非负数的性质及应用--华师大版
华师大版-数学-八年级上册-实数中的“非负性”问题

实数中的“非负性”问题
在实数运算中,任何数的绝对值和偶次方都是一个“非负数”,即0,0a 2≥≥a n (n 为整数).我们称其具有非负性.这两条性质常作为求解很多实数问题的隐含条件,我们要熟练掌握. 一、绝对值的非负性 例1、若m 、n 满足04n 6-m 3=++,则-m·n= . 解:∵04n ,06-m 3≥+≥, 又04n 6-m 3=++
∴3m-6=0,n+4=0 ∴m =2,n =-4
∴-mn =-2×(-4)= 8 .
例2、若02-ab 1-a =+,
求:)
2005)(2005(1...)2)(2(1)1)(1(11
+++++++++b a b a b a ab 的值. 解:∵02-ab ,01-a ≥≥, 又02-ab 1-a =+
∴a -1=0,ab -2=0 ∴a =1,b =2
原式=2007
20061...431321211⨯+⨯+⨯+⨯ =2007
1-20061...41-3131-2121-1++++ =20071-
1=20072006 二、偶次幂的非负性
例3、已知0)3(22=-
+-y x ,求:, y 2xy y -. 解:∵0)3(,022≥-≥-y x 又0)3(22=-+-y x
∴x -2=0,,3-y =0 ∴x =2,y =3
==8; y 2xy
y -=13
3232=⨯-
由上面三道例题,我们可以看出:绝对值、偶次幂的非负性通常都是作为隐含条件出现的.解答这类问题的一般步骤是:①先根据绝对值或偶次幂的非负性,求出有关字母的值;
②再将所求得的字母值代入相应的代数式.求解时,还要注意突出分析过程,而不能直接赋值计算.。
非负数的性质及应用--华师大版

若a、b满足3 a 5 b 7,则S 2 a 3 b 的取值范围是_____
[一点就通]将条件和结论的两个等式看作关于 a, b 的方程组, 利用其有界性求出S的范围.
若a、b满足3 a 5 b 7,则S 2 a 3 b 的取值范围是_____
解:3 a 5 b 7
abx
c
ABX
C
已知a b c,求y x a x b x c 的最小值.
x
abx
c
ABX
C
显然,当X 点与B点重合时,
( B点在A、C之间), 该距离和y是最小.
这时,y= x-a x b x c
xa xc
xacx a c 所以, y的最小值等于c a.
原式 a (a b) c (b c)
aabcbc
2c
设实数x、y、z满足x y z 4( x 5 y 4 z 3), 则x _______, y ______, z _______
[一点就通]利用拆项或添项配方的办法将条件转化为几个非负数 之和为零的形式,即a2 b c 0,再由几个非负数之和为零则每 个非负数必须为零来解决.
设实数x、y、z满足x y z 4( x 5 y 4 z 3), 则x _______, y ______, z _______
解 :由原方程, 得 x yz4 x54 y44 z3 x4 x5 y4 y4z4 z30 [( x 5)2 4 x 5 4][( y 4)2 4 y 4 4][( z 3)2 4 z 3 4] 0 ( x 5 2)2 ( y 4 2)2 ( z 3 2)2 0 即 x 5 2 0, y 4 2 0, z 3 2 0, 解得 : x 9, y 8, z 7
非负数的性质及应用--华师大版

化简 : a3 a a2
[一点就通]要解决没有明确条件限制的有关字母化简问题,要 充分挖掘题目中的隐含条件: a2 0,a3 0
化简 : a3 a a2
解 : a3 0 a 0
a2 0 a 0 a 0
原式 a2
a a a
a2
a a a 1
实数abc在数轴上对应的点如图所示,化简 a+ a+b c2 b c .
a
b
0
c
[一点就通]此题化简的关键是我们想办法根据a、b、c在数轴上 的位置,确定各自的性质,去掉绝对值符号和根号.
实数abc在数轴上对应的点如图所示,化简 a+ a+b c2 b c .
a
b
0
c
解: a+b<0,c>0,b-c<0,
abx
c
ABX
C
已知a b c,求y x a x b x c 的最小值.
x
abx
c
ABX
C
显然,当X 点与B点重合时,
( B点在A、C之间), 该距离和y是最小.
这时,y= x-a x b x c
xa xc
xacx a c 所以, y的最小值等于c a.
[一点就通]由绝对值的几何意义可知: x a x b x c 的 最小值的几何意义就是在数轴上,求到a、b、c所对应的三点 距离之和最小的点所表示的数.
已知a b c,求y x a x b x c 的最小值.
解 : 设a、b、c、x在数轴上对应的点分别是A、B、C、X, 则 x-a 、x b 、x c 分别表示线段AX、BX、CX的长, 现在要求 x-a 、x b 、x c 之和的值最小,就是要在数 轴上找一点X ,使X到A、B、C三点的距离之和最小, 如图:
算术平方根(2)[上学期]--华师大版
![算术平方根(2)[上学期]--华师大版](https://img.taocdn.com/s3/m/2f91c2bcb0717fd5360cdc88.png)
2、若一个正数的平方根为a+5和a+1,求a的值和 这个正数。 3、若 ( x 3)2 有算术平方根,求x。
练一练:
1、说出下列各数的平方根
4 (1)144 (2)0 (3) 25
( 4)-4
2、说出下列各数开平方的结果。
(1)49 (2)1.69 (3)529 (4)44.81 3、用计算器求下列各数的算术平方根 (1) 529; (2)1225; (3)44.81
( D)
C. 非负数 例2.求下列各式的值
(1) 625
23 ( 3) 4 2 36
解: (1)原式=25 (2)原式=
49 13 (3)原式= 1 36 36
7 6
例3. 求使 的取值范围.
x 1 x 1 有意义x
要使式子有意义,必须满足: 解:
x 1 0 x 1 0
的正方形桌面,它的边长为多 少? 2 (2)某展览馆要布置一个50平 方米的正方形展厅,问展厅的 边长为多少?
