窗函数设计低通滤波器 电信课设

合集下载

用窗函数设计FIR数字低通滤波器

用窗函数设计FIR数字低通滤波器

用MATLAB设计FIR数字滤波器一、实验原理:1、用窗函数法设计FIR数字滤波器2、各种窗函数特性的比较3、用窗函数法设计FIR数字低通滤波器4、用窗函数法设计FIR数字高通滤波器二、实验内容选择合适的窗函数设计FIR数字低通滤波器,要求:ωp=0.2π,R p=0.05dB;ωs=0.3π,A s=40dB。

描绘该滤波器的脉冲响应、窗函数及滤波器的幅频响应曲线和相频响应曲线。

wp=0.2*pi;ws=0.3*pi;deltaw=ws-wp;N0=ceil(6.2*pi/deltaw);N=N0+mod(N0+1,2);windows=(hanning(N))';wc=(ws+wp)/2;hd=ideal_lp(wc,N);b=hd.*windows;[db,mag,pha,grd,w]=freqz_m(b,1);n=0:N-1;dw=2*pi/1000;Rp=-(min(db(1:wp/dw+1)));As=-round(max(db(ws/dw+1:501)));subplot(2,2,1);stem(n,b);axis([0,N,1.1*min(b),1.1*max(b)]);title(' 实际脉冲响应');xlabel('n');ylabel('h(n)');subplot(2,2,2);stem(n,windows);axis([0,N,0,1.1]);title('窗函数特性');xlabel('n');ylabel('wd(n)'); subplot(2,2,3);plot(w/pi,db);axis([0,1,-80,10]);title('幅度频率响应'); xlabel('频率');ylabel('H(e^{j\omega})');set(gca,'XTickMode','manual','XTick',[0,wp/pi,ws/pi,1]);set(gca,'YTickMode','manual','YTick',[-50,-20,-3,0]);gridsubplot(2,2,4);plot(w/pi,pha);axis([0,1,-4,4]);title('相位频率响应'); xlabel('频率');ylabel('\phi(\omega)');set(gca,'XTickMode','manual','XTick',[0,wp/pi,ws/pi,1]);set(gca,'YTickMode','manual','YTick',[-3.1416,0,3.1416,4]);grid2、用凯塞窗设计一个FIR数字高通滤波器,要求:ωp=0.3π,R p=0.1dB;ωs=0.2π,A s=50dB。

课程设计-低通滤波器设计

课程设计-低通滤波器设计

课程设计-低通滤波器设计(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2010/2011学年第 2 学期学院:信息与通信工程学院专业:电子信息科学与技术学生姓名:学号:课程设计题目:低通滤波器设计起迄日期: 6 月 13 日~6月 24日课程设计地点:指导教师:系主任:下达任务书日期: 2011 年 6 月12 日课程设计任务书课程设计任务书目录1 设计目的及要 (5)1.1设计目的 (5)1.2设计内容和要求 (5)2 设计原理 (5)2.1 FIR滤波器 (5)2.2窗函数 (6)2.3矩形窗 (7)3 设计过程 (8)3.1 设计流程图 (8)3.2 产生原始信号并分析频谱 (8)3.3 使用矩形窗设计不同特性的数字滤波器 (10)3.4 信号滤波处理 (11)4 实验结果及分析 (12)5 课程设计心得体会 (12)6 参考文献 (13)附录: (14)低通滤波器的设计1 设计目的及要求1.1设计目的设计一种低通滤波器并对信号进行滤波。

低通滤波器的作用是滤去信号中的中频和高频成分,增强低频成分。

要求做到:1.了解MATLAB的信号处理技术;2.使用MATLAB设计低通滤波器,掌握其滤波处理技术;3.对滤波前和滤波后的波形进行时域和频域比较。

1.2设计内容和要求1.熟悉有关采样,频谱分析的理论知识,对信号作频谱分析;2.熟悉有关滤波器设计理论知识,选择合适的滤波器技术指标,设计低通滤波器对信号进行滤波,对比分析滤波前后信号的频谱;3.实现信号频谱分析和滤波等有关MATLAB函数;2设计原理本次课程设计,我们主要是基于矩形窗的FIR滤波器来设计一个低通滤波器。

