数据库(中英文翻译)

合集下载

网络安全中英文词汇对照

网络安全中英文词汇对照
DDE 动态数据交换
DHCP 动态主机配置协议
encryption 加密
EGP 外部网关协议
FDDI 光纤分布式数据接口
FAT 文件分配表
FTP(File Transfer Protocol) 文件传送协议
filter 过滤器
firmware 固件
flooding 淹没
ICMP用来发送关于IP数据报传输的控制和错误信息的TCP/IP协议。当一个IP数据报不能传送到目的地时,可能是因为目的地的机器暂停服务或者信息交通阻塞,路由器可能使用ICMP将失败信息通知发送者。
IGMP(Internet Group Management Protocol,Internet群组管理协议)
USER name 用户名
USER account 用户帐号
Web page 网页
OpenGL 开放图形语言
ODBC 开放数据库连接
PCI 外设连接接口
authentication 认证、鉴别
authorization 授权
Back Office Microsoft公司的一种软件包
HTPASSWD 一种用密码来保护WWW(UNIX)上的站点的系统
icon 图标
impersonation attack 伪装攻击
index server 索引服务器
ISA 工业标准结构
Inherieted Rights Filter 继承权限过滤器
这种TCP/IP协议允许Internet主机参加多点播送(multicasting)----一种向计算机群广播信息的有效手段
IIS 信息服务器
IP(Internet Protocol) 网际协议

(完整版)数据库重要术语(中英文)

(完整版)数据库重要术语(中英文)