50
(3)小刚同学的房间地板 面积为16平方米,恰好由 64块正方形的地板砖铺 成,求每块地板砖的边长 是多少? 1
2
应 用
探索 & 交流
-a 有意义,那么a的范围是--------若 a 有意义,那么a的范围是--------若 )2=-------------)2=-------------)2=--------------
(4)、正数a的正的平方根为 _____,负的平方根是________.
例4.已知a、b满足等式,
a2 b5 0
求a2-12b的算术平方根. 解: 根据非负数 的性质得:
a 2 0 b 5 0
华师大版数学七年级下学期《期中考试试题》附答案

故选C.
3.若x>y,则下列不等式不一定成立的是()
A.x+1>y+1B. 2x>2y
C. > D.x2>y2
[答案]D
[解析]
A选项:两边都加1,不等号的方向不变,故A不符合题意;
B选项:两边都乘以2,不等号的方向不变,故B不符合题意;
C选项:两边都除以2,不等号的方向不变,故C不符合题意;
[答案]
[解析]
[分析]
原式利用题中的新定义计算即可得到结果.
[详解]根据题意得: ,
①+②得:a=-1,b=2,
则x*y=-x+2y,
∴2*(-3)=-2+2×(-3)=-8.
故答案 -8
[点睛]此题考查了解二元一次方程组,以及有理数的混合运算,弄清题中的新定义计算即可得到结果.
三、解答题((9大题共 86分,解答过程写在答题卡相应位置上)
17.解方程
(1) (2)
[答案](1) ;(2)
[解析]
[分析]
(1)方程去括号,移项合并,将x系数化为1,即可求出解;
(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.
[详解](1)解:
,
;
(2)解:
,
,
.
[点睛]此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.
合并同类项,得2x=6,
系数化为1,得x=3,
把x=3代入6x=3+5a中,
得6×3=3+5a,
∴a=3.
故选C.
[点睛]本题考查了同解方程.解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号.因为两方程解相同,把求得x的值代入方程,即可求得常数项的值.
数学华师大版九年级上册教案5篇

数学华师大版九年级上册教案5篇数学华师大版九年级上册教案篇1二次根式的乘除法教学目标1、使学生掌握二次根式的除法运算法则,会用它进行简单的二次根式的除法运算。
2、使学生了解两个二次根式的商仍然是一个二次根式或有理式。
3、使学生会将分母中含有一个二次根式的式子进行分母有理化。
4、经历探索二次根式的除法运算法则过程,培养学生的探究精神和合作交流的习惯。
教学过程一、创设问题情境问题l 上一节课,我们采取什么方法来研究二次根式的乘法法则?问题2 是否也有二次根式的除法法则呢?问题2 两个二次根式相除,怎样进行呢?二、加强合作,探索规律让抽象的问题具体化,这是我们研究抽象问题的一个重要方法、请同学们参考二次根式的乘法法则的研究,分组讨论两个二次根式相除,会有什么结论,并提出你的见解,然后其他小组同学补充,归纳为:提问:1、a和b有没有限制?如果有限制,其取值范围是什么?2、= (a≥0,b0)成立吗?为什么?请举例。
三、范例例1、计算。
教学要求:(1)对于(1)可由教师解答示范;(2)对于(2)可由学生自己计算。
提问:1、除了课本中的解答外,是否还有其他解法?如果有,请给出另外解法。
2、哪种方法更简便?例2、化简:(要求分母不带根号)说明:二次根式的化简要求满足以下两条:(1)被开方数的因数是整数,因式是整式,也就是说“被开方数不含分母”。
(2)被开方数中不含能开得尽的因数或因式,也就是说“被开方数的每一个因数或因式的指数都小于2”。
把一个二次根式化简的具体方法是:化去根号下的分母;并把被开方数中能开得尽方的因数或因式用它的算术平方根代替后移到根号外面。
四、做一做化简:教学要点:(1)叫两位同学板演,其他同学做完练习进行评价、(2)可用提问的方式引导学生探索其他解法。
五、课堂练习P12 练习1、(3)、(4)六、小结本节课,我们学习了二次根式的除法法则,即= (a≥0,b0),并利用它进行计算和化简。
化简要做到“被开方数不含分母”和“被开方数的每一个因数或因式的指数都小于2”。
华东师大版八年级上册数学第11章 《数的开方》教案

课题 立方根【学习目标】1.理解立方根的概念,会求一个数的立方根; 2.理解并掌握立方根的性质.【学习重点】 会求一个数的立方根. 【学习难点】通过类比、讨论,总结立方根的性质与规律并能熟练运用.情景导入 生成问题1.一个正方体的棱长是6cm ,它的体积是多少?2.如果要做出一个容积为216cm 3的正方体纸盒,正方体的棱长是多少? 3.若正方体的体积是a cm 3,那么它的棱长是多少? 4.从这里可以抽象出一个什么数学概念?自学互研 生成能力知识模块一 立方根阅读教材P 5~P 6,完成下面的内容: 依情境问题填表:归纳:如果一个数的立方等于a ,那么这个数叫做a 的立方根(或三次方根).用式子表示:如果x 3=a ,那么x 叫做a 的立方根,数a 的立方根记作3a ,读作“三次根号a ”,a 称为被开方数,3称为根指数.范例:相信我能行:(1)64的立方根是4,18的立方根是12,0.001的立方根是0.1,827的立方根是23.(2)-1的立方根是-1,-8的立方根是-2,-27的立方根是-3,-0.027的立方根是-0.3. (3)0的立方根是0.知识模块二 立方根的性质与开立方归纳:求一个数的立方根的运算,叫做开立方. 范例:求下列各数的立方根: (1)8;(2)-125;(3)0.000064;(4)-1216. 解:(1)∵23=8,∴8的立方根是2,即38=2;(2)∵(-5)3=-125,∴-125的立方根是-5,即3-125=-5;(3)∵0.043=0.000064,∴0.000064的立方根是0.04,即30.000064=0.04; (4)∵⎝⎛⎭⎫-163=-1216,∴-1216的立方根是-16,即3-1216=-16.