2.1 FIR滤波器FIR滤波器即有限抽样响应因果系统,其单位抽样响应h(n)是有限长的;极点皆位于z=0处;结构上不存在输出到输入的反馈,是非递归型的。

其系统函数表示为:普通的FIR滤波器系统的差分方程为:式中:N为FIR滤波器的抽头数;x(n)为第n时刻的输入样本;h(i)为FIR滤波器第i级抽头系数。

基于汉明窗函数的FIR低通滤波器的设计

基于汉明窗函数的FIR低通滤波器的设计

基于汉明窗函数的FIR低通滤波器的设计简介FIR低通滤波器是一种常用的数字信号处理滤波器,它可以用来滤除高频成分,保留低频成分。

汉明窗函数是一种常用的窗函数,用于设计FIR滤波器时可以有效降低频域泄漏现象。

本文将介绍基于汉明窗函数的FIR低通滤波器的设计方法和实现过程。

FIR滤波器的基本原理FIR滤波器是一种非递归滤波器,其输出仅由输入和滤波器的系数决定。

其基本原理是将输入信号与滤波器的冲激响应进行卷积运算,从而得到输出信号。

FIR滤波器的离散时间域表达式如下:y[n] = \\sum_{k=0}^{M} h[k] \\cdot x[n-k]其中,y[n]为滤波器的输出,x[n]为输入信号,h[k]为滤波器的系数,M为滤波器的阶数。

汉明窗函数汉明窗函数是一种常用的窗函数,用于在频域上抑制泄漏现象。

汉明窗函数的表达式如下:w[n] = 0.54 - 0.46 \\cdot \\cos \\left(\\frac {2\\pi n}{N-1}\\right)其中,w[n]为汉明窗函数的值,n为窗函数的点数,N为窗函数的长度。

在FIR滤波器设计中,可以使用汉明窗函数对滤波器的冲激响应进行加权,以实现频域上的泄漏抑制。

基于汉明窗函数的FIR低通滤波器设计方法基于汉明窗函数的FIR低通滤波器的设计方法如下:1.确定滤波器的阶数M,一般情况下,阶数的选择要取决于所需的滤波器的响应特性。