单词汇总(数据库专业一点的词汇其实主要就是每章后面review items的内容,在这里简单列一下,如果你实在没时间看书,至少这些单词要熟悉.):1. 数据库系统:database system(DS),database management system(DBMS)2.数据库系统(DS),数据库治理系统(DBMS )3. 关系和关系数据库table= relation , column = attribute 属性,domain, atomic domain, row= tuple ,relational database, relation schema, relation instance, database schema, database instance;4.表=关系,列=属性属性,域,原子域,排二元组,关系型数据库,关系模式,关系实例,数据库模式,数据库实例;1. key 们:super key, candidate key, primary key, foreign key, referencing relation, referenced relation;2.超码,候选码,主码,外码,参照关系,被参照关系5.关系代数(relational algebra): selection, project, natural join, Cartesian product, set operations, union, intersect, set difference( except\minus), Rename, assignment, outer join, grouping, tuple relation calculus6.(关系代数):选择,工程,自然连接,笛卡尔积,集合运算,集,交集,集合差(除负),重命名,分配,外连接,分组,元组关系演算7.sql组成:DDL :数据库模式定义语言,关键字:createDML :数据操纵语言,关键字:Insert > delete、updateDCL :数据库限制语言,关键字:grant、removeDQL :数据库查询语言,关键字:select8.3.SQL 语言:DDL , DML , DCL , QL , sql query structure, aggregate functions, nested subqueries, exists(as an operator), unique(as anoperator), scalar subquery, assertion, index(indices), catalogs, authorization, all privileges, granting, revoking , grant option, trigger, stored procedure, stored function4.SQL语言:DDL , DML , DCL , QL , SQL查询结构,聚合函数,嵌套子查询,存在(如运营商),独特的(如运营商),标量子查询,断言指数(指数),目录,授权,所有权限,授予,撤销,GRANT OPTION ,触发器,存储过程,存储函数9. 表结构相关:Integrity constraints, domain constraints, referential integrity constraints10.完整性约束,域名约束,参照完整性约束5.数据库设计(ER 模型):Entity-Relationship data model, ER diagram, composite attribute, single-valued and multivalued attribute,derived attribute, binary relationship set, degree of relationship set, mapping cardinality, 1-1, 1-m, m-n relationship set (one to one, one to many, many to many), participation, partial or total participation, weak entity sets, discriminator attributes, specialization and generalization6.实体关系数据模型,ER图,复合属性,单值和多值属性,派生属性,二元关系集,关系集,映射基数的程度,1-1, 1-米,MN关系集合(一对一,一对多,多对多),参与局部或全部参与,弱实体集,分辨符属性,特化和概化11. 函数依赖理论:functional dependence, normalization, lossless join (or lossless) decomposition,First Normal Form (1NF), the third normal form (3NF), Boyce-codd normal form (BCNF), R satisfies F, F holds on R, Dependency preservation 保持依赖,Trivial, closure of a set of functional dependencies 函数依赖集的闭包,closure of a set of attributes 属性集闭包,Armstrong 's axioms Armstrong 公理,reflexivity rule 自反律,augmentation rule,增广率, transitivity 传递律,restriction of F to R i F 在Ri 上的限定,canonical cover 正那么覆盖, extraneous attributes 无关属性,decomposition algorithm 分解算法.7.函数依赖,标准化,无损连接〔或无损〕分解,第一范式〔1NF〕,第三范式〔3NF〕 BC范式〔BCNF〕, R满足F, F持有R,依赖保存,平凡,一组函数依赖封闭,一组属性,8. 事务:transition, ACID properties ACID特性,并发限制系统concurrency control system,故障恢复系统recovery system,事务状态transition state,活动的active,局部提交的partiallycommitted,失败的failed,中止的aborted,提交的committed,已结束的terminated,调度schedule,操作冲突conflict of operations, 冲突等价conflict equivalence,冲突可串彳f化conflictserializablity ,可串行化顺序serializablity order,联级回滚cascading rollback,封锁协议lockingprotocol ,共享〔S〕锁shared-mode lock 〔S-lock〕,排他〔X〕锁exclusive -mode lock 〔X-lock〕, 相容卜i compatibility,两阶段封锁协议2-phase locking protocol,意向锁intention lock,时间戳timestamp, 恢复机制recovery scheme,日志log, 基于日志的恢复log-based recovery, 延迟的修改deferredmodification,立即的修改immediate modification,检查点checkpoint.数据库系统DBS Database System数据库系统应用Database system applications文件处理系统file-processing system数据不一致性data inconsistency——致性约束consistency constraint数据抽象Data Abstraction实例instance模式schema物理模式physical schema逻辑模式logical schema物理数据独立性physical data independence数据方^型data model实体-联系模型entity-relationship model 〔E-R〕关系数据模型relational data model基于对象的数据模型object-based data model半结构化数据模型semistructured data model数据库语言database language数据定义语言data-definition language数据操纵语言data-manipulation language查询语言query language元数据metadata应用程序application program标准化normalization数据字典data dictionary存储治理器storage manager查询治理器query processor事务transaction原子性atomicity故障恢复failure recovery并发限制concurrency-control两层和三层数据库体系结构two-tier/three-tier数据才2掘data mining数据库治理员DBA database administrator表table关系relation元组tuple空值null value数据库模式database schema数据库实例database instance关系模式relation schema关系实例relation instance码keys超码super key候选码candidate key主码primary key外码foreign key参照关系referencing relation被参照关系referenced relation属性attribute域domain原子域atomic domain参照完整性约束referential integrity constraint模式图schema diagram查询语言query language过程化语言procedural language非过程化语言nonprocedural language关系运算operations on relations选择元组selection of tuples选择属性selection of attributes自然连接natural join笛卡尔积Cartesian product集合运算set operations关系代数relational algebraSQL 查询语言SQL query structureSelect 字句select clauseFrom 字句from clauseWhere 字句where clause自然连接运算natural join operationAs 字句as clauseOrder by 字句order by clause相关名称 (相关变量,元组变量) correlation name (correlation variable , tuple variable ) 集合运算set operationsUnionInterestExcept空值null values真值"unknown " truth “ unknown 〞聚集函数aggregate functionsavg, min, max, sum, countgroup byhaving嵌套子查询nested subqueries集合比拟set comparisons{ «,? 二 ,〉〉,?=}{some , all}existsuniquelateral 字句lateral clausewith 字句with clause标量子查询scalar subquery数据库彳修改database modification删除deletion插入insertion更新updating参照完整性referential integrity参照完整T约束referential Hntegrity constraint 或子集依赖subset dependency 可延迟的deferrable断言assertion连接类型join types内连接和夕卜连接inner and outer join左外连接、右外连接和全外连接left、right and full outer joinNatural连接条件、using连接条件和on连接条件natural using and so on 视图定义view definition物化视图materialized views视图更新view update事务transactions提交commit work回滚roll back work原子事务atomic transaction完整性约束integrity constraints域约束domain constraints唯——性约束unique constraintCheck 字句check clause参照完整性referential integrity级联删除cascading delete级联更新cascading updates断言assertions日期和时间类型date and time types默认值default values索弓I index大对象large object用户定义类型user-defined types域domains目录catalogs模式schemas授权authorization权卜M privileges选择select插入insert更新update所有权限all privileges授予权卜M granting of privileges收回权卜M revoking of privileges授予权限的权限privileges to privilegesGrant option角色roles视图授权authorization on views执行授权execute authorization调用者权限invoker privileges行级授权row-level authorizationJDBCODBC预备语句prepared statements 访问元数据accessing metadata SQL 注入SQL injection 嵌入式SQL embedded SQL 游标cursors 可更新的游标updatable cursors 动态SQL dynamic SQL SQL 函数SQL functions 存储过程stored procedures 过程化结构procedural constructs夕卜部语言例程external language routines触发器triggerBefore 和after 触发器before and after triggers过渡变量和过渡表transition variables and tables递归查询recursive queries单调查询monotonic queries排名函数ranking functionsRankDense rankPartition by分窗windowing联机分析处理〔OLAP 〕 online analytical processing多维数据multidimensional data度量属性measure attributes维属性dimension attributes转轴pivoting数据立方体data cube切片和切块slicing and dicing上卷和下钻rollup and drill down交叉表cross-tabulation第七章实体-联系数据模型Entity-relationship data model实体和实体集entity and entity set属性attribute域domain简单和复合属T生simple and composite attributes单值和多值属T生single-valued and multivalued attributes空值null value派生属性derived attribute超码、候选码以及主码super key ,candidate key, and primary key联系和联系集relationship and relationship set二元联系集binary relationship set联系集的度degree of relationship set描述性属性descriptive attributes超码、候选码以及主码super key ,candidate key, and primary key角色role自环联系集recursive relationship setE-R 图E-R diagram映射基数mapping cardinality——对——联系one-to-one relationship——对多联系one-to-many relationship多对——联系many-to-one relationship多对多联系many-to-many relationship参与participation全部参与total participation局部参与partial participation弱实体集和强实体集weak entity sets and strong entity sets分辨符属性discriminator attributes标识联系identifying relationship特化和概化specialization and generalization超类和子类superclass and subclass属性继承attribute inheritance单和多继承single and multiple inheritance条件定义的和用户定义的成员资格condition-defined and userdefined membership 不相交概化和重叠概化disjoint and overlapping generalization全部概化和局部概化total and partial generalization聚集aggregationUMLUML 类图UML class diagram第八章E-R 模型和标准化E-R model and normalization分解decomposition函数依赖functional dependencies无损分解lossless decomposition原子域atomic domains第一范式(1NF) first normal form(1NF)合法关系legal relations超码super keyR 满足 F R satisfies FF在R上成立 F holds on RBoyce-Codd 范式BCNF Boyce-Codd normal form(BCNF)保持依赖dependency preservation第三范式(3NF) third normal form(3NF)平凡的函数依赖thivial functional dependencies函数依赖集的闭包closure of a set of functional dependenciesArmstrong 公理Armstrong s axioms属性集闭包closure of attribute setsF 在Ri 上的限定restriction of F to Ri正贝 1 覆盖canonical cover无关属T生extraneous attributesBCNF 分解算法BCNF decomposition algorithm3NF 分解算法3NF decomposition algorithm多值依赖multivalued dependencies第四范式(4NF) fourth normal form(4NF)多值依赖的限定restriction of a multivalued independency投影-连接范式(PJNF) project-join normal form(PJNF)域-码范式(DKNF ) domain-key normal form(DKNF)泛关系universal relation唯一角色假设unique-role assumption 去标准化denormalization。

