实验四 用窗函数法设计FIR数字滤波器

合集下载

实验四FIR数字滤波器的设计

实验四FIR数字滤波器的设计

实验四FIR数字滤波器的设计
FIR(有限冲击响应)数字滤波器是一种常见的数字信号处理器件,
可以用于滤波、降噪等应用。

下面是一种FIR数字滤波器的设计流程:
1.确定滤波器的需求:首先确定需要滤除的频率范围和滤波的类型,
例如低通、高通、带通、带阻等等。

2.设计滤波器的频率响应:根据滤波器的需求,设计其理想的频率响应。

可以使用窗函数、最小二乘法等方法获得一个理想的滤波器响应。

3.确定滤波器的阶数:根据设计的频率响应,确定滤波器的阶数。


数越高,滤波器的响应越陡峭,但计算复杂度也会增加。

4.确定滤波器的系数:根据滤波器的阶数和频率响应,计算滤波器的
系数。

可以使用频域窗函数或时域设计方法。

5.实现滤波器:根据计算得到的滤波器系数,实现滤波器的计算算法。

可以使用直接形式、级联形式、传输函数形式等。

6.评估滤波器的性能:使用所设计的FIR滤波器对输入信号进行滤波,评估其滤波效果。

可以使用频率响应曲线、幅频响应、群延时等指标进行
评估。

7.调整滤波器设计:根据实际的滤波效果,如果不满足需求,可以调
整滤波器的频率响应和阶数,重新计算滤波器系数,重新实现滤波器。

以上是FIR数字滤波器的基本设计流程,设计过程中需要考虑滤波器
的性能、计算复杂度、实际应用需求等因素。

用窗函数实现FIR滤波器

用窗函数实现FIR滤波器

用窗函数法设计FIR 数字滤波器一、 实验目的(1) 掌握用窗函数法设计FIR 数字滤波器的原理和方法。

(2) 熟悉线性相位FIR 数字滤波器特性。

(3) 了解各种窗函数对滤波特性的影响。

二、 实验内容及步骤(1) 复习用窗函数法设计FIR 数字滤波器一节内容, 阅读本实验原理, 掌握设计步骤。

(2) 编写程序。

① 编写能产生矩型窗、 升余弦窗、 改进升余弦窗和二阶升余弦窗的窗函数子程序。

② 编写主程序。

其中幅度特性要求用dB 表示。

实验结果:b=1;close all;i=0;while (b);temp=menu('选择窗函数的长度,()01211()()22sin ()()c c j a c j d c j j n j a j n d d c e H e N a h n H e e e e d n a n a ωωπωωωωωπωωωωωπωππωπ-----⎧≤⎪=⎨<<⎪⎩-===--⎰⎰N','N=10','N=15','N=20','N=25','N=30','N=33','N=35','N=40','N=45','N=50','N=55','N=60','N=64'); menu1=[10,15,20,25,30,33,35,40,45,50,55,60,64];N=menu1(temp);temp=menu('选择逼近理想低通滤波器截至频率Wc','Wc=pi/4','Wc=pi/2','Wc=3*pi/4','Wc=pi','Wc=0.5','Wc=1.0','Wc=1.5','Wc=2.0','Wc=2.5','Wc =3.0'); menu2=[pi/4,pi/2,3*pi/4,pi,0.5,1,1.5,2,2.5,3];w=menu2(temp);n=[0:(N-1)];hd=ideal(w,N);k=menu('请选择型:','boxcar','hamming','hanning','blackman');if k==1B=boxcar(N);string=['Boxcar','N-',num2str(N)];else if k==2B=hamming(N);string=['Hamming','N=',num2str(N)];else if k==3B=hanning(N);string=['hanning','N=',num2str(N)];else if k==4B=blackman(N);string=['blackman','N=',num2str(N)];endendendendh=hd.*(B)';[H,m]=freqz(h,[1],1024,'whole');mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);i=i+1;figure(i)subplot(2,2,1);n=0:N-1;stem(n,h,'.');axis([0,N-1,-0.1,0.3]);hold on;n=0:N-1;x=zeros(N);plot(n,x,'-');xlabel('n');ylabel('n');title('实际低通滤波器的h(n)');text((0.3*N),0.27,string);hold off;subplot(2,2,2);plot(m/pi,db);axis([0,1,-100,0]);xlabel('w/pi');ylabel('dB');title('衰减特性(dB)');grid;subplot(2,2,3);plot(m,pha);hold on;n=0:7;x=zeros(8);plot(n,x,'-');title('相频特性');xlabel('频率(rad)');ylabel('相位(rad)');axis([0,3.15,-4,4]);subplot(2,2,4);plot(m,mag);title('频率特性');xlabel('频率W(rad)');ylabel('幅值');axis([0,3.15,0,1.5]);text(0.9,1.2,string);b=menu('Do You want To Continue ?','Yes','No'); if b==2b=0endendtemp=menu('Close All Figure ?','yes','No');if temp==1close allendWindow=blackman(16);b=fir1(15,0.3*pi ,'low',Window); freqz(b,128)三、思考题(1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器? 写出设计步骤。