归纳:(1)正数的立方根是一个正数,负数的立方根是一个负数,0的立方根是它本身; (2)每个实数都只有一个立方根. 知识模块三 立方根的规律 1.填空并总结:(1)∵38=2,3-8=-2, ∴38=-3-8; (2)∵327=3,3-27=-3, ∴327=-3-27. 规律1:互为相反数的立方根也互为相反数; 2.求下列各数的值并找规律:(1)323=2,3(-2)3=-2,333=3,3(-3)3=-3,303=0; 规律2:对于任何数都有:3a 3=a. (2)(38)3=8,(3-64)3=-64,⎝ ⎛⎭⎪⎫31273=127,⎝⎛⎭⎪⎫3-81253=-8125.规律3:对于任何数都有:(3a)3=a.范例1:若33x -1与31-2y 互为相反数,求x :y. 范例2:求下列各式的值:(1)-3-18;(2)31+91125; 解:1.由题意知:33x -1=-31-2y , ∴3x -1=-(1-2y), ∴3x =2y , ∴x ∶y =2∶3. 2.(1)-3-18=318=12;(2)31+91125=3216125=3⎝⎛⎭⎫653=65. 交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 立方根知识模块二 立方根的性质与开立方 知识模块三 立方根的规律检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________课题 平方根【学习目标】1.理解数的平方根、算术平方根的概念,知道一个数的平方根的性质; 2.会求一个非负数的平方根和算术平方根.【学习重点】会求一个非负数的平方根和算术平方根,知道一个数的平方根的性质. 【学习难点】平方根与算术平方根的区别.行为提示:创景设疑,帮助学生知道本节课学什么.行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案. 教会学生落实重点.知识链接: (1)102=100; (2)⎝⎛⎭⎫452=1625; (3)0.42=0.16; (4)02=0.方法指导:1.非负数a 的算术平方根是一个非负数,即a ≥0,其中a ≥0. 2.平方根是一个数,开平方是一种运算,开平方与平方互为逆运算.3.利用开平方运算可以求一个非负数的平方根;利用平方运算可检验一个数是不是另一个数的平方根.情景导入 生成问题1.一个正方形的边长是5cm ,它的面积是多少?2.欣赏本章导图,如果要剪出一块面积为25cm 2的正方形纸片,纸片的边长是多少?3.若已知正方形面积是a cm 2,那么它的边长是多少?自学互研 生成能力知识模块一 平方根与平方根的性质 阅读教材P 1~P 3,完成下面的内容: 范例:相信我能行(1)100的平方根是±10; (2)1625的平方根是±45;(3)0.16的平方根是±0.4;__ (4)0的平方根是0; (5)-4有没有平方根?为什么? 解:没有,因为负数没有平方根.归纳:(1)如果一个数的平方等于a ,那么这个数叫做a 的平方根;(2)一个正数有两个平方根,它们互为相反数;0的平方根只有一个,就是它本身;负数没有平方根. 仿例:相信我能行(1)169的平方根是±13;__ (2)0.0001的平方根是±0.01; (3)2581的平方根是±59; (4)(-9)2的平方根是±9. 知识模块二 算术平方根与开平方 范例:将下列各数开平方:(1)49; (2)1.96; (3)2536; (4)0.01.解:(1)∵72=49,∴49=7.∴49的平方根是±49=±7; (2)∵1.42=1.96,∴ 1.96=1.4.∴1.96的平方根是±1.96=±1.4; (3)∵⎝⎛⎭⎫562=2536,∴2536=56.∴2536的平方根是±2536=±56; (4)∵0.12=0.01,∴0.01=0.1.∴0.01的平方根是±0.01=±0.1.归纳:(1)正数a 的正的平方根叫做a 的算术平方根,记作a ,读作“根号a ”;另一个平方根是它的相反数,即-a ,因此,正数a 的平方根可以记作±a ,a 称为被开方数.例:3表示3的算术平方根,±a 表示3的平方根;(2)求一个非负数的平方根的运算,叫做开平方,将一个正数开平方,关键是找出它的算术平方根. 范例:若已知一个正数的平方根是m +3和2m -15. (1)求这个正数是多少; (2)求m +5的平方根. 知识链接:平方根的性质: 1.一个正数有两个平方根;2.0的平方根只有一个,就是它本身; 3.负数没有平方根.知识链接:算术平方根与被开方数的非负性.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.解:(1)∵这个正数的平方根是m+3和2m-15,∴(m+3)+(2m-15)=0,∴m=4,∴这个正数是(m+3)2=49.(2)由(1)得:m+5=3,∴m+5的平方根是±3.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一平方根与平方根的性质知识模块二算术平方根与开平方检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________课题实数的大小比较及运算【学习目标】1.了解在有理数范围内的有关概念、运算法则、运算律在实数范围内仍然适用;2.会正确进行简单实数大小的比较;3.学会估算并培养估算的意识,能利用化简对实数进行简单的混合运算.【学习重点】会正确进行简单实数大小的比较,培养估算意识.【学习难点】培养估算意识,能利用化简对实数进行简单的混合运算.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题1.回想有理数的相反数、倒数、绝对值的概念. 2.实数与数轴上的点有什么关系?(一一对应) 3.数轴上的点表示的数如何比较大小?有什么特点?自学互研 生成能力知识模块一 实数的性质阅读教材P 10~P 11,完成下面的内容:在有理数范围内的一些概念(如相反数、倒数和绝对值等)及性质在实数范围内仍然适用,可由此解决下列问题:1.2π的相反数是π,0的相反数是0,数a 的相反数是-a .学法指导:严格按照相反数,倒数,绝对值的概念进行.