数据库中英文对照外文翻译文献

数据库中英文对照外文翻译文献

中英文对照外文翻译Database Management SystemsA database (sometimes spelled data base) is also called an electronic database , referring to any collection of data, or information, that is specially organized for rapid search and retrieval by a computer. Databases are structured to facilitate the storage, retrieval , modification, and deletion of data in conjunction with various data-processing operations .Databases can be stored on magnetic disk or tape, optical disk, or some other secondary storage device.A database consists of a file or a set of files. The information in these files may be broken down into records, each of which consists of one or more fields. Fields are the basic units of data storage , and each field typically contains information pertaining to one aspect or attribute of the entity described by the database . Using keywords and various sorting commands, users can rapidly search , rearrange, group, and select the fields in many records to retrieve or create reports on particular aggregate of data.Complex data relationships and linkages may be found in all but the simplest databases .The system software package that handles the difficult tasks associated with creating ,accessing, and maintaining database records is called a database management system(DBMS).The programs in a DBMS package establish an interface between the database itself and the users of the database.. (These users may be applications programmers, managers and others with information needs, and various OS programs.)A DBMS can organize, process, and present selected data elements form the database. This capability enables decision makers to search, probe, and query database contents in order to extract answers to nonrecurring and unplanned questions that aren’t available in regular reports. These questions might initially be vague and/or poorly defined ,but people can “browse” through the database until they have the needed information. In short, the DBMS will “manage” the stored data items and assemble the needed items from the common database in response to the queries of those who aren’t programmers.A database management system (DBMS) is composed of three major parts:(1)a storage subsystemthat stores and retrieves data in files;(2) a modeling and manipulation subsystem that provides the means with which to organize the data and to add , delete, maintain, and update the data;(3)and an interface between the DBMS and its users. Several major trends are emerging that enhance the value and usefulness of database management systems;Managers: who require more up-to-data information to make effective decisionCustomers: who demand increasingly sophisticated information services and more current information about the status of their orders, invoices, and accounts.Users: who find that they can develop custom applications with database systems in a fraction of the time it takes to use traditional programming languages.Organizations : that discover information has a strategic value; they utilize their database systems to gain an edge over their competitors.The Database ModelA data model describes a way to structure and manipulate the data in a database. The structural part of the model specifies how data should be represented(such as tree, tables, and so on ).The manipulative part of the model specifies the operation with which to add, delete, display, maintain, print, search, select, sort and update the data.Hierarchical ModelThe first database management systems used a hierarchical model-that is-they arranged records into a tree structure. Some records are root records and all others have unique parent records. The structure of the tree is designed to reflect the order in which the data will be used that is ,the record at the root of a tree will be accessed first, then records one level below the root ,and so on.The hierarchical model was developed because hierarchical relationships are commonly found in business applications. As you have known, an organization char often describes a hierarchical relationship: top management is at the highest level, middle management at lower levels, and operational employees at the lowest levels. Note that within a strict hierarchy, each level of management may have many employees or levels of employees beneath it, but each employee has only one manager. Hierarchical data are characterized by this one-to-many relationship among data.In the hierarchical approach, each relationship must be explicitly defined when the database is created. Each record in a hierarchical database can contain only one key field and only one relationship is allowed between any two fields. This can create a problem because data do not always conform to such a strict hierarchy.Relational ModelA major breakthrough in database research occurred in 1970 when E. F. Codd proposed a fundamentally different approach to database management called relational model ,which uses a table asits data structure.The relational database is the most widely used database structure. Data is organized into related tables. Each table is made up of rows called and columns called fields. Each record contains fields of data about some specific item. For example, in a table containing information on employees, a record would contain fields of data such as a person’s last name ,first name ,and street address.Structured query language(SQL)is a query language for manipulating data in a relational database .It is nonprocedural or declarative, in which the user need only specify an English-like description that specifies the operation and the described record or combination of records. A query optimizer translates the description into a procedure to perform the database manipulation.Network ModelThe network model creates relationships among data through a linked-list structure in which subordinate records can be linked to more than one parent record. This approach combines records with links, which are called pointers. The pointers are addresses that indicate the location of a record. With the network approach, a subordinate record can be linked to a key record and at the same time itself be a key record linked to other sets of subordinate records. The network mode historically has had a performance advantage over other database models. Today , such performance characteristics are only important in high-volume ,high-speed transaction processing such as automatic teller machine networks or airline reservation system.Both hierarchical and network databases are application specific. If a new application is developed ,maintaining the consistency of databases in different applications can be very difficult. For example, suppose a new pension application is developed .The data are the same, but a new database must be created.Object ModelThe newest approach to database management uses an object model , in which records are represented by entities called objects that can both store data and provide methods or procedures to perform specific tasks.The query language used for the object model is the same object-oriented programming language used to develop the database application .This can create problems because there is no simple , uniform query language such as SQL . The object model is relatively new, and only a few examples of object-oriented database exist. It has attracted attention because developers who choose an object-oriented programming language want a database based on an object-oriented model. Distributed DatabaseSimilarly , a distributed database is one in which different parts of the database reside on physically separated computers . One goal of distributed databases is the access of informationwithout regard to where the data might be stored. Keeping in mind that once the users and their data are separated , the communication and networking concepts come into play .Distributed databases require software that resides partially in the larger computer. This software bridges the gap between personal and large computers and resolves the problems of incompatible data formats. Ideally, it would make the mainframe databases appear to be large libraries of information, with most of the processing accomplished on the personal computer.A drawback to some distributed systems is that they are often based on what is called a mainframe-entire model , in which the larger host computer is seen as the master and the terminal or personal computer is seen as a slave. There are some advantages to this approach . With databases under centralized control , many of the problems of data integrity that we mentioned earlier are solved . But today’s personal computers, departmental computers, and distributed processing require computers and their applications to communicate with each other on a more equal or peer-to-peer basis. In a database, the client/server model provides the framework for distributing databases.One way to take advantage of many connected computers running database applications is to distribute the application into cooperating parts that are independent of one anther. A client is an end user or computer program that requests resources across a network. A server is a computer running software that fulfills those requests across a network . When the resources are data in a database ,the client/server model provides the framework for distributing database.A file serve is software that provides access to files across a network. A dedicated file server is a single computer dedicated to being a file server. This is useful ,for example ,if the files are large and require fast access .In such cases, a minicomputer or mainframe would be used as a file server. A distributed file server spreads the files around on individual computers instead of placing them on one dedicated computer.Advantages of the latter server include the ability to store and retrieve files on other computers and the elimination of duplicate files on each computer. A major disadvantage , however, is that individual read/write requests are being moved across the network and problems can arise when updating files. Suppose a user requests a record from a file and changes it while another user requests the same record and changes it too. The solution to this problems called record locking, which means that the first request makes others requests wait until the first request is satisfied . Other users may be able to read the record, but they will not be able to change it .A database server is software that services requests to a database across a network. For example, suppose a user types in a query for data on his or her personal computer . If the application is designed with the client/server model in mind ,the query language part on the personal computer simple sends the query across the network to the database server and requests to be notified when the data are found.Examples of distributed database systems can be found in the engineering world. Sun’s Network Filing System(NFS),for example, is used in computer-aided engineering applications to distribute data among the hard disks in a network of Sun workstation.Distributing databases is an evolutionary step because it is logical that data should exist at the location where they are being used . Departmental computers within a large corporation ,for example, should have data reside locally , yet those data should be accessible by authorized corporate management when they want to consolidate departmental data . DBMS software will protect the security and integrity of the database , and the distributed database will appear to its users as no different from the non-distributed database .In this information age, the data server has become the heart of a company. This one piece of software controls the rhythm of most organizations and is used to pump information lifeblood through the arteries of the network. Because of the critical nature of this application, the data server is also the one of the most popular targets for hackers. If a hacker owns this application, he can cause the company's "heart" to suffer a fatal arrest.Ironically, although most users are now aware of hackers, they still do not realize how susceptible their database servers are to hack attacks. Thus, this article presents a description of the primary methods of attacking database servers (also known as SQL servers) and shows you how to protect yourself from these attacks.You should note this information is not new. Many technical white papers go into great detail about how to perform SQL attacks, and numerous vulnerabilities have been posted to security lists that describe exactly how certain database applications can be exploited. This article was written for the curious non-SQL experts who do not care to know the details, and as a review to those who do use SQL regularly.What Is a SQL Server?A database application is a program that provides clients with access to data. There are many variations of this type of application, ranging from the expensive enterprise-level Microsoft SQL Server to the free and open source mySQL. Regardless of the flavor, most database server applications have several things in common.First, database applications use the same general programming language known as SQL, or Structured Query Language. This language, also known as a fourth-level language due to its simplistic syntax, is at the core of how a client communicates its requests to the server. Using SQL in its simplest form, a programmer can select, add, update, and delete information in a database. However, SQL can also be used to create and design entire databases, perform various functions on the returned information, and even execute other programs.To illustrate how SQL can be used, the following is an example of a simple standard SQL query and a more powerful SQL query:Simple: "Select * from dbFurniture.tblChair"This returns all information in the table tblChair from the database dbFurniture.Complex: "EXEC master..xp_cmdshell 'dir c:\'"This short SQL command returns to the client the list of files and folders under the c:\ directory of the SQL server. Note that this example uses an extended stored procedure that is exclusive to MS SQL Server.The second function that database server applications share is that they all require some form of authenticated connection between client and host. Although the SQL language is fairly easy to use, at least in its basic form, any client that wants to perform queries must first provide some form of credentials that will authorize the client; the client also must define the format of the request and response.This connection is defined by several attributes, depending on the relative location of the client and what operating systems are in use. We could spend a whole article discussing various technologies such as DSN connections, DSN-less connections, RDO, ADO, and more, but these subjects are outside the scope of this article. If you want to learn more about them, a little Google'ing will provide you with more than enough information. However, the following is a list of the more common items included in a connection request.Database sourceRequest typeDatabaseUser IDPasswordBefore any connection can be made, the client must define what type of database server it is connecting to. This is handled by a software component that provides the client with the instructions needed to create the request in the correct format. In addition to the type of database, the request type can be used to further define how the client's request will be handled by the server. Next comes the database name and finally the authentication information.All the connection information is important, but by far the weakest link is the authentication information—or lack thereof. In a properly managed server, each database has its own users with specifically designated permissions that control what type of activity they can perform. For example, a user account would be set up as read only for applications that need to only access information. Another account should be used for inserts or updates, and maybe even a third account would be used for deletes.This type of account control ensures that any compromised account is limited in functionality. Unfortunately, many database programs are set up with null or easy passwords, which leads to successful hack attacks.译文数据库管理系统介绍数据库(database,有时拼作data base)又称为电子数据库,是专门组织起来的一组数据或信息,其目的是为了便于计算机快速查询及检索。