实验四-用窗函数法设计FIR滤波器-实验报告

实验四-用窗函数法设计FIR滤波器-实验报告

实验四 用窗函数法设计FIR 滤波器(一)实验目的1. 掌握窗函数法设计FIR 滤波器的原理和方法,观察用几种常用窗函数设计的FIR 数字滤波器技术指标;2. 掌握FIR 滤波器的线性相位特性;3. 了解各种窗函数对滤波特性的影响。

(二)实验原理如果所希望的滤波器的理想频率响应函数为Hd(e jω),则其对应的单位脉冲响应为ωπωππωd e e H n h n j j d ⎰-=)(21)(,用窗函数wN(n)将hd(n)截断,并进行加权处理,得到实际滤波器的单位脉冲响应h(n)=hd(n)wN(n),其频率响应函数为n j N n j e n h e H ωω--=∑=10)()(。

如果要求线性相位特性,则h(n)还必须满足)1()(n N h n h --±=。

可根据具体情况选择h(n)的长度及对称性。

(三)实验内容1、生成四种窗函数:矩形窗、三角窗、汉宁窗、海明窗,并观察其频率响应。

实验代码以及运行结果%矩形窗及其频响n=15;window1=rectwin(n);[h1,w1]=freqz(window1,1);subplot(2,1,1);stem(window1);title('矩形窗');subplot(2,1,2);plot(w1/pi,20*log(abs(h1))/abs(h1(1)));title('矩形窗频响');%三角窗及其频响n=15;window2=triang(n);[h2,w2]=freqz(window2,1);subplot(2,1,1);stem(window2);title('三角窗');subplot(2,1,2);plot(w2/pi,20*log(abs(h2))/abs(h2(1)));title('三角窗频响');%汉宁窗及其频响n=15;window3=hann(n);window3=hann(n);[h3,w3]=freqz(window3,1);subplot(2,1,1);stem(window3);title('汉宁窗');subplot(2,1,2); plot(w3/pi,20*log(abs(h3))/abs(h3(1)));title('汉宁窗频响');%海明窗频响n=15;window4=hamming(n);[h4,w4]=freqz(window4,1); subplot(2,1,1);stem(window4);title('海明窗');subplot(2,1,2); plot(w4/pi,20*log(abs(h4))/abs(h4(1)));title('海明窗频响'); 运行结果:2、根据下列技术指标,设计一个FIR数字低通滤波器:wp=0.2π,ws=0.4π,ap=0.25dB,as=50dB,选择一个适当的窗函数,确定单位冲激响应,绘出所设计的滤波器的幅度响应。