2.计算窗函数的长度N,一般情况下,窗函数的长度应为M+1。

3.根据窗函数的表达式计算窗函数的值,并将其作为滤波器的系数h[k],其中k=0,1,...,M。

4.对滤波器的系数进行归一化处理,以保证滤波器的幅度响应符合要求。

5.完成滤波器的设计。

汉明窗函数的特性汉明窗函数具有以下特性:1.对称性:汉明窗函数在窗口的两侧具有对称性,这使得滤波器的响应具有良好的频域特性。

2.正频响特性:汉明窗函数具有较低的副瓣水平,能够实现较好的频谱特性。

基于汉明窗函数的FIR低通滤波器设计及优化

基于汉明窗函数的FIR低通滤波器设计及优化

基于汉明窗函数的FIR低通滤波器设计及优化FIR低通滤波器是一种常用的信号处理器件,可用于信号去噪、频率分析和降低信号的带宽等应用。

其中,基于汉明窗函数的FIR低通滤波器设计及优化是一种常见的设计方法。

在本文中,将详细介绍汉明窗函数的原理及其在FIR低通滤波器设计中的应用,并探讨如何通过优化设计参数来改进滤波器性能。

首先,我们来了解汉明窗函数的原理。

汉明窗函数是一种在频域上满足零相位特性的窗函数,常用于FIR滤波器设计中。

其数学表示为:w(n) = a - b * cos(2πn/(N-1)), 0 ≤ n ≤ N-1其中,n为窗函数的序号,N为窗函数的长度,a和b为调节系数。

通过调节a 和b的取值,可以改变窗函数的主瓣宽度和旁瓣衰减。

在FIR低通滤波器设计中,我们常使用汉明窗函数作为滤波器的频率响应。

接下来,我们将介绍基于汉明窗函数的FIR低通滤波器的设计步骤。

设计一个FIR低通滤波器,首先需要确定滤波器的阶数和截止频率。

阶数决定了滤波器的复杂度,截止频率决定了滤波器的频率响应。

一般情况下,阶数越高,滤波器的性能越好,但计算复杂度也会增加。

1. 确定滤波器的阶数,一般通过指定过渡带宽和旁瓣衰减来确定。

2. 根据指定的过渡带宽和旁瓣衰减,计算出窗函数的调节系数a和b。

3. 根据窗函数的长度N和频率响应的要求,计算出窗函数的序号n。

4. 计算出窗函数的数值,并进行归一化处理。

5. 将窗函数与理想低通滤波器的频率响应进行卷积,得到FIR低通滤波器的冲激响应。

6. 对FIR低通滤波器的冲激响应进行变换,得到滤波器的差分方程。

7. 实现滤波器的差分方程。

以上是基于汉明窗函数的FIR低通滤波器的设计步骤。

接下来,我们将探讨如何通过优化设计参数来改进滤波器性能。

在实际应用中,我们经常需要在滤波器的频率响应和计算复杂度之间进行权衡。

通过调整窗函数的长度、调节系数a和b,以及滤波器的阶数,我们可以改变滤波器的性能。

基于汉明窗函数的FIR低通滤波器设计及性能分析

基于汉明窗函数的FIR低通滤波器设计及性能分析

基于汉明窗函数的FIR低通滤波器设计及性能分析FIR低通滤波器是一种常用的数字滤波器,用于处理数字信号中频率较低的成分,将高频成分滤除。

在设计FIR低通滤波器时,常使用汉明窗函数来实现。

本文将介绍基于汉明窗函数的FIR低通滤波器的设计方法和性能分析。

首先,要设计一个FIR低通滤波器,需要确定以下几个参数:滤波器阶数N、采样频率fs、截止频率fc和窗函数类型。

本文将以汉明窗函数为例,演示如何设计FIR低通滤波器。

1. 滤波器阶数N的确定:滤波器阶数N决定了滤波器的复杂度和性能。

一般来说,阶数越高,滤波器的性能越好,但计算复杂度也相应增加。

因此,需要在滤波器性能和计算复杂度之间做出平衡。

常用的方法是根据滤波器的截止频率和采样频率来确定阶数N。

一般可以使用公式N=4fs/fc来初步估计阶数N,然后根据实际需求进行调整。

2. 窗函数的选择:本文选择汉明窗函数作为设计FIR低通滤波器的窗函数。

汉明窗函数在频域上具有较好的副瓣抑制性能,适合用于低通滤波器设计。

3. 窗函数的定义:汉明窗函数的表达式为:w(n) = 0.54 - 0.46*c os(2πn/(N-1)), 0 ≤ n ≤ N-1其中,N为窗函数的长度,n为窗函数的离散时间索引。

4. FIR低通滤波器的设计:设计FIR低通滤波器的步骤如下:1)确定滤波器阶数N;2)选择截止频率fc;3)计算滤波器系数h(n);4)对滤波器系数h(n)进行归一化处理。

5. 滤波器系数的计算:滤波器系数h(n)的计算公式为:h(n) = wc/pi * sinc(wc*(n-(N-1)/2)/pi)其中,wc为归一化的截止频率,wc=2πfc/fs。