数据库中英文对照表(精)

数据库中英文对照表(精)

DBA词典:数据库设计常用词汇中英文对照表1. Access method(访问方法):此步骤包括从文件中存储和检索记录。

2. Alias(别名):某属性的另一个名字。

在SQL中,可以用别名替换表名。

3. Alternate keys(备用键,ER/关系模型):在实体/表中没有被选为主健的候选键。

4. Anomalies(异常)参见更新异常(update anomalies)5. Application design(应用程序设计):数据库应用程序生命周期的一个阶段,包括设计用户界面以及使用和处理数据库的应用程序。

6. Attribute(属性)(关系模型):属性是关系中命名的列。

7. Attribute(属性)(ER模型):实体或关系中的一个性质。

8. Attribute inheritance(属性继承):子类成员可以拥有其特有的属性,并且继承那些与超类有关的属性的过程。

9. Base table(基本表):一个命名的表,其记录物理的存储在数据库中。

10. Binary relationship(二元关系):一个ER术语,用于描述两个实体间的关系。

例如,panch Has Staff。

11. Bottom-up approach(自底向上方法):用于数据库设计,一种设计方法学,他从标识每个设计组建开始,然后将这些组件聚合成一个大的单元。

在数据库设计中,可以从表示属性开始底层设计,然后将这些属性组合在一起构成代表实体和关系的表。

12. Business rules(业务规则):由用户或数据库的管理者指定的附加规则。

13. Candidate key(候选键,ER关系模型):仅包含唯一标识实体所必须得最小数量的属性/列的超键。

14. Cardinality(基数):描述每个参与实体的可能的关系数目。

15. Centralized approach(集中化方法,用于数据库设计):将每个用户试图的需求合并成新数据库应用程序的一个需求集合16. Chasm trap(深坑陷阱):假设实体间存在一根,但某些实体间不存在通路。

英文版EXCEL中英文对照

英文版EXCEL中英文对照

激活(activate)数组(array)数组公式(array formula)相关联的数据透视表(associated PivotTable report) 自动套用格式(autoformat)坐标轴(axis)基础地址(base address)“合并计算”表(consolidation table)比较条件(comparison criteria)比较运算符(comparison operator)常量(constant)单元格引用(cell reference)当前区域(current region)分类轴(category axis)分类字段(category field)复制区域(copy area)计算列(calculated column)计算项(calculated item)计算字段(数据库)(calculated field)计算字段(数据透视表)(calculated field)列标题(column heading)列标题(column heading)列字段(column field)条件(criteria)条件窗格(criteria pane)条件格式(conditional format)图表工作表(chart sheet)图表区(chart area)修订记录(change history)约束条件(constraints)证书验证机构(certifying authority)自定义计算(custom calculation)垂直线(drop lines)从属单元格(dependents)明细数据(detail data)默认工作表模板(default worksheet template)默认工作簿模板(default workbook template)默认启动工作簿(default startup workbook)目标区域(destination area)数据标签(data label)数据标志(data marker)数据表(data table)数据表单(data form)数据窗格(data pane)数据点(data points)数据库(database)数据区域(data region)数据系列(data series)数据系列(data series)数据有效性(data validation)数据源(data source)数据源驱动程序(data source driver)图表数据表(data table in charts)下拉列表框(drop-down list box)值区域(values area)值字段(value field)表达式(expression)嵌入图表(embedded chart)外部数据(external data)外部数据(external data)外部数据区域(external data range)外部引用(external reference)误差线(error bars)编辑栏(formula bar)公式(formula)公式选项板(Formula Palette)函数(Microsoft Query)(function)函数(Office Excel)(function)筛选(filter)填充柄(fill handle)字段(数据库)(field)字段(数据透视表)(field)单变量求解(goal seek)图表中的网格线(gridlines in charts)组(group)冲突日志工作表(History worksheet)高低点连线(high-low lines)插入行(Insert row)迭代(iteration)绝对交集(implicit intersection)内部连接(inner join)输入单元格(input cell)索引(index)项(item)连接(join)连接线(join line)连接线(join line)锁定的字段或记录(locked field or record)图例(legend)图例项标示(legend keys)合并单元格(merged cell)活动选定框(moving border)矩阵(matrix)移动平均(moving average)映射范围(mapped range)操作数(operand)分级显示(outline)分级显示符号(outline symbols)分级显示数据(outline data)脱机多维数据集文件(offline cube file)外部连接(outer join)外部连接(outer join)运算符(operator)磅(point)保护(protect)报表筛选(report filter)参数(parameter)参数查询(parameter query)打印标题(print titles)打印区域(print area)分页符(page break)分页预览(page break preview)绘图区(plot area)密码(password)数据透视表(PivotTable report)数据透视表(PivotTable report)数据透视表分类汇总(PivotTable subtotal)数据透视表列表(PivotTable list)数据透视表数据(PivotTable data)数据透视表总计(PivotTable grand totals)数据透视图报表(PivotChart report)数据透视图分类字段(PivotChart category field)数据透视图系列字段(PivotChart series field)透视区域(pivot area)引用单元格(precedents)粘贴区域(paste area)主键(primary key)属性字段(property fields)查询(query)详细出处参考:/office/excel/16273.htmlEXCEL函数大全数据库和清单管理函数DA VERAGE 返回选定数据库项的平均值DCOUNT 计算数据库中包含数字的单元格的个数DCOUNTA 计算数据库中非空单元格的个数DGET 从数据库中提取满足指定条件的单个记录DMAX 返回选定数据库项中的最大值DMIN 返回选定数据库项中的最小值DPRODUCT 乘以特定字段(此字段中的记录为数据库中满足指定条件的记录)中的值DSTDEV 根据数据库中选定项的示例估算标准偏差DSTDEVP 根据数据库中选定项的样本总体计算标准偏差DSUM 对数据库中满足条件的记录的字段列中的数字求和DV AR 根据数据库中选定项的示例估算方差DV ARP 根据数据库中选定项的样本总体计算方差GETPIVOTDA TA 返回存储在数据透视表中的数据日期和时间函数DATE 返回特定时间的系列数DATEDIF 计算两个日期之间的年、月、日数DATEV ALUE 将文本格式的日期转换为系列数DAY 将系列数转换为月份中的日DAYS360 按每年360天计算两个日期之间的天数EDATE 返回在开始日期之前或之后指定月数的某个日期的系列数EOMONTH 返回指定月份数之前或之后某月的最后一天的系列数HOUR 将系列数转换为小时MINUTE 将系列数转换为分钟MONTH 将系列数转换为月NETWORKDAYS 返回两个日期之间的完整工作日数NOW 返回当前日期和时间的系列数SECOND 将系列数转换为秒TIME 返回特定时间的系列数TIMEV ALUE 将文本格式的时间转换为系列数TODAY 返回当天日期的系列数WEEKDAY 将系列数转换为星期WORKDAY 返回指定工作日数之前或之后某日期的系列数YEAR 将系列数转换为年YEARFRAC 返回代表START_DATE(开始日期)和END_DATE(结束日期)之间天数的以年为单位的分数DDE 和外部函数CALL 调用动态链接库(DLL)或代码源中的过程REGISTER.ID 返回已注册的指定DLL或代码源的注册IDSQL.REQUEST 连接外部数据源,并从工作表中运行查询,然后将结果作为数组返回,而无需进行宏编程。