知识链接:实数的估算:解决此类问题的关键在于找出实数的整数部分,要确定a 的整数部分,先要找出它位于哪两个连续整数之间,方法是:找到与a 最接近的完全平方数,然后采用两边夹的逼近法.学法指导:不同的开方运算可以利用计算器寻找到近似值,相同的开方运算可以根据有关知识比较大小.行为提示:指导学生按照范例的过程,写出仿例的规范过程. 知识链接:实数的运算律和运算法则: (1)交换律 加法:a +b =b +a 乘法:a ×b =b ×a (2)结合律加法:(a +b)+c =a +(b +c) 乘法:(a ×b)×c =a ×(b ×c) (3)分配律a ×(b +c)=a ×b +a ×c行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间. 2.|2|=2,|-π|=π,|0|=0,|-2||π|=π.归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 范例:相信我能行(1)-3(2)π2的相反数是-π2,倒数是2π,绝对值是π2. 知识模块二 实数的大小比较范例:试估计2+3与π的大小关系.解:利用计算器得:2+3≈3.14626437,∵π≈3.14159265,∴2+3>π. 仿例:直接在横线上填上“>”“<”或“=”. (1)-10<320; (2)25>32; (3)3-4<3-3.33; (4)2+12<3+12.归纳:实数比较大小的方法:(1)添加根号法或比较平方法:两个同次方根比较大小,被开方数大的值也大;平方(或立方)后值大的,其根式值也大;(2)差值比较法:两数相减,将所得差值与零相比. 知识模块三 实数的运算归纳:在实数范围内,加、减、乘、除(除数不为0)、乘方、开方(负实数不能开平方)六种运算都可以进行,在实数范围内,运算顺序为:(1)先算乘方、开方,再算乘除,最后算加减;(2)同级运算从左到右依次计算;(3)有括号先算括号里面的.范例:计算:π3-⎪⎪⎪⎪3-52.(精确到0.01) 解:∵3-52≈1.732-2.5=-0.768,∴原式=π3-⎝⎛⎭⎫52-3=π3-52+3≈0.28. 仿例:计算:π2-|23-32|.(精确到0.01) 解:∵23-32≈-0.779, ∴|23-32|≈0.779, ∴原式≈1.571-0.779=0.792≈0.79.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 实数的性质 知识模块二 实数的大小比较 知识模块三 实数的运算检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________课题 实数的有关概念【学习目标】1.理解无理数和实数的概念,能对实数按要求进行分类;2.知道实数与数轴上的点具有一一对应的关系,能根据实数在数轴上的位置比较大小.【学习重点】理解无理数和实数的概念,正确判断有理数与无理数. 【学习难点】探索实数与数轴上的点具有一一对应的关系,初步体会“数形结合”的数学思想.,行为提示:创景设疑,帮助学生知道本节课学什么., 行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.,教会学生落实重点.,知识链接:利用边长为1的正方形的对角线获得\r(2).,学法指导:严格按照有理数和无理数分类的形式填写数据.,学法指导:实数的分类:,\a\vs4\al\co1(\a\vs4\al(实数))\b\lc\{(\a\vs4\al\co1(有理数\b\lc\{\rc\}(\a\vs4\al\co1(整数,分数))\a\vs4\al(有限小数,或无限循,环小数),无理数\b\lc\{\rc\}(\a\vs4\al\co1(正无理数,负无理数))\a\vs4\al(无限不,循环,小数))),实数\b\lc\{(\a\vs4\al\co1(正实数\b\lc\{(\a\vs4\al\co1(正有理数,正无理数)),0,负实数\b\lc\{(\a\vs4\al\co1(负有理数,负无理数)))),方法指导:1.画图或剪纸做数学,2.,,)情景导入 生成问题1.回顾什么叫有理数?有理数如何分类?在平常学习的过程中,是否存在有理数以外的数?比如π是什么数呢?2.在前几节学习的过程中,我们遇到2、3、32、39等是什么数呢?自学互研 生成能力知识模块一 无理数、实数的概念与实数的分类 阅读教材P 8~P 10,完成下面的内容:1.有理数包括整数和分数,如果将下列分数写成小数的形式,你有什么发现? 14,-35,23,-17,1190,-911归纳:任何一个有理数都可以写成有限小数或无限循环小数;反过来,任何一个有限小数或无限循环小数都是有理数.2.思考并回答下列问题: (1)你可以用什么方法求2? 答:看书或查《数学用表》.(2)你能利用平方关系验算得到的结果吗?得到的结果平方后会等于2吗?为什么? 答:验证的结果不是2,而是接近2,说明结果只是2的近似值. (3)如果用计算器计算2,结果将是多少? 答:1.41421356.(4)是否有一个有理数的平方等于2?如果2不是有理数,那么它是一个怎么样的数呢? 答:没有,是无理数.归纳:无限不循环小数叫做无理数,有理数和无理数统称实数. 范例:判断下列数哪些是有理数?哪些是无理数? 5,π2,3.1415926,0.13··,227,-36,0.2020020002…(每两个2之间依次多一个0),34. 解:有理数:3.1415926,0.13··,227,-36;无理数:5,π2,0.2020020002…(每两个2之间依次多一个0),34.知识模块二 实数与数轴上的点我们知道,每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?你能在数轴上找到表示无理数的点吗?范例:你能在数轴上表示出2吗?请同学们准备两个边长为1的正方形纸片,分别沿它的对角线剪开,得到四个什么三角形?等腰直角三角形.如果把四个等腰直角三角形拼成一个大的正方形,其面积是多少?其边长是多少? 答:面积为2,边长为 2.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.这就是说,边长为1的正方形对角线长是2,在数轴上画法如右图. 