应用非负数的性质解题

合集下载

巧用非负数解题

巧用非负数解题
维普资讯
20 年第 1 08 期
◇ 能力 培 养◇
巧 用 非 负 数 解 题
夏 坤 学
( 贵州省余庆县城关 中学 ,640 540 )
初 中阶段 常 见 的非 负 数 的 形式 有 三 种 :
实数的偶次方为非负数 ; 实数 的绝对值 为非
数根 . 2 解 方 程 .

则有
l+ l=0.
例2 当口b 、 为何值时 , 方程 + ( +口 +(口 +4 b+ 6 +2 = ) 32 a 42 ) 0 X2 21
有实数 根 ?
解{ 得7 1
3判 别方 程的根 .
例 5 已知关于 的一元二次方程
+2 x—m +1 =0 ① ②
解: 因为方程有实数根 , 所以, A 2 1 ) 4×1 3 4 b+ =[ ( +口 ] 一 ×( a + a
负数 ; 算术根亦为非负数 . 常用的非负数 的性 质有三个 : 如果几个非负数的和为零 , 则每个 非负数必为零 ; 非负数的和、 商( 积、 除数不能
为零) 仍为非 负数 ; 最小 的非负数是零 , 最 无
大非 负数 .
例 3 解方程 :
+2l +3 yl=0.
解: 由非负数的性质得
4 证明等 式或不 等式 . 例 6 已知
(3 一 口+ +( 口+ 1 = 0

例 8 三角形的三边 口 b C 、 、 适合
口 + b + C +3 8= 1 3 0a +2 4b+2 6c.
则此三 角形 是 (
) .
求证 :( ) . C C 一3 =b
中学 教与学
对 于方程 ②
2 c+ 1 )+丁一3 c

中考数学复习指导:利用“非负数之和为零”解题

中考数学复习指导:利用“非负数之和为零”解题

利用“非负数之和为零”解题初中阶段共学习了平方、绝对值、算术平方根等三种类型的非负数,若这三种形式中任选两种或者三种作和为零,则每一项为零.这个结论还可推广至n 个非负式之和为零的情形,下面举例说明.例1 已知a 2+2a +b 2-6b +10=0,求a +b 的值.解 ∵a 2+2a +b 2-6b +10=0,∴(a 2+2a +1)+(b 2-6b +9)=0,∴(a +1)2+(b -3)2=0,∴a +1=0,b -3=0,即a =-1,b =3,∴a +b =-1+3=2.评析 这种两个字母蕴含于一个方程中的求解题往往比较特殊.通过配方,我们可得到非负数和零的形式,即可顺利求解.例2 已知a 、b 、c 为有理数,且满足a +b =8,ab =c 2+16.求a 、b 、c 的值. 解 由a +b =8,得b =8-a ,代入ab =c 2+16,得a (8-a )=c 2+16,化简,得(a -4)2+c 2=0.∴a -4=0,c =0,∴a =4,代入b =8-a ,得b =4,∴a =4,b =4,c =0.评析 本题只需把其中一式变形代入另一式,然后配方即可得到非负数和为零的形式,故可求出字母a 、c 的值.再求出字母b 的值.例3 若△ABC 的三条边a 、b 、c 22470b c c -+-+=,试判断△ABC 的形状.解 由条件等式变形得22470b c c -+-+=∴(()22120a b c -+-+-=,∴a -1=0,b 0,c -2=0,∴a =1,b c =2.此时a 2+b 2= c 2,因此,△ABC 是直角三角形.评析 本题通过合理地拆分常数项并进行配方,求出a 、b 、c 的值,即可判断出△ABC 的形状.例4 若x 、y 、z 为一个三角形三个内角的度数,且满足36x 2+gy 2+4z2-18xy -6yz -12zx =0.试探索这个三角形的形状,并说明理由.解 将条件等式两边都乘以2,得72x 2+18y 2+8z2-36xy -12yz -24zx =0.即(6x -2z)2+(6x -3y)2+(3y -2z)2=0.∴6x -2z =0,6x -3y =0,3y -2z =0,得3x =z ,2x =y∵x +y +z =180°,∴x +3x +2x =180°,∴z = 30°,y =60°,z = 90°,所以这个三角形是直角三角形.评析 本题把三角形的三个内角的度数x 、y 、z 以一个方程的形式给出,我们先配方,求出x 、y 、z 三者之间的等量关系,再由题目的隐含条件“任意三角形的内角和是180°”来求出x 、y 、z 的值,以此判断△ABC 的形状.。