计算机网络中英文互译

计算机网络中英文互译

计算机网络中英翻译ACK (ACKnowledgement) 确认帧ADSL (Asymmetric Digital Subscriber Line) 非对称数字用户线AN (Access Network )接入网ANSI (American National Standards Institute) 美国国家标准协会AP (Access Point) 接入点API (Application Programming Interface) 应用编程接口APNIC (Asia Pacific Network Information Center) 亚太网络信息中心ARP ( Address Resolution Protocol )地址解析协议ARPA (Advanced Research Project Agency)美国国防部远景研究规划局(高级研究计划署)ARQ (Automatic Repeat reQuest) 自动请求重发ATM (Asynchronous Transfer Mode) 异步传递方式ATU (Access Termination Unit) 接入端接单元ATU-C (Access Termination Unit Central Office )端局接入端接单元ATU-R (Access Termination Unit Remote) 远端接入端接单元AUI (Attachment Unit Interface )连接接口单元AWT ( Abstract Window Toolkit )抽象窗口工具箱BECN (Backward Explicit Congestion Notification) 反向显式拥塞通知BER (Basic Encoding Rule) 基本编码规则BGP (Border Gateway Protocol) 边界网关协议BSA (Basic Service Area) 基本服务区BSS (Basic Service Set) 基本服务集BNA 宝来网络体系结构CAC (Connection Admission Control) 连接准许控制CAP (Carrierless Amplitude Phase) 无载波振幅相位调制CATV (Community Antenna TV, CAble TV) 有线电视CBR ( Constant Bit Rate )恒定比特率CCIR (Consultative Committee,International Radio) 国际无线电咨询委员会CCITT (Consultative Committee, International Telegraph and Telephone)国际电报电话咨询委员会CCP 通信控制处理机CDM (Code Division Multiplexing) 码分复用CDMA (Code Division Multiplex Access) 码分多址CNNIC (Network Information Center of China) 中国互联网络信息中心CRC (Cyclic Redundancy Check) 循环冗余检验CSMA/CD (Carrier Sense Multiple Access / Collision Detection)载波监听多点接入/碰撞检测CSU/DSU ( Channel Service Unit/Data Service Unit) 信道服务单元/数据服务单元CTD (Cell Transfer Delay) 信元传送时延DACS (Digital Access and Cross-connect System) 数字交接系统DCA 数据通信体系结构DCE (Data Circuit-terminating Equipment) 数据电路端接设备DE (Discard Eligibility) 丢弃指示DES (Data Encryption Standard) 数据加密标准DHCP (Dynamic Host Configuration Protocol) 动态主机配置协议DLCI (Data Link Connection Identifier) 数据链路连接标识符DMT (Discrete Multi-Tone) 离散多音(调制)DNS (Domain Name System) 域名系统DNA 数据网络系统结构DSL (Digital Subscriber Line) 数字用户线DSLAM (DSL Access Multiplexer) 数字用户线接入复用器DSSS (Direct Sequence Spread Spectrum) 直接序列扩频DTE (Data Terminal Equipment) 数据终端设备DVMRP (Distance Vector Multicast Routing Protocol) 距离向量多播路由选择协议DWDM (Dense WDM) 密集波分复用EGP (External Gateway Protocol) 外部网关协议EIA (Electronic Industries Association )美国电子工业协会ESP (Encapsulating Security Payload) 封装安全有效载荷ESS 伍 xtended Service Set) 扩展的服务集FCS (Frame Check Sequence) 帧检验序列FDDI (Fiber Distributed Data Interface )光纤分布式数据接口FDM (Frequency Division Multiplexing) 频分复用FEC (Forwarding Equivalence Class) 转发等价类FEC (Forward Error Correction) 前向纠错FHSS (Frequency Hopping Spread Spectrum) 跳频扩频FIFO ( First In First Out) 先进先出FQ (Fair Queuing) 公平排队FR (Frame Relay) 帧中继FSK (Frequency Shift Keying) 移频键控FTP (File Transfer Protocol )文件传送协议FTTB (Fiber To The Building) 光纤到大楼FTTC (Fiber To The Curb )光纤到路边FTTH (Fiber To The Home) 光纤到家FTTD (Fiber To The Desk) 光纤到桌面FTTZ(Fiber To The Zone )光纤到小区FTTO (Fiber To The Office) 光纤到办公室FTTF (Fiber To The Floor) 光纤到楼层GIF (Graphics Interchange Format) 图形交换格式GII (Global Information Infrastructure) 全球信息基础结构,全球信息基础设施GFC ( Generic Flow Control) 通用流量控制GSM (Group Special Mobile) 群组专用移动通信体制HDLC (High-level Data Link Control) 面向比特的链路控制规程HDSL (High speed DSL) 高速数字用户线HEC (Header Error Control) 首部差错控制HFC (Hybrid Fiber Coax) 光纤同轴混合(网)HTML (HyperText Markup Language) 超文本置标语言HTTP (HyperText Transfer Protocol) 超文本传送协议IAB (Internet Architecture Board) 因特网体系结构委员会IAC ( Interpret As Command )作为命令解释IAHC (Internet International Ad Hoc Committee )因特网国际特别委员会ICMP ( Internet Control Message Protocol )因特网控制报文协议IDEA (International Data Encryption Algorithm) 国际数据加密算法IEEE电气和电子工程师协会IESG (Internet Engineering Steering Group) 因特网工程指导小组IETF (Internet Engineering Task Force) 因特网工程部IFS (Inter Frame Space) 帧间间隔IGMP (Internet Group Management Protocol) 因特网组管理协议IGP (Interior Gateway Protocol) 内部网关协议IM (Instant Messaging) 即时传信IMAP (Internet Message Access Protocol) 因特网报文存取协议IMP ( Interface Message Processor) 接口报文处理机IP (Internet Protocol )网际协议IR (InfraRed )红外技术IRTF ( Internet Research Task Force )因特网研究部ISDN (Integrated Services Digital Network) 综合业务数字网ISO ( International Organization for Standardization )国际标准化组织ISOC (Internet Society) 因特网协会ISP ( Internet Service Provider) 因特网服务提供者ITU ( International Telecommunication