sinc(x)为正弦函数sin(x)/x。

6. 归一化处理:对滤波器系数h(n)进行归一化处理,即将系数乘以汉明窗函数的值。

即:hn(n) = h(n) * w(n),0 ≤ n ≤ N-17. 性能分析:设计完毕后,需要进行性能分析来评估滤波器的性能。

窗函数设计FIR低通滤波器

窗函数设计FIR低通滤波器

课程设计报告数字信号课程设计,屌丝们有福了课程名称:数字信号处理与通信原理课程设计设计名称: FIR数字滤波器分析与应用姓名:学号:班级:指导教师:起止日期: 6.26 – 7.6课程设计任务书学生班级:通信学生姓名:学号:设计名称:窗函数设计FIR低通滤波器起止日期: 6.26~7.6 指导教师:课程设计学生日志课程设计考勤表课程设计评语表窗函数设计FIR 低通滤波器一、设计目的和意义:1、目的(1) 掌握用窗函数法设计FIR 数字滤波器的原理和方法。

(2) 熟悉线性相位FIR 数字滤波器特性。

(3) 了解各个窗函数对滤波器特性的影响。

2、意义:有限长单位冲激响应数字滤波器可以做成具有严格的线性相位,同时又可以具有任意的幅度特性。

滤波器的性能只由窗函数的形状决定。

二、设计原理:假如题目所要求设计的滤波器的频率响应为H d (e ωj ),则要设计一个FIR 滤波器频应为H(eωj )=∑=-1-N 0n j )(nen h ω()1来逼近。

但是设计却是在时域进行的,所以用傅氏反变换导出h d (n):h d (n) =ωπππωωd e e Hn j j d⎰-)(21()2但是要求设计的FIR 滤波器,它的h(n)是有限长的,但是h d (n)却是无限长的,所以要用一个有限长度的窗函数)(n ω来截取h d (n),即h(n)= )(n ωh d (n)()3h(n)就是实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数即为()1式,其中N 就是所选择的窗函数)(n ω的长度。

本课程设计的要求是利用矩形窗,海宁窗,汉明窗各设计一个FIR 低通滤波器。

因此首先对这三个窗函数进行简要说明。

1.矩形窗:)(n ω=R (n )()42.汉宁窗:ω(n)=[sin 2(1-N n π)]R N (n) ()5 3.海明窗:ω(n)=[0.54-(1-0.54)cos(12-N nπ)]R N (n) ()6 用窗函数设计的滤波器的性能由窗函数)(n ω的性能和窗口长度N 的取值决定。

用窗函数法设计FIR数字低通滤波器资料

用窗函数法设计FIR数字低通滤波器资料

河北科技大学课程设计报告学生姓名:学号:专业班级:课程名称:学年学期指导教师:20 年月课程设计成绩评定表目录1. 窗函数设计低通滤波器1.1设计目的 (1)1.2设计原理推导与计算 (1)1.3设计内容与要求 (2)1.4设计源程序与运行结果 (3)1.5思考题 (10)1.6心得体会 (14)参考文献 (15)1.窗函数设计低通滤波器1.1设计目的1. 熟悉设计线性相位数字滤波器的一般步骤。

2. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。

3. 熟悉各种窗函数的作用以及各种窗函数对滤波器特性的影响。

4. 学会根据指标要求选择合适的窗函数。

1.2设计原理推导与计算如果所希望的滤波器的理想的频率响应函数为()ωj d e H ,则其对应的单位脉冲响应为()()ωπωωππd e e H n h j j d d ⎰-=21(4.1) 窗函数设计法的基本原理是设计设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数()ωj e H ,即()⎪⎩⎪⎨⎧≤<≤=-πωωωωωαωc c j jd ,,ee H 0,其中21-=N α()()()[]()a n a n d e e d e eH n h c j j j j d d cc--===⎰⎰---πωωπωπωαωωωαωππωsin 2121用有限长单位脉冲响应序列()n h 逼近()n h d 。

由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2)()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数()ωj e H 为()()nj N n j en h eH ωω∑-==1(4.3)式中,N 为所选窗函数()n ω的长度。