部编数学七年级下册专题07算术平方根的非负性(解析版)含答案

部编数学七年级下册专题07算术平方根的非负性(解析版)含答案

专题07 算术平方根的非负性【例题讲解】例1.已知a 、b 、c2+=c a b c ++的平方根为_________.例2.2|1|(1)0b c +++=,求a b c +-的平方根.【综合解答】1.设,A B 均为实数,且A B ==,A B 的大小关系是( )A .A B>B .A B =C .A B <D .A B³【答案】D【解析】【分析】根据算术平方根的定义得出A 是一个非负数,且m-3≥0,推出3-m≤0,得出B≤0,即可得出答案,【详解】解:∵A =∴A 是一个非负数,且m-3≥0,∴m≥3,∵B =,∵3-m≤0,即B≤0,∴A≥B ,故选:D .【点睛】本题考查了算术平方根的定义,平方根和立方根,实数的大小比较等知识点,题目比较好,但有一定的难度.2()240y -=,则22x y +的平方根是______.【答案】【解析】【分析】根据算术平方根以及完全平方式的非负性得出,x y 的值,然后求出22xy +的值,最后求出平方根即可.【详解】解:()240y +-=,∴50,40x y +=-=,∴5,4x y =-=,∴2222(5)4251641x y =-=+=++,∴22x y +的平方根是故答案为:【点睛】本题考查了算术平方根以及完全平方式的非负性、平方根,解题的关键是掌握非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.3.若()230x +=,则()2021x y +=______________.【答案】-1【解析】【分析】由平方与算术平方根的非负性解得x =-3,y =2,再代入计算即可.【详解】解:由题意得,3020,x y +=-=3,2x y \=-=()()20212021-32=-1x y \+=+故答案为:-1.【点睛】本题考查平方与算术平方根的非负性、有理数的乘方等知识,是基础考点,掌握相关知识是解题关键.4.若a __.【答案】2【解析】【分析】利用算术平方根的非负性,计算求值即可;【详解】解:,20a -£,∴a =0,∴=0+2,=2,故答案为:2;【点睛】此题主要考查了算术平方根:如果一个非负数b 的平方等于a ,那么b 叫做a 的算术平方根;非负数a a 叫做被开方数.5.若3y =,则xy =_________.【答案】18【解析】【分析】直接利用二次根式有意义的条件得出x ,y 的值进而得出答案.【详解】解:∴2﹣x ≥0,且x ﹣2≥0,解得:x =2,∴y =-3,∴31=2=8y x -.故答案为:18.【点睛】此题主要考查了二次根式有意义的条件和负指数幂法则,正确得出x 的值是解题关键.6.已知实数a 在数轴上的位置如图,则化简|1﹣_____.【答案】1-2a【解析】【详解】由图可知:10a -<<,∴10a ->,∴11()12a a a -=-+-=-.故答案为12a -.7.当x =______时,式子2018【答案】2017【解析】【分析】0³,然后求解即可.【详解】解:∵2018∴的值最小时,式子20180³,∴20170x -³,∴2017x ³,∴当2017x =时式子2018有最大值.故答案为:2017.【点睛】此题考查了算术平方根的非负性,当被减数为固定值时,要使差最大,则需使减数的值最小,解题的关键是熟练掌握算术平方根的非负性.8.已知a ,b ,c 满足2|(0a c +=.求a 、b 、c 的值【答案】a =5b ,c 【解析】【分析】利用绝对值非负性,算术平方根非负性,平方非负性可求得结果.