实验四FIR数字滤波器设计与软件实现

实验四FIR数字滤波器设计与软件实现

实验四FIR数字滤波器设计与软件实现
实验目的:
掌握FIR数字滤波器的设计与软件实现方法,了解滤波器的概念与基
本原理。

实验原理:
FIR数字滤波器全称为有限脉冲响应数字滤波器,其特点是具有有限
长度的脉冲响应。

滤波器通过一系列加权系数乘以输入信号的延迟值,并
将这些值相加得到输出信号。

FIR滤波器的频率响应由滤波器系数所决定。

实验步骤:
1.确定所需的滤波器的设计规格,包括截止频率、通带波纹、阻带衰
减等。

2.选择适当的滤波器设计方法,如窗函数、最佳近似法、最小二乘法等。

3.根据所选方法,计算滤波器的系数。

4.在MATLAB环境下,使用滤波器的系数实现滤波器。

5.输入所需滤波的信号,经过滤波器进行滤波处理。

6.分析输出的滤波信号,观察滤波效果是否符合设计要求。

实验要求:
1.完成FIR数字滤波器的设计和软件实现。

2.对比不同设计方法得到的滤波器性能差异。

3.分析滤波结果,判断滤波器是否满足设计要求。

实验器材与软件:
1.个人电脑;
2.MATLAB软件。

实验结果:
根据滤波器设计规格和所选的设计方法,得到一组滤波器系数。

通过
将滤波器系数应用于输入信号,得到输出滤波信号。

根据输出信号的频率
响应、通带波纹、阻带衰减等指标,评估滤波器的性能。

实验注意事项:
1.在选择设计方法时,需要根据滤波器要求和实际情况进行合理选择。

2.在滤波器实现过程中,需要注意滤波器系数的计算和应用。

3.在实验过程中,注意信号的选择和滤波结果的评估方法。

实验四FIR数字滤波器设计与软件实现

实验四FIR数字滤波器设计与软件实现

实验四FIR数字滤波器设计与软件实现
实验目的:
FIR(Finite Impulse Response)数字滤波器是一种常用的数字滤波器,本实验旨在通过设计和软件实现FIR数字滤波器,加深对数字滤波器的理解和应用。

实验材料和设备:
1.个人电脑
2. 数字信号处理软件(如MATLAB、Python等)
实验步骤:
1.确定滤波器的类型和设计要求,如低通滤波器、高通滤波器、带通滤波器等。