仿例:无理数π可以用数轴上的点来表示吗?如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点从原点到达O′点的坐标是多少?解:O′的坐标为π.归纳:每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一无理数、实数的概念与实数的分类知识模块二实数与数轴上的点检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________第11章小结与复习【学习目标】1.理解平方根、算术平方根、立方根的概念和性质,会求一个数的平方根、算术平方根和立方根;2.理解无理数的意义,知道实数分为有理数和无理数,会求一个实数的相反数和绝对值,知道实数与数轴上的点是一一对应的关系;3.会比较简单的无理数的大小,并能掌握无理数的运算.【学习重点】理解并掌握平方根和算术平方根、立方根的意义,熟练掌握无理数的运算.【学习难点】用估算法来比较两个数的大小,会估算无理数的数值范围.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.学法指导:一定要从性质出发.知识链接:任何实数的立方根只有一个,其开方后数的符号不会发生改变.情景导入 生成问题知识结构我能建自学互研 生成能力知识模块一 平方根1.定义:如果x 2=a ,那么这个数x 叫做a 的平方根,则x =±a .典例1:求下列各数的平方根:(1)100;(2)0.49;(3)1916;(4)(-6)2. 解:(1)±10;(2)±0.7;(3)±54;(4)±6. 2.平方根的性质:(1)一个正数有两个平方根,它们互为相反数;(2)0的平方根只有一个,就是它本身;(3)负数没有平方根.典例2:(1)要使±a -2有意义,则a 的取值范围为a ≥2;(2)平方根是它本身的数有0.3.算术平方根:正数a 的正的平方根,叫做a 的算术平方根,记作 a.典例3:下列各式中,正确的是( C )A .16=±4B .±16=4C .3-27=-3D .(-2)2=-2典例4:(1)若|x +2|+y -3=0,则xy =-6;(2)算术平方根是它本身的数是0、1; (3)若一个正数的平方根是2a -1和-a +2,则a =-1,这个正数是9.学法指导:必须自己动手才有切身体会.知识链接:1.三类非负数:(1)|a|≥0;(2)a 2≥0;(3)a ≥0(a ≥0).2.非负数有以下性质:(1)非负数有最小值零;(2)有限个非负数之和仍然是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间. 知识模块二 立方根 定义:如果x 3=a ,那么这个数x 叫做a 的立方根,则x =3a .典例5:求下列各数的立方根:(1)0.125;(2)64;(3)-278;(4)-64. 解:(1)0.5;(2)4;(3)-32;(4)-2. 知识模块三 实数1.无理数:无限不循环小数叫做无理数.有理数和无理数统称实数.2.数轴上的任一点必定表示一个实数;反过来,每一个实数也都可以用数轴上的点来表示.即实数与数轴上的点一一对应.典例6:在实数3.14,227,8,0,364,π2,0.123456…,0.3· 中无理数的个数为( B ) A .2个 B .3个 C .4个 D .5个知识模块四 非负数性质的应用1.a 2=|a|=⎩⎪⎨⎪⎧a (a ≥0),-a (a<0).2.几个非负数的和为0,则每个非负数都等于0.典例7:如果(3x -5)2=5-3x ,则x 的取值范围为x ≤53. 典例8:(a +2)2+|b -1|+3-c =0,则a +b +c =2.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 平方根知识模块二 立方根知识模块三 实数知识模块四 非负数性质的应用检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:_______________________________________________________________________。
华东师大版七年级上册数学各章知识点总结

第1章 走进数学世界1.在n ·n 的正方形方格中,有1²+2²+3²+…2.幻方: 三阶幻方:四阶幻方: 第2章 有理数2.1.1正数和负数定义:像﹣2、﹣2.5、﹣237、﹣0.7这样的数是负数,像13、3.5、500、1.2这样的数是正数.(正数前面有时也可以放上一个“+”<读作“正”>号)☀注意:零既不是正数,也不是负数.2.1.2有理数分类:方法1:整、分法方法2:正、零、负法16 2 313 5 11 108 9 7 612 414 15 1 有理数整数 分数正整数 负整数 零 正分数 负分数数集的定义:把这些数(指上文提到的有理数)放在一起,就组成一个数的集合,简称数集.上文有理数组成的数集叫做有理数集.2.2.1数轴定义:规定了原点、正方向和单位长度的直线叫做数轴.2.2.2在数轴上比较数的大小方法:在数轴上表示的两个数,右边的数总比左边的数大.正数都大于零,负数都小于零,正数都大于负数.2.3相反数几何定义:1.在数轴上表示互为相反数的两个点分别位于原点的两旁,且与原点的距离相等.2.只有正负号不同的数成为互为相反数.(例:数a的相反数是﹣a,﹣a的相反数是a)☀注意:零的相反数是零.变为相反数的方法:通常在一个数的前面添上“﹣”号,表示这个数的相反数.(在一个数的前面添上“+”号,仍表示这个数本身.(例题解析)正负号组合化简方法:1.根据相反数的意义.2.数前面负号的个数。