【详解】解:∵|0a ³0³,2(0c ³且2|(0a c =,∴|=0a ,2(=0c ,即:a ,5=0b -,c ,解得:a =5b ,c 【点睛】本题主要考查的是非负性求值的应用,此类型题较为固定,同时也是常考点,掌握其解题步骤是解题关键.9.已知3y =,求(x +y )2022的值【答案】1【解析】【分析】根据二次根式的性质得到2x =,计算出1x y +=-,从而计算出最终的答案.【详解】∵3y +-∴2020x x -³ìí-³î得22x x ³ìí£î∴2x =∴33y +=-∴202220222022()(23)(1)1x y +=-=-=∴2022()1x y +=.【点睛】本题考查二次根式、幂运算的性质,解题的关键是熟练掌握二次根式、幂运算的相关知识.10.已知实数a 、b 、c |1|a +=(1)求证:b c =;(2)求a b c -++的平方根.【答案】(1)见解析(2)3±【解析】【分析】根据算术平方根的非负性,即可得证;(2)根据(1)的结论,以及非负数之和为0,求得,,a b c 的值,进而求得a b c -++的平方根.(1)证明:0³0,0,0b c c b -³-³,b c \=;(2)解:Q |1|a +=b c =,,1,4a b \=-=,4c b \==,1449a b c \-++=++=,9的平方根是3±.【点睛】本题考查了算术平方根的非负性,非负数之和为0,掌握非负数的性质以及算术平方根的非负性是解题的关键.115的最小值,并求出此时a 的值.【答案】3a =【解析】【分析】根据非负数的性质即可得到结论.【详解】解:0³55³5的最小值是5.此时30a -=,即3a =.【点睛】12.若a ,b 为实数,且b =【答案】-3【解析】【分析】根据二次根式的被开方数为非负数,得到相应的关系式求出a 、b 的值,然后代入求解.【详解】因为a ,b 为实数,且a 2-1≥0,1-a 2≥0,所以a 2-1=1-a 2=0.所以a =±1.又因为a +1≠0,所以a =1.代入原式,得b =12.所以3.【点睛】此题主要考查了二次根式的性质和意义,关键是利用被开方数为非负数的性质求出a 、b 的值.13.已知数a 满足2016a =,求22016a -.【答案】2017.【解析】【详解】试题分析:由二次根式的意义可得20170a -³,即2017a ³,由此可得20162016a a -=-,从而原等式化为:2016a a -=,由此可得220172016a -=,即220162017a -=;试题解析:由二次根式的意义可得20170a -³,即2017a ³,∴20162016a a -=-,∴原等式可化为:2016a a -=,2016=,∴220172016a -=,∴220162017a -=.14.已知a,b (0b -=,求a2005-b2006的值.【答案】-2【解析】【详解】试题分析:根据被开方数大于等于0,求出b 的取值范围,再根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.试题解析:解:由题意得:1﹣b ≥0,∴b ≤1,∴(10b +-=,由非负数的性质得:1+a =0,1﹣b =0,解得a =﹣1,b =1,∴a 2005﹣b 2006=(﹣1)2005﹣12006=﹣1﹣1=﹣2.15.已知实数,b ,c 满足a +=(2a b +的值.【答案】4【解析】【分析】根据二次根式的非负性求得b 的值,然后根据非负数的性质求得,a c 的值,最后代入代数式求解即可.【详解】解:∵a +=∴5050b b -³ìí-³î,5b \=,\a +=0,3,2a c \=-=,\(2a b +()23504=-+-=.【点睛】本题考查了二次根式的非负性,非负数的性质,掌握二次根式的非负性是解题的关键.。