给定滤波器的截止频率、通带衰减和阻带衰减等参数。

2.使用指定的设计方法,如窗函数法、频率采样法等,进行FIR滤波器的设计。

根据设计要求选择合适的窗函数(如矩形窗、汉宁窗、布莱克曼窗等)或频率采样点。

3.进行FIR滤波器的软件实现。

在数字信号处理软件中,根据设计好的滤波器系数(也称为权值),通过卷积操作对输入信号进行滤波。

可以使用已有的滤波器设计函数或自行编写代码实现。

4.对输入信号进行滤波,观察滤波效果。

可以通过绘制输入信号和输出信号的时域图和频域图,分析滤波效果。

根据需要,可以对滤波器进行调整和优化。

5.根据实验结果,对滤波器的性能进行评估。

可以对比不同设计方法和参数选择的滤波器性能,分析其优缺点。

注意事项:
1.在选择滤波器的设计方法时,要根据实际需求和要求来选择。

不同方法有不同的适用范围和设计效果。

2.在进行滤波器实现时,要注意系数计算的精度和卷积操作的效率。

3.在进行滤波效果评估时,要综合考虑时域和频域等多个指标,避免单一指标的片面评价。

窗函数法设计fir滤波器步骤

窗函数法设计fir滤波器步骤

窗函数法设计fir滤波器步骤
设计FIR滤波器的窗函数法步骤如下:
1. 确定滤波器的理想频率响应:根据滤波器的要求和设计目标,确定滤波器的理想频率响应。

例如,低通滤波器的理想频率响应为在截止频率以下通过全部信号,而在截止频率以上完全阻断信号。

2. 确定滤波器的截止频率:根据滤波器的要求,确定滤波器的截止频率,即理想频率响应中的-3dB截止点。

3. 计算滤波器的长度:根据滤波器的设计要求和所选窗函数的性能,计算滤波器的长度。

滤波器的长度通常与截止频率、过渡带宽和窗函数的主瓣宽度相关。

4. 选择合适的窗函数:根据滤波器的设计要求和性能需求,选择合适的窗函数。

常用的窗函数有矩形窗、汉宁窗、汉明窗、布莱克曼窗等。

5. 生成滤波器的理想冲激响应:根据滤波器的理想频率响应和截止频率,生成滤波器的理想冲激响应。

可以使用理想低通滤波器或频域采样方法生成。

6. 应用窗函数:将生成的理想冲激响应与所选的窗函数进行乘积,得到窗函数法设计的FIR滤波器的冲激响应。

7. 可选的调整和优化:根据需要,对生成的滤波器进行进一步的调整和优化,以满足特定的性能需求。

例如,可以通过改变窗函数的参数或使用多个窗函数的组合来调整主瓣宽度、副瓣抑制等。

8. 可选的滤波器实现:将得到的滤波器冲激响应进行频域或时域的变换,得到FIR滤波器的差分方程或频域表达式,然后进行滤波器的实现。

9. 滤波器性能评估:对设计的滤波器进行性能评估,包括频率响应、幅频特性、相位响应、群延迟等。

10. 如有需要,对滤波器的设计进行调整和优化,直至满足设计要求。

用窗函数法设计FIR滤波器

用窗函数法设计FIR滤波器

用窗函数法设计FIR滤波器窗函数法是一种常用的数字滤波器设计方法,特别是FIR(Finite Impulse Response)滤波器设计的一种方法。

FIR滤波器是一种非递归滤波器,可以实现信号的滤波,特定频率的增强或抑制,抗混叠等功能。

FIR滤波器设计过程可以分为两个步骤:确定滤波器的理论参数和设计窗函数。

第一步,确定滤波器的理论参数。

这些参数包括滤波器的采样频率,截止频率,通带和阻带的衰减要求等。

一般情况下,FIR滤波器的理论参数由滤波器的应用需求决定。

第二步,设计窗函数。

窗函数是用来限制FIR滤波器的单位冲激响应的长度的。

它决定了滤波器的频率响应特性和频率选择性。

窗函数可以通过Fourier级数展开来实现。

常用的窗函数有矩形窗、汉宁窗、汉明窗、布莱克曼窗等。

例如,以汉宁窗为例,下面是使用窗函数法设计FIR滤波器的具体步骤:1. 确定滤波器的理论参数。

如采样频率为fs,截止频率为fc,通带衰减要求为d1,阻带衰减要求为d22.将截止频率转化为数字频率。

由于数字信号是离散的,需要将模拟信号的截止频率转化为数字频率。

数字频率的单位为π。

3.根据截止频率和采样频率计算滤波器的长度N。

通常情况下,滤波器的长度N取一个奇数值,以确保能满足线性相位要求。

4.根据窗函数的性质确定窗函数的参数。

汉宁窗的参数为α=0.55.根据窗函数的长度N和参数α计算窗函数的系数。

例如,对于汉宁窗,窗函数的系数可通过下式计算得到:w(n) = 0.5 - 0.5 * cos(2πn/N) ,其中0≤ n ≤ N-16.根据窗函数的系数计算滤波器的单位冲激响应h(n)。

滤波器的单位冲激响应即为窗函数系数的离散时间傅里叶变换(DTFT),用于表示滤波器的频率响应特性。

7.根据滤波器的单位冲激响应h(n)可以计算出滤波器的频率响应H(f)。

频率响应可以通过滤波器的单位冲激响应h(n)的离散时间傅里叶变换(DTFT)计算得到。

8.根据设计要求来检验滤波器的频率响应特性是否满足要求。

用窗函数设计FIR滤波器实验报告

用窗函数设计FIR滤波器实验报告

实验 用窗函数设计FIR 滤波器一、实验目的1、熟悉FIR 滤波器设计的基本方法。

2、熟悉线性相位FIR 滤波器的幅频特性和相位特性。

3、掌握用窗函数设计FIR 数字滤波器的原理及方法,了解各种不同窗函数对滤波器性能的影响。

二、实验原理1、FIR 滤波器的设计 在前面的实验中,我们介绍了IIR 滤波器的设计方法并实践了其中的双线性变换法,IIR 具有许多诱人的特性;但与此同时,也具有一些缺点。

例如:若想利用快速傅立叶变换技术进行快速卷积实现滤波器,则要求单位脉冲响应是有限长的。

此外,IIR 滤波器的优异幅度响应,一般是以相位的非线性为代价的,非线性相位会引起频率色散。

FIR 滤波器具有严格的相位特性,这对于许多信号的处理和数据传输是很重要的。

目前FIR 滤波器的设计方法主要有三种:窗函数法、频率采样法和切比雪夫等波纹逼近的最优化设计方法。

窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求不高的时候是比较灵活方便的。

它是从时域出发,用一个窗函数截取理想的[]d h n 得到[]h n ,以有限长序列[]h n 近似理想的[]d h n ;如果从频域出发,用理想的[]j d h e ω在单位圆上等角度取样得到[]H k ,根据[]H k 得到[]H z 将逼近理想的[]d h z ,这就是频率采样法。