用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取值。

基于汉明窗函数的FIR低通滤波器设计方法及性能分析

基于汉明窗函数的FIR低通滤波器设计方法及性能分析

基于汉明窗函数的FIR低通滤波器设计方法及性能分析FIR(有限脉冲响应)滤波器是一种常用的数字滤波器,其特点是稳定性好、易于实现和灵活性高。

汉明窗函数是一种常用于FIR滤波器设计的窗函数之一,本文将介绍基于汉明窗函数的FIR低通滤波器的设计方法,并对其性能进行分析。

1. 汉明窗函数汉明窗函数是一种常用的平滑窗函数,其公式为:w(n) = 0.54 - 0.46 * cos(2πn/(M-1))其中,n为窗函数序列的索引,M为窗函数序列的长度。

汉明窗函数的特点是在频域上具有良好的副瓣抑制能力。

2. FIR滤波器设计步骤(1)确定滤波器的通带截止频率和阻带截止频率。

根据具体应用需求,确定滤波器的频率特性。

(2)计算滤波器的阶数。

阶数决定了滤波器的抗混淆能力,一般越高越好,但也会增加计算复杂性。

(3)选择合适的窗函数。

根据滤波器的要求,选择适合的窗函数,本文以汉明窗函数为例。

(4)计算滤波器的截止频率。

利用窗函数的主瓣宽度和滤波器的通带截止频率,可以计算出滤波器的截止频率。

(5)计算窗函数序列。

根据窗函数的公式,计算窗函数序列。

(6)计算滤波器的频率响应。

利用窗函数序列和滤波器的阶数,可以计算出滤波器的频率响应。

(7)滤波器的性能分析。

通过分析滤波器的频率响应曲线、幅频响应和相频响应等,评价滤波器的性能。

3. 性能分析(1)频率响应:通过绘制滤波器的频率响应曲线,可以观察滤波器在通带和阻带中的幅值响应。

频率响应曲线应表现出低通滤波器的特性,即在通带中幅度应接近1,而在阻带中应接近0。

(2)幅频响应:幅频响应是指滤波器输出与输入信号的振幅之比,通过分析幅频响应曲线可以了解滤波器的增益特性。

低通滤波器应该在截止频率处降低输入信号的振幅。

(3)相频响应:相频响应是指滤波器输出与输入信号的相位差,它影响滤波器对信号的时域特性。

理想的低通滤波器应该对信号的相位没有明显改变。

4. 结论基于汉明窗函数的FIR低通滤波器是一种常用的数字滤波器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XXXX大学课程设计报告学生:xxx 学号:xxx专业班级:电子信息工程课程名称:数字信号处理课程设计学年学期20XX——20XX 学年第X学期指导教师:xxx2014年6月课程设计成绩评定表目录1. 窗函数设计低通滤波器1.1设计目的 (1)1.2设计原理推导与计算 (1)1.3设计容与要求 (2)1.4设计源程序与运行结果 (3)1.5思考题 (10)2. 用哈明窗设计FIR带通数字滤波器2.1设计要求 (14)2.2设计原理和分析 (14)2.3详细设计 (15)2.4调试分析及运行结果 (15)2.5心得体会 (17)参考文献 (17)1.窗函数设计低通滤波器1.1设计目的1. 熟悉设计线性相位数字滤波器的一般步骤。

2. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。

3. 熟悉各种窗函数的作用以及各种窗函数对滤波器特性的影响。

4. 学会根据指标要求选择合适的窗函数。

1.2设计原理推导与计算如果所希望的滤波器的理想的频率响应函数为()ωj d e H ,则其对应的单位脉冲响应为()()ωπωωππd e e H n h j j d d ⎰-=21(4.1) 窗函数设计法的基本原理是设计设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数()ωj e H ,即()⎪⎩⎪⎨⎧≤<≤=-πωωωωωαωc c j jd ,,ee H 0,其中21-=N α()()()[]()a n a n d e e d e eH n h c j j j j d d cc--===⎰⎰---πωωπωπωαωωωαωππωsin 2121用有限长单位脉冲响应序列()n h 逼近()n h d 。

由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2)()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数()ωj e H 为()()nj N n j en h eH ωω∑-==1(4.3)式中,N 为所选窗函数()n ω的长度。