Union )国际电信联盟ITU-T ( ITU Telecommunication Standardization Sector) 国际电信联盟电信标准化部门JPEG (Joint Photographic Expert Group) 联合图像专家组标准KDC (Key Distribution Center) 密钥分配中心LAN (Local Area Network )局域网LANE (LAN Emulation )局域网仿真LAPB (Link Access Procedure Balanced) 链路接入规程(平衡型)LCP (Link Control Protocol) 链路控制协议LDP (Label Distribution Protocol) 标记分配协议LLC (Logical Link Control) 逻辑链路控制LSP (Label Switched Path) 标记交换路径LSR (Label Switching Router) 标记交换路由器MAC (Medium Access Control) 媒体接入控制MAN (Metropolitan Area Network) 城域网MAU (Medium Attachment Unit) 媒体连接单元MBONE (Multicast Backbone On the InterNEt )多播主干网MBS (Maximum Burst Size )最大突发长度MCR (Minimum Cell Rate )最小信元速率 MCU (Multipoint Control Unit)多点控制单元MD (Message Digest) 报文摘要MDI (Medium Dependent Interface )媒体相关接口MIB (Management Information Base) 管理信息库MIME (Multipurpose Internet Mail Extensions) 通用因特网邮件扩充modem 调制解调器MOTIF (Message Oriented Text Interchange System) 面向报文的电文交换系统MPEG (Motion Picture Experts Group) 活动图像专家组标准MPOA (MultiProtocol Over ATM) 多协议在 ATM 上运行MPLS (MultiProtocol Label Switching) 多协议标记交换MRU (Maximum Receive Unit) 最大接收单元MSS (Maximum Segment Size) 最长报文段MTU (Maximum Transfer Unit) 最大传送单元NAK (Negative AcKnowlegement) 否认帧NAP ( Network Access Point) 网络接入点N.ISDN (Narrowband-ISDN) 窄带综合业务数字网NAT (Network Address Translation )网络地址转换NAV (Network Al location Vector) 网络分配向量NCP (Network Control Protocol) 网络控制协议NFS (Network File System) 网络文件系统NGI 下一代因特网计划NIA 网络适配器NIC (Network Interface Card) 网络接口卡、网卡NII (National Information Infrastructure) 国家信息基础结构,国家信息基础设施NLRI (Network Layer Reachability Information) 网络层可达性信息NNI (Network-Node Interface) 网络结点接口NSF (National Science Foundation) (美国)国家科学基金会NVT (Network Virtual Terminal )网络虚拟终端ODBC (Open Database Connection)开放数据库互连OSF (Open Software Fundation )开放软件基金会OSI (Open System Interconnection )开放系统互联PBX (Private Branch eXchange )用户交换机PCM (Pulse Code Modulation ) 脉冲编码调制PCN (Personal Communications Network ) 个人通信网络PCR (Peak Cell Rate )峰值信元速率PCS 个人通信服务 Personal Communications ServicePDH 准同步数字系列PDA 个人数字助理 Personal Digital AssistantPDN 公用数据网 Public Data NetworkPDU 协议数据单元 Protocol Data UnitPER 分组差错率 packet error ratePIR 分组插入率 packet insertion ratePLCP 物理层会聚协议 Physical Layer Convergence ProtocolPLR 分组丢失率 packet loss ratePMD 物理媒体相关(子层) Physical Medium DependentPPP 点到点协议 Point to Point ProtocolPPTP 点对点隧道协议PRM 协议参考模型 Protocol Reference ModelPRN 分组无线网 Packet Radio NetworkPSN 分组交换节点 Packet Switch NodePSTN 公用电话交换网 Public Switched Telephone NetworkRARP 逆向地址解析协议 Reverse Address Resolution ProtocolRAS 远程访问服务器RFC 请求评注 Request for CommentsRMON 远程网络管理Router 路由器RPC 远程过程调用 Remote Procedure CallRSVP 资源重复利用协议RTP 接收和发送端口RTS 往返样本 Round Trip SampleRTS 剩余时间标签SAP 业务接入点 Service Access PointSAP 服务公告协议 Service Advertising ProtocolSAR 分段和重组(子层) Segmentation and ReassemblySDH 同步数字系列 Synchronous Digital HierarchySDLC 同步数据链路控制(协议) Advanced Data Communication Control Procedure SDTV 标准数字电视SDU 业务数据单元 Service Data UnitSIPP 增强的简单因特网协议 Simple Internet Protocol PlusSLIP 串行线路IP Serial Line Interface ProtocolSMDS 交换式多兆比特数据业务 Switched Multimegabit Data ServicesSMF 单模光纤 Single-mode FiberSMT 站点管理 Station ManagementSMTP 简单邮件传输协议 Simple Mail Transfer ProtocolSNA 系统网络体系结构 System Network ArchitectureSNMP 简单网络管理协议 Simple Network Management ProtocolSNR 信噪比 Signal-Noise ratioSONET 同步光纤网络 Synchronous Optical NetworkSTM 同步传输方式 Synchronous Transfer ModeSTP 屏蔽双绞线 Shielded Twisted PairSTS 同步传输信号 Synchronous Transport SignalSVC 交换虚电路 Switched Virtual CircuitSwitch 交换机TCP 传输控制协议 Transmission Control ProtocolTDM 时分多路复用 Time Division MultiplexingTFTP 单纯文件传输协议 Trivial File Transfer protocolTelnet 远程登录协议TIP 终端接口处理机 Terminal Interface ProcessorTP 双绞线 Twisted PairTSAP 传输层服务访问点 Transport Service Access PointUDP 用户数据报协议 User Datagram ProtocolUSB 通用串行总线 Universal Serial BusUTP 非屏蔽双绞线 Unshielded Twisted PairVAN 增值网 Value Added NetworkVBR 可变比特率 Variable Bit RateVCC 虚信道连接 Virtual Channel ConnectionVLAN 虚拟局域网 Virtual LANVLSI 超大规模集成电路VOD 点播图像 Video on DemandVPC 虚路径连接 Virtual Path ConnectionVPI 虚路径标识 virtual path identifierVPN 虚拟专用网络 Virtual Private NetworkVRML 虚拟现实造型语言 Virtual Reality Modeling Language VTP 虚拟隧道协议WAN 广域网 Wide Area NetworkWDM 波分多路复用 Wavelength Division MultiplexingWWW 万维网 World Wide Web。