第三章 实数 考点3 非负数的性质:算术平方根(解析版)

第三章 实数 考点3 非负数的性质:算术平方根(解析版)

第三章实数(解析板)3、非负数的性质:算术平方根知识点梳理1.非负数的性质:绝对值在实数范围内,任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.2.非负数的性质:偶次方偶次方具有非负性.任意一个数的偶次方都是非负数,当几个数或式的偶次方相加和为0时,则其中的每一项都必须等于0.3.非负数的性质:算术平方根(1)非负数的性质:算术平方根具有非负性.(2)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0利用此性质列方程解决求值问题.同步练习一.选择题(共19小题)1.若+|y+3|=0,则的值为()A.B.﹣C.D.﹣【考点】非负数的性质:绝对值;算术平方根;非负数的性质:算术平方根.【分析】先根据非负数的性质求出x、y的值,再代入代数式进行计算即可.【解答】解:∵+|y+3|=0,∴2x+1=0,y+3=0,解得x=﹣,y=﹣3,∴原式==.故选:C.【点评】本题考查的是非负数的性质,熟知几个非负数的和为0时,其中每一项必为0是解答此题的关键.2.已知实数x,y,m满足,且y为负数,则m的取值范围是()A.m>6B.m<6C.m>﹣6D.m<﹣6【考点】非负数的性质:绝对值;非负数的性质:算术平方根;解二元一次方程组;解一元一次不等式.【分析】根据非负数的性质列出方程求出x、y的值,然后根据y是负数即可得到一个关于m的不等式,从而求得m的范围.【解答】解:根据题意得:,解得:,则6﹣m<0,解得:m>6.故选:A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.3.若+|b+2|=0,那么a﹣b=()A.1B.﹣1C.3D.0【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出a、b的值,然后求出a﹣b的值.【解答】解:∵,|b+2|≥0,∵+|b+2|=0,∴a+1=0,b+2=0,解得:a=﹣1,b=﹣2,把a=﹣1,b=﹣2代入a﹣b=﹣1+2=1,故选:A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选:A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.若|x+2|+,则xy的值为()A.﹣8B.﹣6C.5D.6【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】已知任何数的绝对值一定是非负数,二次根式的值一定是一个非负数,由于已知的两个非负数的和是0,根据非负数的性质得到这两个非负数一定都是0,从而得到一个关于x、y的方程组,解方程组就可以得到x、y的值,进而求出xy的值.【解答】解:∵|x+2|≥0,≥0,而|x+2|+=0,∴x+2=0且y﹣3=0,∴x=﹣2,y=3,∴xy=(﹣2)×3=﹣6.故选:B.【点评】本题考查的是非负数的性质,一元一次方程的解法及代数式的求值.题目注重基础,比较简单.6.已知|x﹣3|+=0,则(x+y)2的值为()A.4B.16C.25D.64【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:由题意得,x﹣3=0,x+2y﹣7=0,解得x=3,y=2,则(x+y)2=(3+2)2=25,故选:C.【点评】本题考查了非负数的性质,关键是掌握几个非负数的和为0时,这几个非负数都为0.7.已知实数x,y满足,则y的值是()A.2B.﹣2C.0D.3【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负性即可求出x与y的值.【解答】解:由题意可知:x+2=0,3x+y+8=0,∴x=﹣2,y=﹣2,故选:B.【点评】本题考查绝对值与二次根式,解题的关键是熟练运用绝对值与二次根式的性质,本题属于基础题型.8.已知x,y为实数且|x+1|+=0,则()2012的值为()A.0B.1C.﹣1D.2012【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】直接利用非负数的性质得出x,y的值,进而求出答案.【解答】解:∵|x+1|+=0,∴x+1=0,y﹣1=0,解得:x=﹣1,y=1,∴()2012=1.故选:B.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.9.已知,则a+b的值是()A.1B.﹣1C.3D.﹣3【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得a﹣2=0,b+1=0,解得a=2,b=﹣1,则a+b=2﹣1=1.故选:A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.已知|7+b|+=0,则a+b为()A.8B.﹣6C.6D.8【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据绝对值和算术平方根的非负性得出7+b=0,a﹣1=0,求出a、b的值即可.【解答】解:|7+b|+=0,7+b=0,a﹣1=0,b=﹣7,a=1,所以a+b=1+(﹣7)=﹣6,故选:B.【点评】本题考查了绝对值和算术平方根的非负性,能根据绝对值和算术平方根的非负性得出7+b=0和a﹣1=0是解此题的关键.11.已知△ABC的三边长a、b、c满足+|b﹣1|+(c)2=0,则△ABC一定是()三角形.A.锐角B.钝角C.直角D.