】
培养学生思维的严密性和条理性,同时感受数学的形式美与简洁美,从而激发学生学习兴趣。

3.教学重点、难点 根据教学目标,应有一个让学生参与实践——探索发现——总结归纳的探索认知过程。

故确定如下重点与难点:
重点:空间两点间的距离公式和它的简单应用 难点:一般情况下,空间两点间的距离公式的推导
难点的确定:根据学生的认知水平,学生的抽象思维能力不是很强如作辅助线只是停留在初步认识阶段,所以把一般情况下,空间两点间的距离公式的推导确定为本节课的难点。

二二、、教教学学分分析析
1.教法分析
在教学策略上我采用:创设问题情境——引导探究——归纳与总结组成的引探式教学策略,在活动中教师着眼于“引”,引导学生解决问题,并掌握解决问题的规律和方法;学生着眼于“探”,通过探索活动发现规律,解决问题,发展探究能力和创造能力。

2.学法指导
新课标的理念倡导“以人为本”,强调“以学生发展为核心”.因此本节课给学生提供以下3种学习的机会:(1)提供观察、思考的机会:鼓励学生观察并用学生自己的语言进行归纳.(2)提供表达、合作、交流的机会:鼓励学生敢想敢说,设置问题促
使学生愿想愿说.(3)提供成功的机会:赞赏学生提出的问题,让学生在课堂中能更多地体验成功的乐趣.
3.教学手段
我主要应用了多媒体辅助教学(用于动态展示本节课的主要内容)、三角板(使画图更规范,让学生养成规范作图的习惯)、彩色粉笔(用于凸显重点)。

三三、、教教学学程程序序
我把本节课分为以下:“创设情境 ——课题引入——探究新知——应用举例——课堂练习——课堂小结——布置作业”七个阶段来完成. (一) 创设情境 幻灯片一:
一楼屋顶C ’处有一蜂窝,住户报119,消防官兵拟用高压水枪击落蜂巢,但水枪有效射程只有20米,而消防车也只能到达楼房角A 处,若屋的长、宽、高分别为15米、10米、4米,蜂巢能被击落吗?
设计意图:通过谈话的方式将知识与生活中有实际联系的蜂巢能否被击落的问题创设情境,增强讲授的吸引力,提高学生的兴趣。

(二)课题引入 幻灯片二:
在平面上任意两点()()1122,,A x y B x y ,之间的距离公式为
AB =
,那么对于空间中任意两点()()111222,,,,A x y z B x y z ,之间距离的公式会是怎样呢? 空间中点与点之间的相对位置关系一般通过什么数量关系来反映?你猜一猜? 设计意图:通过问答方式对已有知识的进行回忆,又对公式在形式上的对比、类比,让学生大胆思考、大胆猜想,培养学生合作、交流、探究的能力。

(三)探究新知
本环节我将主要通过三个问题推导空间两点间的距离公式
问题1
:在研究这一问题之前,我们先想想平面两点距离是怎样推出来的呢?
图2 平面两点的距离
图1 长方体楼房
设计意图:让学生回答,老师在黑板上演练,指明作平行线或垂线构成直角三角形利用勾股定理,为后面的推导做铺垫。

问题2:幻灯片三:
如图3,P(x,y,z)到原点的距离是多少?根据是什么?
图3 空间中任一点到原点的距离
设计意图:让老师带领学生分析,老师演练,再次指明作垂线构成直角三角形利用勾股定理,让学生了解将空间问题向平面问题转化的思路就是作垂线或平行线。

问题3:幻灯片四:
如图4空间中任两点P1(x1,y1,z1)和P2(x2,y2,z2),如何求P1,P2的距离|P1 P2|?
图4空间中任两点的距离
设计意图:通过这三个问题,引导学生由已知到未知,由特殊到一般的解题思路,并让学生体验由多维到低维,由简到繁,由浅到深的转化、化归思想。

(四)应用举例
例1 课堂一开始提到的问题。

幻灯片五:解:以C 点为坐标原点,CD 为x 轴,CB 为y 轴,CC ‘为z 轴建立空间直角坐标系,C ’(0,0,4),A(10,15,0),
则蜂巢能被击落。

设计意图:本题我将运用波利亚的解题四环节进行讲解,刚才大家已经审过题了,现在进行第二环节分析思路,只需找出两点坐标,直接利用空间两点间距离公式求解即可;再由我板书解答过程并用多媒体展示;最后进行回顾,我将引导学生对坐标法求解立体几何的基本步骤进行总结并用多媒体展示。

小结:坐标法求解立体几何的基本步骤:①在立体几何图形中建立空间直角坐标系;②依题意确定各相应点的坐标 ;③通过坐标运算得到答案。

设计意图:小结就是将陈述性知识转化为程序性知识,这体现了弗莱登塔尔的数学化思想。

(五)课堂练习
幻灯片六:在四面体P-ABC 中,PA 、PB 、PC 两两垂直,设PA=PB=PC=a ,H 为三角形A BC 的外心,求点P 与H 的距离?
图5 点P到H的距离
设计意图:本题我将抽一位同学上台做,其他同学在草稿本上做,我也将巡视教室了解学生对知识的应用情况。

因本题利用坐标法比较方便,这样就体现出坐标法在求解立体几何问题上的优越性,让学生了解坐标法是沟通数与形之间的联系,培养学生数形结合的思想。

(六)课堂小结
1.本节课的主要内容
(1)空间两点间的距离公式及其推导;
(2)坐标法的基本步骤是什么?
2.教学思想与方法
(1)培养学生类比的方法和养成严谨论证的思维习惯;
(2)体会由特殊到一般,多维到低维,由空间到平面的解决问题的思维方法;
(3)体会应用数形结合思想解决问题的思路。

设计意图:这部分我将请一位同学进行总结,我来补充说明,并用多媒体展示,从而培养学生总结归纳的能力。

(七)布置作业
必做:
(1)课本练习第4题;
(2)课本习题4.3的A组第3题;
选做:
(1)课本习题4.3的B组第6题。

设计意图:运用夸美纽斯的教学巩固性原则,我设置了如多媒体展示的三个习题,检测学生应用所学知识解决问题的能力。

作业又分为选做与必做题,这又体现了孔子因材施教的原则,让不同的学生在学习中有不同的发展。

、、板板书书设设计计
课题:空间以上是我对这节课的设想,恳请各位专家和老师批评、指正. 谢谢!。

相关文档
最新文档