中英文翻译数据库基础精品

中英文翻译数据库基础精品

Database FundamentalsIntroduction to DBMSA database management system (DBMS) is an important type of programming system, used today on the biggest and the smallest computers. As for other major forms of system software, such as compilers and operating systems, a well-understood set of principles for database management systems has developed over the years, and these concepts are useful both for understanding how to use these systems effectively and for designing and implementing DBMS's. DBMS is a collection of programs that enables you to store, modify, and extract information from a database. There are many different types of DBMS's, ranging from small systems that run on personal computers to huge systems that run on mainframes.There are two qualities that distinguish database management systems from other sorts of programming systems.1) The ability to manage persistent data, and2) The ability to access large amounts of data efficiently.Point 1) merely states that there is a database which exists permanently; the content of this database is the data that a DBMS accesses and manages. Point 2) distinguishes a DBMS from a file system, which also manages persistent data.A DBMS's capabilities are needed most when the amount of data is very large, because for small amounts of data, simple access techniques, such as linear scans of the data, are usually adequate.While we regard the above two properties of a DBMS as fundamental, there are a number of other capabilities that are almost universally found in commercial DBMS's. These are:(1) Support for at least one data model, or mathematical abstraction through which the user can view the data.(2) Support for certain high-level languages that allow the user to define the structure of data, access data, and manipulate data.(3) Transaction management, the capability to provide correct, concurrent access to the database by many users at once.(4) Access control, the ability to limit access to data by unauthorized users, and the ability to check the validity of data.(5) Resiliency, the ability to recover from system failures without losing data.Data Models Each DBMS provides at least one abstract model of data that allows the user to see information not as raw bits, but in more understandable terms.In fact, it is usually possible to see data at several levels of abstraction. At a relatively low level, a DBMS commonly allows us to visualize data as composed of files.Efficient File Access The ability to store a file is not remarkable: the file system associated with any operating system does that. The capability of a DBMS is seen when we access the data of a file. For example, suppose we wish to find the manager of employee "Clark Kent". If the company has thousands of employees, It is very expensive to search the entire file to find the one with NAME="Clark Kent". A DBMS helps us to set up "index files," or "indices," that allow us to access the record for "Clark Kent" in essentially one stroke no matter how large the file is. Likewise, insertion of new records or deletion of old ones can be accomplished in time that is small and essentially constant, independent of the file length. Another thing a DBMS helps us do is navigate among files, that is, to combine values in two or more files to obtain the information we want.Query Languages To make access to files easier, a DBMS provides a query language, or data manipulation language, to express operations on files. Query languages differ in the level of detail they require of the user, with systems based on the relational data model generally requiring less detail than languages based on other models.Transaction Management Another important capability of a DBMS is the ability to manage simultaneously large numbers of transactions, which are procedures operating on the database. Some databases are so large that they can only be useful if they are operated upon simultaneously by many computers: often these computers are dispersed around the country or the world. The database systems use by banks, accessed almost instantaneously by hundreds or thousands of automated teller machines (ATM), as well as by an equal or greater number of employees in the bank branches, is typical of this sort of database. An airline reservation system is another good example.Sometimes, two accesses do not interfere with each other. For example, any number of transactions can be reading your bank balance at the same time, without any inconsistency. But if you are in the bank depositing your salary check at the exact instant your spouse is extracting money from an automatic teller, the result of the two transactions occurring simultaneously and without coordination is unpredictable. Thus, transactions that modify a data item must “lock out” other transactions trying to read or write that item at the same time. A DBMS must therefore provide some form ofconcurrency control to prevent uncoordinated access to the same data item by more than one transaction.Even more complex problems occur when the database is distributed over many different computer systems, perhaps with duplication of data to allow both faster local access and to protect against the destruction of data if one computer crashes.Security of Data A DBMS must not only protect against loss of data when crashes occur, as we just mentioned, but it must prevent unauthorized access. For example, only users with a certain clearance should have access to the salary field of an employee file, and the DBMS must be able associate with the various users their privileges to see files, fields within files, or other subsets of the data in the database. Thus a DBMS must maintain a table telling for each user known to it, what access privileges the user has for each object. For example, one user may be allowed to read a file, but not to insert or delete data; another may not be allowed to see the file at all, while a third may be allowed to read or modify the file at will.DBMS TypesDesigners developed three different types of database structures: hierarchical, network, and relational. Hierarchical and network were first developed but relational has become dominant. While the relational design is dominant, the older databases have not been dropped. Companies that installed a hierarchical system such as IMS in the 1970s will be using and maintaining these databases for years to come even though new development is being done on relational systems. These older systems are often referred to as legacy systems.数据库基础DBMS 简介数据库管理系统是编程系统中的重要的一种,现今可以用在最大的以及最小的电脑上。