一般【考点】非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】先根据非负数的性质求出a、b、c的值,再根据勾股定理逆定理进行判断即可.【解答】解:∵+|b﹣1|+(c)2=0,∴a=1,b=1,c=,∵a2+b2=1+1=2,c2=()2=2,∴a2+b2=c2,∴△ABC是直角三角形,故选:C.【点评】本题考查非负数的性质,解题的关键是掌握一个数的算术平方根与某个数的绝对值以及另一数的平方的和等于0,那么算术平方根的被开方数为0,绝对值里面的代数式的值为0,平方数的底数为0及勾股定理的逆定理.12.已知,则y的值为()A.1B.﹣2.C.﹣1D.﹣4【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列式计算求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得x﹣y+2=0,x+y=0,解得x=﹣1,y=1.故选:A.【点评】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.13.若x,y为实数,且,则的值为()A.1B.2011C.﹣1D.﹣2011【考点】非负数的性质:绝对值;非负数的性质:算术平方根;代数式求值.【分析】由于|x+2|和都是非负数,而它们的和为0,根据非负数的性质即可求出x、y的值,接着可以求出题目的结果.【解答】解:∵若x,y为实数,且,而|x+2|和都是非负数,∴x+2=0且y﹣2=0,∴x=﹣2,y=2,∴=(﹣1)2011=﹣1.故选:C.【点评】此题主要考查了非负数的性质和代数式的求值,解题的关键是根据非负数的性质得到x+2=0且y﹣2=0,由此求出x、y的值解决问题.14.若+(y+2)2=0,则(x+y)2020等于()A.﹣1B.1C.32020D.﹣32020【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵+(y+2)2=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2,∴(x+y)2020=(1﹣2)2020=1,故选:B.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.若|x﹣2|+=0,则xy的值为()A.﹣8B.﹣6C.5D.6【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则xy=﹣6.故选:B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.已知实数x,y满足,则x﹣y等于()A.3B.﹣3C.1D.﹣1【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选:A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.17.如果|x﹣3|+=0,则=()A.2B.C.﹣2D.3【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】先根据非负数的性质得出x和y的值,再代入化简即可得.【解答】解:∵|x﹣3|+=0,∴x﹣3=0,y﹣2=0,则x=3,y=2,∴==2,故选:A.【点评】本题主要考查非负数的性质,解题的关键是掌握非负数之和等于0时,各项都等于0利用此性质列方程解决求值问题.18.已知+(b+3)2=0,则(a+b)2020的值为()A.0B.1C.﹣1D.2020【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】直接利用互为相反数的定义结合绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵+(b+3)2=0,∴a﹣2=0,b+3=0,解得:a=2,b=﹣3,∴(a+b)2020=(2﹣3)2020=1.故选:B.【点评】此题主要考查了非负数的性质,正确应用算术平方根和绝对值的性质是解题关键.19.已知实数x,y满足+|y+2|=0,则x+y的值为()A.﹣2B.2C.4D.﹣4【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质即可求出答案.【解答】解:由题意可知:x=0,y+2=0,∴x=0,y=﹣2,∴x+y=﹣2故选:A.【点评】本题考查非负数的性质,解题的关键是熟练运用非负数的性质,本题属于基础题型.二.填空题(共17小题)20.已知a、b满足(a﹣1)2+=0,则a+b=﹣1.【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】直接利用非负数的性质得出a,b的值,进而得出答案.【解答】解:∵(a﹣1)2+=0,∴a=1,b=﹣2,∴a+b=﹣1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.21.当x取﹣5时,的值最小,最小值是0;当x取5时,2﹣的值最大,最大值是2.【考点】非负数的性质:算术平方根.【分析】依据算术平方根的非负性可知当10+2x=0时,的值最小,当5﹣x=0时,2﹣的值最大.【解答】解:当10+2x=0时,的值最小,解得x=﹣5,此时的最小值为0.当5﹣x=0时,即x=5时,=0,此时2﹣的值最大,最大值是2.故答案为:﹣5;0;5;2.【点评】本题主要考查的是非负数的性质,掌握算术平方根的非负性是解题的关键.22.已知+|x2﹣3y﹣13|=0,则x+y=﹣1.【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣2=0,x2﹣3y﹣13=0,解得x=2,y=﹣3,所以,x+y=2+(﹣3)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.23.