负号的个数为偶数个时,取正;负号的个数为奇数个时,取负.2.4绝对值定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.取一个数的绝对值的结果:1.一个正数的绝对值是它本身.2.零的绝对值是零.3.一个负数的绝对值是它的相反数.4.任何一个有理数的绝对值总是正数或0(通常也称非负数).即对任意有理数a,总有|a|≥0.2.5有理数的大小比较除(2.2.2)在数轴上比较数的大小的方法比较两个负数的大小的方法:两个负数,绝对值大的反而小.2.6.1有理数的加法法则法则内容:1.同号两数相加,取与加数相同的正负号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大加数的正负号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得零;4.一个数与零相加,仍得这个数.法则扩充总结:正正相加,和大于其中任意一个加数;负负相加,和小于其中任意一个加数;正负相加,和大于负数,小于正数.(正指正数,负指负数)☀注意:一个有理数由正负号和绝对值两部分组成,进行加法运算时,应注意确定和的正负号及绝对值.2.6.2有理数加法的运算律加法交换律:两个数相加,交换加数的位置,和不变.字母表示:a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.字母表示:(a+b)+c=a+(b+c).2.7有理数的减法法则:减去一个数,等于加上这个数的相反数.字母表示:a-b=a+(-b)2.8有理数的加减混合运算方法:1.按照运算顺序,从左到右逐步运算.2.用有理数减法法则,统一为只有加法运算的和式.加法运算律的应用:因为有理数的加减法可以统一成加法,所以在进行有理数加减混合运算时,可以适当应用加法运算律,简化运算.补充概念:从1开始逐步增大的连续奇数的和等于奇数个数的平方;从2开始逐步增大的连续偶数的和,等于偶数个数的平方加偶数个数.2.9.1有理数的乘法法则内容:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.(两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.)2.9.2有理数乘法的运算律乘法交换律:两个数相乘,交换因数的位置,积不变.字母表示:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.字母表示:(ab)c=a(bc)分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.字母表示:a(b+c)=ab+ac积的正负号与各因数的正负号之间的关系:几个不等于零的数相乘,积的正负号由负因数的个数决定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 几个数相乘,有一个因数为零,积就为零.2.10有理数的除法倒数的定义:乘积是1的两个数互为倒数.有理数的除法转为乘法的方法:除以一个数等于乘以这个数的倒数.☀注意:零不能作除数.有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.2.11有理数的乘方定义及相关内容:求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在aⁿ中,a叫做底数,n叫做指数,aⁿ读作a的n次方,aⁿ看作是a的n次方的结果时,也可读作a的n次幂.幂的特点:(根据有理数乘法法则)正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.2.12科学记数法定义:一个大于10的数就记成a×10ⁿ的形式,其中1≤a<10,n是正整数.像这样的记数法叫做科学记数法.☀注意:1.a的整数数位只有一位.2.n是原数的整数数位少1.2.13有理数的混合运算混合运算的运算顺序:1.先算乘方,再算乘除,最后算加减;2.同级运算,按照从左至右的顺序进行;3.如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的.补充:加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方叫做第三级运算.☀注意:进行分数的乘除运算时,一般要把带分数化为假分数,把除法转化为乘法.2.14近似数一个与实际非常接近的数,称为近似数.题型分析:科学记数法中a×10ⁿ看它精确到哪一位,就看a最右边的那个数字在原数中是哪一位.☀注意:1.题目要求精确到十位、百位等,往往采用科学记数法,而要求精确到十分位、百分位等,往往不采用科学记数法.2.对一个比较大的数,取近似值往往采用科学记数法,因为科学记数法中的精确度只看a.3.取近似值有三种方法:四舍五入法、去尾法、进一法,要根据题的要求和实际情况而定.2.15用计算器进行计算:略第二章小结第三章整式的加减3.1.1用字母表示数☀注意:1.式子中出现的乘号,通常写作“·”或忽略不写.2.数字与字母相乘时,数字通常写在字母前面.3.除法运算写成分数形式.4.括号前面的乘号也要被省略.3.1.2代数式定义:由数和字母用运算符号连接所成的式子,称为代数式.单独一个数或一个字母也是代数式.3.1.3列代数式列代数式的原因:在解决问题时,列出代数式,使问题变得简洁,更具一般性.3.2代数式的值定义:一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.3.3.1单项式定义:由数与字母的乘积组成的代数式叫做单项式.☀注意:1.当一个单项式的系数是1或-1时,“1”通常省略不写.2.单项式的系数是带分数时,通常写成假分数.3.3.2多项式定义:几个单项式的和叫做多项式.其中,每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式含有几项,就叫做几项式.多项式里,次数最高项的次数,就是这个多项式的次数.3.3.3升幂排列与降幂排列定义:把一个多项式各项的位置按照其中某一字母指数的大小顺序来排列.从大到小为降幂排列,从小到大为升幂排列.☀注意:1.重新排列多项式时,每一项一定要连同它的正负号一起移动.2.含有两个或两个以上字母的多项式,常常按照其中某一字母的升幂排列或降幂排列.3.4.1同类项定义:所含字母相同,并且相同字母的指数也相等的项叫做同类项.所有的常数项都是同类项.3.4.2合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.3.4.3去括号与添括号去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号.