spss软件的中英文翻译

spss软件的中英文翻译

spss软件的中英文翻译Absolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原文:Planning the DatabaseIt is important to plan how the logical storage structure of the database will affect system performance and various database management operations. For example, before creating any tablespaces for your database, you should know how many data files will make up the tablespace,what type of information will be stored in each tablespace, and on which disk drives the datafiles will be physically stored. When planning the overall logical storage of the database structure, take into account the effects that this structure will have when the database is actually created and running.You may have database objects that have special storage requirements dueto type or size.In distributed database environments, this planning stage is extremely important. The physical location of frequently accessed data dramatically affects application performance.During the planning stage, develop a backup strategy for the database. You can alter the logical storage structure or design of the database to improve backup efficiency. Backup strategies are introduced in a later lesson.These are the types of questions and considerations, which you will encounter as a DBA, and this course (in its entirety) is designed to help you answer them.Databases: ExamplesDifferent types of databases have their own specific instance and storage requirements. YourOracle database software includes templates for the creation of these different types of databases.Characteristics of these examples are the following:• Data Warehouse: Store data for long periods and retrieve them in read operations.• Transaction Processing: Accommodate many, but usually small, transactions.• General Purpose: Work with transactions and store them for a medium length of time.Database Configuration Assistant (DBCA)You can use the Database Configuration Assistant (DBCA) to create, change the configuration of, or delete a database. You can also create a database from a list of predefined templates or use an existing database as a sample to create a new database or template. This is sometimes referred to as “database cloning.”You can invoke the DBCA by performing the following steps:1. Log on to your computer as a member of the administrative group that is authorized to install the Oracle software.2. If required, set environment variables.3. Enter dbca to invoke the DBCA.4. Click Next to continue.DBCA offers you a choice of assisting with several operations, for example, creating a database.Using the DBCA to Create a DatabaseYou can use the DBCA to create a database as follows:1. Select Create a Database on the DBCA Operations page to invoke a wizard that enables you to configure and create a database.The wizard prompts you to provide configuration information as outlined in the steps that follow. On most pages, the wizard provides a default setting that you can accept.2. Select the type of database template to be used in creating the database. There aretemplates for Data Warehouse, General Purpose, and Transaction Processing databases that copy a preconfigured database, including data files. These data files include control files,redo log files, and data files for various included tablespaces.Click Show Details to see the configuration for each type of database.For more complex environments, you may want to select the Custom Database option. Password ManagementAfter the DBCA finishes, note the following information for future reference:• Location of installation log files (see A)• Global database name (see B)• System identifier (SID) (see B)• Server parameter file name and location (see B)• Enterpr ise Manager URL (see C)Click Password Management to unlock database accounts that you plan to use.Provide apassword when you unlock an account.Creating a Database Design TemplateA template is a predefined database definition that you use as a starting point for a new database.If you do not create a template as part of the database creation process, you can do it anytime by invoking the DBCA. You have three ways to create a template: • From an existing template• From an existing database (structure only)• From an existing database (structure as well as data)The DBCA guides you through the steps to create a database design template.Using the DBCA to Delete a DatabaseTo delete (or configure) a database in UNIX or Linux, you must set ORACLE_SID in the shell from which DBCA is launched. Start the DBCA by entering dbca in a terminal window, and click Next on the Welcome page. To delete the database, perform the following steps:1. On the Operations page, select Delete a Database, and click Next.2. Select the database that you want to delete (in class, hist), and click Finish.3. Click Yes to confirm your deletion.Using the DBCA to Delete a Database (continued)Dropping a database involves removing its data files, redo log files, control files, and initialization parameter files. The DROP DATABASE statement deletes all control files and all other database files listed in the control file. To use the DROP DATABASE statement successfully,all the following conditions must apply:The database must be mounted and closed.The database must be mounted exclusively—not in shared mode.The database must be mounted as RESTRICTED.An example of this statement is:DROP DATABASE;The DROP DATABASE statement has no effect on archived log files nor does it have any effect on copies or backups of the database. It is best to use Recovery Manager (RMAN) to delete such files. If the database is on raw disks, then the actual raw disk special files are not deleted.Management FrameworkThere are three major components of the Oracle database management framework: • The database instance that is being managed• A listener that allows connections to the database• The management interface. This may be either a management agent running onthe database server (which connects it to Oracle Enterprise Manager Grid Control) or the stand-alone Oracle Enterprise Manager Database Control. This is also referred to as Database Console.Each of these components must be explicitly started before you can use the services of the component and must be shut down cleanly when shutting down the server hosting the Oracle database.The first component to be started is the management interface. After this is activated, the management interface can be used to start the other components. Starting and Stopping Database ControlOracle provides a stand-alone management console called Database Control for databases that are not connected to the Grid Control framework. Each database that is managed with Database Control has a separate Database Control installation, and from any one Database Control, you can manage only one database. Before using Database Control, ensure that a dbconsole process is started.To start the dbconsole process, use the following command:emctl start dbconsole To stop the dbconsole process, use the following command:emctl stop dbconsole To view the status of the dbconsole process, use the following command:emctl status dbconsole.Note: You may need to navigate to your $ORACLE_HOME/bin directory if this directory is not in your operating system (OS) path.Database Control uses a server-side agent process. This agent process automatically starts and stops when the dbconsole process is started or stopped.译文:规划数据库规划如何对数据库的逻辑存储结构将影响系统的性能和各种数据库管理操作是非常重要的。

相关文档
最新文档