如果与(2x﹣4)2互为相反数,那么2x﹣y的平方根是±1.【考点】非负数的性质:偶次方;平方根;非负数的性质:算术平方根.【分析】直接利用算术平方根以及偶次方的性质得出2x﹣y的值,进而得出答案.【解答】解:∵与(2x﹣4)2互为相反数,∴y﹣3=0,2x﹣4=0,解得:y=3,x=2,∴2x﹣y=1,∴2x﹣y的平方根是:±1.故答案为:±1.【点评】此题主要考查了平方根以及算术平方根和偶次方的性质,正确得出x,y的值是解题关键.24.已知+=0,则+=.【考点】非负数的性质:算术平方根.【分析】根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.25.若,则m﹣n的值为4.【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据任何非负数的平方根以及偶次方都是非负数,两个非负数的和等于0,则这两个非负数一定都是0,即可得到关于m.n的方程,从而求得m,n的值,进而求解.【解答】解:根据题意得:,解得:.则m﹣n=3=(﹣1)=4.故答案是:4.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.26.如果=0,那么xy的值为﹣6.【考点】非负数的性质:算术平方根.【分析】根据非负数的性质列式求出x、y的值,然后相乘即可得解.【解答】解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,所以,xy=3×(﹣2)=﹣6.故答案为:﹣6.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.27.当x取5时,代数式2﹣取值最大,并求出这个最大值2.【考点】非负数的性质:算术平方根.【分析】根据二次根式的性质解答.【解答】解:当5﹣x=0,即x=5时,代数式2﹣取值最大,此时这个最大值2.故答案为:5,2.【点评】本题考查二次根式的性质,解决本题的关键是能够正确运用二次根式的性质.28.已知+|3x+2y﹣15|=0,则的算术平方根为.【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据算术平方根的定义解答.【解答】解:由题意得,x+3=0,3x+2y﹣15=0,解得x=﹣3,y=12,所以,==3,所以,的算术平方根为.故答案为:.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.29.已知实数x,y满足+(y+1)2=0,则x﹣y等于3.【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故答案为:3.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.30.如果+=0,那么xy的值为﹣6.【考点】非负数的性质:算术平方根.【分析】根据非负数的性质求出x、y,计算即可.【解答】解:由题意得,x﹣3=0,y+2=0,解得,x=3,y=﹣2,则xy=﹣6,故答案为:﹣6.【点评】本题考查的是非负数的性质,掌握非负数之和等于0时,各项都等于0是解题的关键.31.已知与(x+y﹣4)2互为相反数,则y﹣x=8.【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】由与(x+y﹣4)2互为相反数,得出+(x+y﹣4)2=0,根据非负数的性质得出x、y的值,进一步代入求得答案即可.【解答】解:∵与(x+y﹣4)2互为相反数,∴+(x+y﹣4)2=0,∴x+2=0,x+y﹣4=0,∴x=﹣2,y=6,∴y﹣x=6﹣(﹣2)=6+2=8.故答案为:8.【点评】本题考查了代数式求值,非负数的性质,能够正确利用非负数的性质求得字母的数值是解决问题的关键.32.若+|b2﹣9|=0,则ab=±6.【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:+|b2﹣9|=0,∴a﹣2=0,b=±3,因此ab=2×(±3)=±6.故结果为:±6.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.33.已知,则a b=1.【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出a、b,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a﹣1=0,a+b+1=0,解得a=1,b=﹣2,所以,a b=1﹣2=1.故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.34.若=3﹣x,则x的取值范围是x≤3.【考点】非负数的性质:算术平方根.【分析】根据非负数的性质列出关于x的不等式,求出x的值即可.【解答】解:∵=3﹣x,∴3﹣x≥0,解得x≤3.故答案为:x≤3.【点评】本题考查的是非负数的性质,熟知算术平方根具有非负性是解答此题的关键.35.若a、b为实数,且(a+)2+=0,则a b的值3.【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据偶次方、算术平方根的非负性分别求出a、b,根据乘方法则计算即可.【解答】解:∵(a+)2+=0,∴(a+)2=0,=0,解得,a=﹣,b=2,则a b=(﹣)2=3,故答案为:3.【点评】本题考查的是非负数的性质,掌握偶次方、算术平方根的非负性是解题的关键.36.已知非零实数a,b满足,则a+b等于1.