用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取值。

设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。

各种类型的窗函数可达到的阻带最小衰减和过渡带宽度见表(一)。

表(一) 各种窗函数的基本参数这样选定窗函数类型和长度N 之后,求出单位脉冲响应()()()n n h n h d ω•=,并按照式(4.3)求出()ωj e H 。

()ωj e H 是否满足要求,如果()ωj e H 不满足要求,则要重新选择窗函数类型和长度N ,再次验算,直至满足要求。

1.3设计容与要求(一)设计要求:1. 学会计算滤波器各项性能指标及如何来满足给定的指标要求。

2. 用MATLAB 语言编程实现给定指标要求的滤波器的设计。

3. 熟悉MATLAB 语言,独立编写程序。

4. 设计低通FIR 滤波器的指标:通带最大波动0.25,p R dB =,0.2p ωπ=阻带最小衰减 50,s A dB =,0.3s ωπ=(二)、设计容:1.熟悉各种窗函数,在MATLAB 命令窗下浏览各种窗函数,绘出(或打印)所看到的窗函数图。

2.编写计算理想低通滤波器单位抽样响应hd(n)的m 函数文件ideal.m 。

3. 编写计算N 阶差分方程所描述系统频响函数()j H e ω的m 函数文件fr.m 。

4.根据指标要求选择窗函数的形状与长度N 。

(至少选择两种符合要求的窗函数及其对应的长度)。

5.编写.m 程序文件,通过调用ideal.m 和fr .m 文件,计算你设计的实际低通FIR 滤波器的单位抽样响应h(n)和频率响应()j H e ω,打印在频率区间[O ,π]上的幅频响应特性曲线()~j H e ωω,幅度用分贝表示。

6.验证所设计的滤波器是否满足指标要求。

1.4设计的源程序及运行结果:1、利用MATLAB 窗口观察各种窗函数: %巴特利特窗 w=bartlett(20); subplot(3,2,1); plot(w);stem(w,'y');%'y'表示黄色 %stem 表示以离散图输出 title('巴特利特床窗'); xlabel('n');%横坐标为n ylabel('w(n)');%纵坐标为w(n)%布莱克曼窗 w=blackman(20);subplot(3,2,2); plot(w);stem(w,'b');%'b'表示蓝色 title('布莱克曼窗'); xlabel('n'); ylabel('w(n)'); %矩形窗 w=boxcar(20); subplot(3,2,3); plot(w); stem(w,'r'); title('矩形窗');xlabel('n');ylabel('w(n)');%海明窗w=hamming(20);plot(w);stem(w,'m');%'m'表示紫色title('海明窗');xlabel('n');ylabel('w(n)');%汉宁窗w=hanning(20);subplot(3,2,5);plot(w);stem(w,'g');%'g'表示绿色title('汉宁窗');xlabel('n');ylabel('w(n)');%凯泽窗beta=5.6533;w=kaiser(20,beta);subplot(3,2,6);plot(w);stem(w,'k');%'k'表示黑色title('凯泽窗,beta=5.6533');xlabel('n');ylabel('w(n)');常用窗函数的图形2、理想低通滤波器单位抽样响应hd(n)的m函数文件ideal.m。

function hd=ideal(wc,M)%理想低通滤波器计算%hd为0到M-1之间的理想脉冲响应%wc为截止频率%M为理想滤波器的长度alpha=(M-1)/2;n=0:M-1;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);3、N阶差分方程所描述的系统频响函数的m函数文件fr.m。