2 、窗函数设计法同其他的数字滤波器的设计方法一样,用窗函数设计滤波器也是首先要对滤波器提出性能指标。

一般是给定一个理想的频率响应[]j d H e ω,使所设计的FIR 滤波器的频率响应[]j H e ω去逼近所要求的理性的滤波器的响应[]j d H e ω。

窗函数法设计的任务在于寻找一个可实现(有限长单位脉冲响应)的传递函数1()[]N j j nn H e h n e ωω--==∑ (4.1)去逼近[]j d H e ω。

我们知道,一个理想的频率响应[]j d H e ω的傅立叶反变换201[]()2j j n d d h n H e e d πωωωπ=⎰(4.2)所得到的理想单位脉冲响应[]d h n 往往是一个无限长序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四 用窗函数法设计FIR 数字滤波器实验项目名称:用窗函数法设计FIR 数字滤波器 实验项目性质:验证性实验 所属课程名称:数字信号处理 实验计划学时:2 一. 实验目的(1)掌握用窗函数法设计FIR 数字滤波器的原理与方法。

(2)熟悉线性相位FIR 数字滤波器的特性。

(3)了解各种窗函数对滤波特性的影响。

二. 实验容和要求(1) 复习用窗函数法设计FIR 数字滤波器一节容,阅读本实验原理,掌握设计步骤。

(2) 用升余弦窗设计一线性相位低通FIR 数字滤波器,截止频率rad c 4πω=。

窗口长度N=15,33。

要求在两种窗口长度情况下,分别求出()n h ,打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和20dB 带宽。

总结窗口长度N 对滤波器特性的影响。

设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数()ωj e H ,即()⎪⎩⎪⎨⎧≤<≤=-πωωωωωαωc c j jd ,,ee H 0其中21-=N α ()()()[]()a n a n d e e d e e H n h c j j j j d d cc--===⎰⎰---πωωπωπωαωωωαωππωsin 2121(3) 33=N ,4πω=c ,用四种窗函数设计线性相位低通滤波器,绘制相应的幅频特性曲线,观察3dB 带宽和20dB 带宽以及阻带最小衰减,比较四种窗函数对滤波器特性的影响。

三. 实验主要仪器设备和材料 计算机,MATLAB6.5或以上版本 四. 实验方法、步骤及结果测试如果所希望的滤波器的理想的频率响应函数为()ωj d e H ,则其对应的单位脉冲响应为()()ωπωωππd e e H n h jjdd ⎰-=21(4.1) 窗函数设计法的基本原理是用有限长单位脉冲响应序列()n h 逼近()n h d 。

由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到:()()()n n h n h d ω=(4.2)()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数()ωj e H 为()()nj N n j en h eH ωω∑-==1(4.3)式中,N 为所选窗函数()n ω的长度。

我们知道,用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取值。

设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。

各种类型的窗函数可达到的阻带最小衰减和过渡带宽度见表4.1。

表4.1 各种窗函数的基本参数()()()n n h n h d ω•=,并按照式(4.3)求出()ωj e H 。

()ωj e H 是否满足要求,要进行演算。

一般在()n h 尾部加零使长度满足2的整数次幂,以便用FFT 计算()ωj e H 。

如果要观察细节,补零点数增多即可。

如果()ωj e H 不满足要求,则要重新选择窗函数类型和长度N ,再次验算,直至满足要求。

如果要求线性相位特性,则()n h 还必须满足()()n N h n h --±=1根据上式中的正、负号和长度N 的奇偶性又将线性相位FIR 滤波器分成四类。

要根据所设计的滤波特性正确选择其中一类,例如,要设计线性相位低通特性,可以选择()()n N h n h --=1这一类,而不能选择()()n N h n h ---=1这一类。

主程序框图如图4.1所示。

其中幅度特性要求用dB 表示。

设)()()()()()()]([)(22k H k H k H k jH k H k H n h DFT k H I R I R +=+==画图时,用)(lg 20k H 打印幅度特性。