【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】由题设知a≥3,化简原式得,根据非负数的性质先求出a,b的值,从而求得a+b的值.【解答】解:∵a≥3,∴原等式可化为,∴b+2=0且(a﹣3)b2=0,∴a=3,b=﹣2,∴a+b=1.故答案为1.【点评】本题考查了非负数的性质,一个数的算术平方根、偶次方都是非负数.三.解答题(共9小题)37.已知|2a+b|与互为相反数.(1)求2a﹣3b的平方根;(2)解关于x的方程ax2+4b﹣2=0.【考点】非负数的性质:绝对值;平方根;非负数的性质:算术平方根.【分析】(1)依据非负数的性质可求得a、b的值,然后再求得2a﹣3b的值,最后依据平方根的定义求解即可;(2)将a、b的值代入得到关于x的方程,然后解方程即可.【解答】解:由题意,得2a+b=0,3b+12=0,解得b=﹣4,a=2.(1)∵2a﹣3b=2×2﹣3×(﹣4)=16,∴2a﹣3b的平方根为±4.(2)把b=﹣4,a=2代入方程,得2x2+4×(﹣4)﹣2=0,即x2=9,解得x=±3.【点评】本题主要考查的是平方根的定义、非负数的性质,熟练掌握平方根的定义、非负数的性质是解题的关键.38.已知+|x﹣1|=0.(1)求x与y的值;(2)求x+y的平方根.【考点】非负数的性质:绝对值;平方根;非负数的性质:算术平方根.【分析】(1)先依据非负数的性质得到x﹣1=0,x+2y﹣7=0,然后解方程组即可;(2)先求得x+y的值,然后再求其平方根即可.【解答】解:(1)∵+|x﹣1|=0,∴x﹣1=0,x+2y﹣7=0,解得:x=1,y=3.(2)x+y=1+3=4.∵4的平方根为±2,∴x+y的平方根为±2.【点评】本题主要考查的是非负数的性质,依据非负数的性质求得x、y的值是解题的关键.39.若+(3x+y﹣1)2=0,求的平方根.【考点】非负数的性质:偶次方;平方根;非负数的性质:算术平方根.【分析】先根据非负数的性质求出x,y的值,代入代数式即可得出结论.【解答】解:∵+(3x+y﹣1)2=0,∴,解得,∴原式==3.∴的平方根为±.【点评】本题考查的是非负数的性质,熟知非负数之和等于0时,各项都等于0是解答此题的关键.40.已知a、b、c满足.(1)求a、b、c的值;(2)判断以a、b、c为边的三角形的形状.【考点】非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】(1)根据非负数的性质可求出a、b、c的值;(2)利用勾股定理的逆定理证明三角形是直角三角形.【解答】解:(1)根据题意得:a﹣=0,b﹣5=0,c﹣4=0,解得:a=,b=5,c=4;(2)∵()2+52=(4)2,∴a2+b2=c2,∴以a、b、c为边的三角形是直角三角形.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.41.已知+|y3+1|=0,求4x﹣3y的平方根.【考点】非负数的性质:绝对值;平方根;非负数的性质:算术平方根.【分析】首先根据绝对值和被开方数的非负性可以求x、y的值,再根据平方根的定义即可求解.【解答】解:根据题意知2x﹣3=0,y3+1=0∴x=,y=﹣1,∴4x﹣3y=9,∴4x﹣3y的平方根为±3.【点评】此题主要考查了立方根、平方根定义和非负数的性质,其中求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.注意:(1)一个数的立方根与原数的性质符号相同.(2)一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.42.已知x、y满足+|y+1|=0,求x2﹣4y的平方根.【考点】非负数的性质:绝对值;平方根;非负数的性质:算术平方根.【分析】直接利用绝对值以及算术平方根的定义得出x,y的值,进而得出答案.【解答】解:∵+|y+1|=0,∴,解得:,∴x2﹣4y=1+4=5,故x2﹣4y的平方根为:±.【点评】此题主要考查了非负数的性质以及平方根,正确得出x,y的值是解题关键.43.已知|a+b﹣3|++(a+2)2=0,求(a+c)b的值.【考点】非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】首先根据题意及非负数的性质求出a、b、c的值,然后代入所求代数式求值.【解答】解:∵|a+b﹣3|++(a+2)2=0,∴a+b﹣3=0,c﹣4=0,a+2=0,∴a=﹣2,b=5,c=4,∴(a+c)b=(﹣2+4)5=25=32,即(a+c)b的值是32.【点评】本题主要考查非负数的性质,解题的关键是先根据题意及非负数的性质求出a、b、c的值.44.已知(3x﹣1)2+=0,求18xy的平方根.【考点】非负数的性质:偶次方;平方根;非负数的性质:算术平方根.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据平方根的定义解答.【解答】解:由题意得,3x﹣1=0,3﹣2y=0,解得x=,y=,所以,18xy=18××=9,所以,18xy的平方根±3.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.45.已知实数x,y满足(x﹣4)2+=0,求﹣xy的平方根.【考点】非负数的性质:偶次方;平方根;非负数的性质:算术平方根.【分析】因为(x﹣4)2和都是非负数,当几个非负数的和为0时,几个非负数都为0,可得关于x和y的方程,求出x,y的值,再根据平方根的定义求解.【解答】解:∵(x﹣4)2 +=0∴(x﹣4)2=0,=0∴x﹣4=0,y+16=0,∴x=4,y=﹣16∴﹣xy=﹣4×(﹣16)=64∴﹣xy的平方根是±8【点评】本题考查了偶次方和算术平方根的性质以及开平方运算,明确非负数的性质及开平方的方法,是解题的关键。