function[db,mag,pha,gfd,w]=fr(b,a)%求解系统响应%db为相位振幅(db)%mag为绝对振幅%pha为相位响应%grd为群延时%w为频率样本点矢量%b为Ha(z)分析多项式系数(对FIR而言,b=h)%a为Hz(z)分母多项式系数(对FIR而言,a=1)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);gfd=grpdelay(b,a,w);4、实际低通滤波器FIR:%用海明窗设计低通滤波器wp=0.2*pi;ws=0.3*pi;tr_width=ws-wp;disp(['海明窗设计低通滤波器参数:']);M=ceil(6.6*pi/tr_width)+1;disp(['滤波器的长度为',num2str(M)]);n=0:M-1;wc=(ws+wp)/2; %理想LPF的截止频率hd=ideal(wc,M);w_ham=(hamming(M))';h=hd.*w_ham;[db,mag,pha,gfd,w]=fr(h,[1]);delta_w=2*pi/1000;Rp=-(min(db(1:1:wp/delta_w+1))); %求出实际通带波动disp(['实际带通波动为',num2str(Rp)]);As=-round(max(db(ws/delta_w+1:1:501))); %求出最小阻带衰减disp(['最小阻带衰减为-',num2str(As)],’db’);%绘图subplot(1,1,1)subplot(2,6,1)stem(n,hd);title('理想冲击响应');axis([0 M-1 -0.1 0.3]);ylabel('hd(n)');subplot(2,6,2)stem(n,w_ham);title('海明窗');axis([0 M-1 0 1.1]);ylabel('w(n)');subplot(2,6,7)stem(n,h);title('实际冲激响应');axis([0 M-1 -0.1 0.3]);xlabel('n');ylabel('h(n)');subplot(2,6,8)plot(w/pi,db);title('幅度响应(db)');axis([0 1 -100 10]);grid;xlabel('以pi为单位的频率');ylabel('分贝数');图(1)海明窗设计的FIR 海明窗设计低通滤波器参数:滤波器的长度为67实际带通波动为0.03936最小阻带衰减为-52db%用布莱克曼窗设计低通滤波器wp=0.2*pi;ws=0.3*pi;tr_width=ws-wp;disp(['布莱克曼窗设计低通滤波器的参数:']);M=ceil(11.0*pi/tr_width)+1;disp(['滤波器的长度为',num2str(M)]);n=0:M-1;%理想LPF的截止频率wc=(ws+wp)/2;hd=ideal(wc,M);w_bla=(blackman(M))';h=hd.*w_bla;[db,mag,pha,gfd,w]=fr(h,[1]);delta_w=2*pi/1000;Rp=-(min(db(1:1:wp/delta_w+1))); %求出实际通带波动disp(['实际带通波动为',num2str(Rp)]);As=-round(max(db(ws/delta_w+1:1:501))); %求出最小阻带衰减disp(['最小阻带衰减-',num2str(As)],’db’);%绘图subplot(2,6,3)stem(n,hd);title('理想冲击响应');axis([0 M-1 -0.1 0.3]);ylabel('hd(n)');subplot(2,6,4)stem(n,w_bla);title('布莱克曼窗');axis([0 M-1 0 1.1]);ylabel('w(n)');subplot(2,6,9)stem(n,h);title('实际冲激响应');axis([0 M-1 -0.1 0.3]);xlabel('n');ylabel('h(n)');subplot(2,6,10)plot(w/pi,db);title('幅度响应(db)');axis([0 1 -100 10]);grid;xlabel('以pi为单位的频率');ylabel('分贝数');图(2)布莱克曼窗设计的FIR 布莱克曼窗设计低通滤波器的参数:滤波器的长度为111 实际带通波动为0.0033304 最小阻带衰减为-73db 5、技术指标比较:(1)海明窗设计低通滤波器参数: 滤波器的长度为67 实际带通波动为0.03936 最小阻带衰减为-52db(2)布莱克曼窗设计低通滤波器的参数: 滤波器的长度为111 实际带通波动为0.0033304 最小阻带衰减为-73db在相同的技术指标下用布莱克曼窗设计的低通滤波器实际带通波动实际带通波动最小,最小阻带衰减,滤波器的长度最大;海明窗和凯泽窗最小阻带衰减差不多,滤波器的长度页差不多,但是海明窗实际波动小于凯泽窗;所以用布莱克曼窗用设计的FIR 最逼近理想单位冲击响应。

相关文档
最新文档