第k 点对应的频率k Nk πω2=。

为使曲线包络更接近()ωj e H 的幅度特性曲线,DFT 变换区间要选大些。

例如窗口长度N=33时,可通过在()n h 末尾补零的方法,使长度变为64,再进行64点DFT ,则可以得到更精确的幅度衰减特性曲线。

图4-1 主程序框图下面给出MATLAB主程序:%实验四,用窗函数法设计FIR数字滤波器b=1;close all;i=0;while(b);temp=menu('选择窗函数长度N','N=10','N=15','N=20','N=25','N=30','N=33','N=35','N=40','N=4 5','N=50','N=55','N=60','N=64');menu1=[10,15,20,25,30,33,35,40,45,50,55,60,64];N=menu1(temp);temp=menu('选择逼近理想低通滤波器截止频率Wc','Wc=pi/4','Wc=pi/2','Wc=3*pi/4','Wc=pi','Wc=0.5','Wc=1.0',' Wc=1.5','Wc=2.0','Wc=2.5','Wc=3.0');menu2=[pi/4,pi/2,3*pi/4,pi,0.5,1,1.5,2,2.5,3];w=menu2(temp);n=[0:(N-1)];hd=ideal(w,N); %得到理想低通滤波器k=menu('请选择窗口类型:','boxcar','hamming','hanning','blackman');if k==1B=boxcar(N);string=['Boxcar','N=',num2str(N)];else if k==2B=hamming(N);string=['Hamming','N=',num2str(N)];else if k==3B=hanning(N);string=['Hanning','N=',num2str(N)];else if k==4B=blackman(N);string=['Blackman','N=',num2str(N)]; endendendendh=hd.*(B)'; %得到FIR数字滤波器[H,m]=freqz(h,[1],1024,'whole'); %求其频率响应mag=abs(H); %得到幅值db=20*log10((mag+eps)/max(mag));pha=angle(H); %得到相位i=i+1;figure(i)subplot(2,2,1);n=0:N-1;stem(n,h,'.');axis([0,N-1,-0.1,0.3]);hold on;n=0:N-1;x=zeros(N);plot(n,x,'-');xlabel('n');ylabel('h(n)');title('实际低通滤波器的h(n)');text((0.3*N),0.27,string);hold off;subplot(2,2,2);plot(m/pi,db);axis([0,1,-100,0]);xlabel('w/pi');ylabel('dB');title('衰减特性(dB)');grid;subplot(2,2,3);plot(m,pha);hold on;n=0:7;x=zeros(8);plot(n,x,'-');title('相频特性');xlabel('频率(rad)');ylabel('相位(rad)');axis([0,3.15,-4,4]);subplot(2,2,4);plot(m,mag);title('频率特性');xlabel('频率W(rad)');ylabel('幅值');axis([0,3.15,0,1.5]);text(0.9,1.2,string);b=menu('Do You want To Continue ?','Yes','No'); if b==2b=0;endendtemp=menu('Close All Figure ?','Yes','No');if temp==1close allend程序运行结果:运行程序,根据实验容要求和程序提示选择你要进行的实验参数。

三个实验参数选定后,程序运行输出用所选窗函数设计的实际FIR低通数字滤波器的单位脉冲响应h(n)、幅频衰减特性(20lg|H(e jw)|)、相频特性及幅频特性|H(e jw)|的波形,h(n)和|H(e jw)|图中标出了所选窗函数类型及其长度N值。

对四种窗函数(N=15和N=33)的程序运行结果如图4-2到图4-9所示,由图可以看出用各种窗函数设计的FIR滤波器的阻带最小衰减及过渡带均与教材中一致。

在通带均为严格相位特性。

图4-2 矩形窗(N=15)图4-3 矩形窗(N=33)图4-4 哈明窗(N=15)图4-5 哈明窗(N=33)图4-6 汉宁窗(N=15)图4-7 汉宁窗(N=33)图4-8 布莱克曼窗(N=15)五. 实验报告要求(1) 简述实验原理及目的。

(2) 按照实验步骤以及要求,比较各种情况下的滤波性能,说明窗口长度N 和窗函数类型对滤波特性的影响。

(3) 总结用窗函数法设计FIR 滤波器的主要特点。

(4) 简要回答思考题。

思考题如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器,写出设计步骤。

如果要求用窗函数法设计带通滤波器,而且给定上、下边带截止频率为1ω和2ω,试求理想带通的单位脉冲响应()n h d 。

图4-9 布莱克曼窗(N=33)。

相关文档
最新文档