添括号法则:所添括号前面是“+”号,括到括号里的各项都不改变正负号;所添括号前面是“-”号,括到括号里的各项都改变正负号.☀注意:添括号与去括号的过程正好相反,添括号是否正确,不妨用去括号检验一下.3.4.4整式的加减运算步骤:先去括号,再合并同类项.第3章小结第4章图形的初步认识4.1生活中的立体图形立体图形展示图:柱体锥体球体多面体的定义:每一个面都是平的的立体图形叫做多面体.☀注意:圆柱、球体等含有曲面的立体图形不称为多面体.4.2.1由立体图形到视图视图的定义:视图来自于投影.中心投影的定义:从一点发出的这种投影称为中心投影.平行投影的定义:平行投影是在一束平行光线照射下形成的投影.物体的三视图及其定义:从正面得到的投影,称为主视图;从上面得到的投影,称为俯视图;从侧面得到的投影,称为侧视图,依投影方向不同,有左视图和右视图.通常将主视图、俯视图与左(或右)视图称做一个物体的三视图.因而,三视图一般画主视图、俯视图、左视图.4.2.2由视图到立体图形☀注意:1.画出来的是平面图形.2.画出能看到的轮廓.3.画出能看到的棱、尖点.4.3立体图形的表面展开图:略4.4平面图形圆的特性:由曲线围成的封闭图形.多边形的定义:由线段围成的封闭图形叫做多边形.三角形在多边形中的意义:在多边形中,三角形是最基本的图形.每个多边形都可以分割成若干个三角形.从n边形的某一顶点出发引对角线,能得到(n-3)条对角线,能分成(n-2)个三角形.4.5.1点和线点存在的意义:表示那些大小尺寸可以忽略的物体.许多点的聚集又可以表现不同的图形.线段的意义:线段是无数排成行的点的聚集.多面体各部分名称示意图:面棱顶点关于线段的基本事实:两点之间,线段最短.射线的定义:把线段向一方无限延伸所形成的图形叫做射线.直线的定义:把线段向两方无限延伸所形成的图形叫做直线.关于直线的基本事实:(三种说法)经过两点有一条直线,并且只有一条直线;两点确定一条直线;经过两点有且只有一条直线.4.5.2线段的长短比较比较方法:1.用刻度尺量,比较大小2.将其中一条线段移到另一条线段上去加以比较.中点的定义:把一条线段分成两条相等线段的点,叫做这条线段的中点.题型分析:一条直线上有n个点,线段的条数为n(n-1)/2条.☀注意:线段的和差往往用图形语言告诉我们,我们要善于挖掘图形语言.点和直线的位置关系:1.点在直线上;2.点在直线外.欧拉公式:顶点数+面数-棱数=2(应用的范围是多面体)4.6.1角角的?定义:由两条有公共端点的射线组成的图形叫做角.角的?定义:由一条射线绕着它的端点旋转而成的图形.射线的端点叫做角的顶点,起始位置的射线叫做角的始边,终止位置的射线叫做角的终边.表示角的方法:1.两个端点及一个顶点(表示时要把表示角的顶点的字母写在中间);2.一个顶点(顶点处只能有一个角时才能用此方法);3.一个阿拉伯数字或希腊字母(先标出后才能用)平角的定义:绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做平角.周角的定义:绕着端点旋转到终边和始边再次重合,这时所成的角叫做周角.角度的单位换算:1°=60′ 1′=60″(1度等于60分,1分等于60秒)☀注意:描述物体运动的方向时,要以正北、正南方向为基准.4.6.2角的比较和运算题型分析:从一点引出n条射线,确定角的个数为n(n-1)/2个.角的平分线的定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.4.6.3余角和补角余角的定义:两个角的和等于90°(直角),就说这两个角互为余角,简称互余.补角的定义:两个角的和等于180°(平角),就说这两个角互为补角.关于余角、补角的定理:同角或等角的余角相等;同角或等角的补角相等.☀注意:互余和互补有时通过特殊的位置(即图形语言)告诉我们.第4章小结第5章相交线与平行线5.1.1对顶角对顶角的?定义:两个角具有相同的顶点,且其中一个角的两边分别与另一个角的两边互为反向延长线,我们把这样的两个角叫做对顶角.对顶角的?定义:两直线相交所成的四个角中,不相邻的一对角叫做对顶角.对顶角的性质:对顶角相等.5.1.2垂线垂直、垂足、垂线的定义:两直线相交所成的四个角中,有一个角等于90°,两线互相垂直,它们的交点叫做垂足,我们把其中的一条直线叫做另一条直线的垂线.关于垂线的基本事实:过一点有且只有一条直线与已知直线垂直.垂线段的定义:过直线外一点作已知直线的垂线,这一点与已知直线相交的点所在的线段叫做垂线段.点到直线的距离的定义:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.5.1.3同位角、内错角、同旁内角同位角的定义:内错角的定义:同旁内角的定义:5.2.1平行线平行线的定义:在同一平面内不相交的两条直线叫做平行线.互相平行的两条直线的表示的方法:例:直线a与直线b互相平行,记作“a∥b”. 两条不相交的直线的位置关系有:相交或平行.关于平行线的基本事实:1.过直线外一点有且只有一条直线与这条直线平行.2.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.5.2.2平行线的判定判定方法:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.关于垂直、平行的性质:在同一平面内,垂直于同一条直线的两条直线平行.5.2.3平行线的性质性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.第五章小结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: a+b<0,c>0,b-c<0, a a bcbc 2c
原式 a (a b) c (b c)
设实数x、y、z满足x y z 4( x 5 y 4 z 3), 则x _______, y ______, z _______
[一点就通]利用拆项或添项配方的办法将条件转化为几个非负数 之和为零的形式,即a b c 0, 再由几个非负数之和为零则每
2
个非负数必须为零来解决.
设实数x、y、z满足x y z 4( x 5 y 4 z 3), 则x _______, y ______, z _______
a A b B x X c C
解 : 设a、b、c、x在数轴上对应的点分别是A、B、C、X,
已知a b c, 求y x a x b x c 的最小值.
x a A b B x X c C
显然, 当X 点与B点重合时, 这时,y= x-a x b x c xa xc xacx a c 所以, y的最小值等于c a.
2 3
化简 :
a 0 a2 0 a 0 a 0 原式
a a
3
a
2
解: a3 0
a 2 a a a2
a a a a
a 1
若a、b满足3 a 5 b 7, 则S 2 a 3 b 的取值范围是 _____
实数abc在数轴上对应的点如图所示,化简 a+ a+b c b c .
2
a
b
0
c
[一点就通]此题化简的关键是我们想办法根据a、b、c在数轴上 的位置, 确定各自的性质, 去掉绝对值符号和根号.
实数abc在数轴上对应的点如图所示,化简 a+ a+b c b c .
2
a
b0cFra bibliotek已知a b c, 求y x a x b x c 的最小值.
则 x-a 、 x b 、 x c 分别表示线段AX 、BX 、CX 的长, 现在要求 x-a 、 x b 、 x c 之和的值最小, 就是要在数 轴上找一点X , 使X 到A、B、C三点的距离之和最小, 如图:
2 2 2
( x 5 2)2 ( y 4 2)2 ( z 3 2)2 0 即 x 5 2 0, y 4 2 0, z 3 2 0, 解得 : x 9, y 8, z 7
化简 :
a a
3
a
2
[一点就通]要解决没有明确条件限制的有关字母化简问题,要 充分挖掘题目中的隐含条件: a 0, a 0
[一点就通]将条件和结论的两个等式看作关于 a , b 的方程组, 利用其有界性求出S的范围.
若a、b满足3 a 5 b 7, 则S 2 a 3 b 的取值范围是 _____
解:3 2 a 5 b 7
a 3 b S
a 21 5 S
3 2
5得19
3得19 b 14 3S
21 S 21 5 S 0 5 由 得: 14 3S 0 S 14 3 21 14 故 S 5 3
已知a b c, 求y x a x b x c 的最小值.
[一点就通]由绝对值的几何意义可知 : x a x b x c 的 最小值的几何意义就是在数轴上,求到a、b、c所对应的三点 距离之和最小的点所表示的数.
( B点在A、C之间), 该距离和y是最小.
;
/ 注册公司
hmq489dfk
你们„„”我无可奈何地接过话机。母亲又唠叨起来,“天栓父亲家的山羯羊膘肥体壮„„我去跟他商议商议,咱出钱买他一 只最大的,让天栓给大家做全羊„„”我的母亲唠叨着,要去找天栓的父亲。 “娘„„这事还用你操心?”我放下话机,急 忙拦住了母亲。母亲白了我一眼,语气由唠叨变成了牢骚,“你的尾巴朝哪儿„„做娘的还不知道?说不准一会儿来个电话, 就把你忙的折腾好几天。你一忙,家里的事就顾不上了,到时候,我们一家人喝西北风?”说完,便吩咐起肖燕来,“肖 燕„„还是你去吧,咱们女人心细。”肖燕听了母亲的话骑上电动车出了大院。母亲突然想起了什么,大声喊道:“顺便买些 蜂糕和月饼„„还有„„”我望着母亲诧异了,“娘„„您„„” “怎么?你认为娘真的老了?”母亲用手指心挽着我的脑 门,恨恨地说:“你这个傻瓜,娘怎么生了你这么个没出息的儿子!你自己就不想想,论文化你也是个大学生,论见识你也曾 走南闯北„„当时家里困难,咱家孩子多,又加上你五哥和你是孪生,为了让你上大学,你五哥初中还没毕业就缀了学,不是 娘偏心,是你比你五哥强„„我和你爹把所有的盼头都寄托在你身上,可是,现在„„你五哥都是中学校长了„„你看你„„” “娘,原来你在装聋作傻装糊涂啊„„” “六儿啊,今天没有外人,当着你表哥的面我告诉你,娘没有老„„身子骨还硬朗 着呢。娘要不是装聋作傻让你东挪西转不得,你还不知道为了这些老东西们出尽什么风头呢!六儿啊,娘这是从心里疼你„„” 说到这里,一滴晶莹的泪珠从母亲的眼角滑落,她抚摸着我的脸,心平气和地说:“六儿啊,听娘的话,现在你的腿也好了, 咱就在干点别的吧,咱操不了这个心„„你看„„还不到五十的人已经成了光明顶了,咱家祖祖辈辈可没有这个先例啊„„” “娘„„”我摸了摸自己的脑袋,半开玩笑地说:“我们家很快就不用灯泡了„„也免得理发耽误时间。”母亲拧着我的耳朵 说:“你这个混球,娘在跟你说正经事儿,你却把娘的话又当耳旁风了„„你吃亏就吃在不听娘的话„„” “爸,二大爷的 手扶车开进示范园了。”小荷气喘吁吁地跑了进来。我急忙拿上条毛巾去了示范园。秋收秋种是我们农家最忙的季节。无论是 老人还是孩子,凡事有劳动能力的没有一个闲着的。尤其是在我们这样的小山村,在大型的机械工具用不上的情况下,我们只 能用小车推,山路陡峭的地方还要肩挑人抬,生活本身就是一种对人生的磨练,父辈们走过的路一年一年的在我们脚下延续着。 我的父亲正在地里施肥„„手扶车就像一头发怒的‘铁牛’把二哥忙碌得汗流浃背„„我去接父亲手中的活计,父亲却对我说: “这点活我还能干得了。”他顺手指了指我的二哥,说:“去替替你二哥吧,他已