初一数学下册知识点《非负数的性质:算术平方根》150题及解析

初一数学下册知识点《非负数的性质:算术平方根》150题及解析

初一数学下册知识点《非负数的性质:算术平方根》150题及解析副标题一、选择题(本大题共36小题,共108.0分)1.若与互为相反数,则的值为( )A. 3B. 4C. 6D. 9【答案】A【解析】【分析】本题考查了绝对值的非负性,二次根式的非负性,代数式的值,完全平方公式,相反数.根据相反数的定义得到|x2-4x+4|+=0,再根据非负数的性质得x2-4x+4=0,2x-y-3=0,然后利用完全平方公式变形得到(x-2)2=0,求出x,再求出y,最后计算它们的和即可.【解答】解:根据题意得|x2-4x+4|+=0,∴|x2-4x+4|=0,=0,即(x-2)2=0,2x-y-3=0,∴x=2,y=1,∴x+y=3.故选A.2.若|3x-2y-1|+=0,则x,y的值为()A. B. C. D.【答案】D【解析】解:由题意可知:解得:故选:D.根据二元一次方程组的解法以及非负数的性质即可求出答案.本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.3.若|3-a|+=0,则a+b的值是()A. 2B. 1C. 0D. -1【答案】B【解析】解:由题意得,3-a=0,2+b=0,解得,a=3,b=-2,a+b=1,故选:B.根据几个非负数的和为0时,这几个非负数都为0列出算式求出a、b的值,计算即可.本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.4.若+|2a-b+1|=0,则(b-a)2015=( )A. -1B. 1C. 52015D. -52015【答案】A【解析】解:∵+|2a-b+1|=0,∴,解得:,则(b-a)2015=(-3+2)2015=-1.故选:A.利用非负数的性质列出方程组,求出方程组的解得到a与b的值,即可确定出原式的值.此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.5.已知等腰三角形的两边长分別为a、b,且a、b满足,则此等腰三角形的周长为( )A. 7或8B. 6或10C. 6或7D. 7或10【答案】A【解析】【分析】本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.【解答】解:∵,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选A.6.已知+|b+3|=0,则P(—a,—b)的坐标为()A. (2,3)B. (2,—3)C. (—2,3)D. (—2,—3)【答案】C【解析】【分析】本题考查了点的坐标,非负数的性质,正确求出a,b的值是解题的关键.先由+|b+3|=0,根据非负数的性质求出a=2,b=-3,进而求解即可.【解答】解:∵+|b+3|=0,∴a-2=0,b+3=0,∴a=2,b=-3,∴P(-a,-b)的坐标为(-2,3),故C正确.故选C.7.已知实数x,y满足(x-2)2+=0,则点P(x,y)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】本题考查了点的坐标:平面直角坐标系中的点的坐标与实数对一一对应,在第四象限,点的横坐标为正数,纵坐标为负数.也考查了非负数的性质.根据非负数的性质得到x-2=0,y+1=0,则可确定点P(x,y)的坐标为(2,-1),然后根据象限内点的坐标特点即可得到答案.【解答】解:∵(x-2)2+=0,∴x-2=0,y+1=0,∴x=2,y=-1,∴点P(x,y)的坐标为(2,-1),在第四象限.故选D.8.已知x,y为实数,且+(y+2)2=0,则y x的立方根是()A. B. -8 C. -2 D. ±2【答案】C【解析】【分析】此题主要考查了算术平方根的非负性和开立方运算以及偶次方的性质,正确得出x,y 的值是解题关键.直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案.【解答】解:∵+(y+2)2=0,∴x-3=0,y+2=0,解得:x=3,y=-2,则y x=(-2)3=-8,-8的立方根是:-2.故选C.9.若|3-a|+=0,则a+b的值是()A. -9B. -3C. 3D. 9【答案】B【解析】解:∵|3-a|+=0,∴3=a,b=-6,则a+b=-3.故选B.直接利用绝对值的性质以及二次根式的性质得出a,b的值,进而得出答案.此题主要考查了非负数的性质,正确得出a,b的值是解题关键.10.若+(y+2)2=0,则(x+y)2017=()A. -1B. 1C. 32017D. -32017【答案】A【解析】解:根据题意得x-1=0,y+2=0,解得x=1,y=-2,则原式=(-1)2017=-1.故选:A.根据非负数的性质列出算式,求出x、y的值,计算即可.本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.11.已知x、y为实数,且+3(y-1)2=0,则x-y的值为()A. 3B. -3C. -1D. 1【答案】D【解析】解:∵且+3(y-1)2=0,∴x=2,y=1.∴x-y=2-1=1.故选:D.先依据非负数的性质求得x、y的值,再代入计算即可.本题主要考查的是非负数的性质、求得x、y的值是解题的关键.12.已知非零实数满足.则等于().A. -1B. 0C. 1D. 2【答案】C【解析】【分析】本题主要考查了算术平方根的性质和根据两个非负数之和等于0,求未知数的值,首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出+=0.这是两项非负数之和等于0.则可分别求出a和b的值.【解答】解:由题设知a≥3,所以,题设的等式为,于是a=3,b=-2,从而a+b=1.故选C.13.如果+(5-b)2=0,那么点A(a,b)关于原点对称的点A′的坐标为()A. (3,5)B. (3,-5)C. (-3,5)D. (5,-3)【答案】B【解析】【分析】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.根据非负数的和等于零,可得a,b的值,根据关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【解答】解:由题意,得a+3=0,5-b=0,解得a=-3,b=5,即A(-3,5)关于原点对称的点A′的坐标为(3,-5),故选:B.14.已知a、b满足+|2b+1|=0,则+b的值是()A. B. 1 C. -1 D. 0【答案】D【解析】解:由题意得,a-=0,2b+1=0,解得,a=,b=-,则+b=-=0,故选:D.根据非负数的性质列出算式,求出a、b的值,根据平方根的概念计算即可.本题考查的是非负数的性质,掌握几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.15.已知+(b+)2=0,则a2016b2017的值是()A. 2B. -2C.D. -【答案】D【解析】解:由题意得,a-2=0,b+=0,解得a=2,b=-,所以,a2016b2017=22016(-)2017,=22016(-)2016×(-),=[2×(-)]2016×(-),=-.故选D.根据非负数的性质列方程求出a、b的值,然后代入代数式,再转化为同指数的幂的运算,然后根据积的乘方的性质进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.若+|x-3y-17|=0,则x,y的值分别为()A. x=8,y=-3B. x=7,y=7C. x=-8,y=3D. x=-7,y=-7【答案】A【解析】解:由题意得:,解得:,故选:A.根据已知等式,利用非负数的性质列出方程组,求出方程组的解即可得到x与y的值.此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.17.已知,则(a+b)2019的值为 ( )A. -1B. 1C. 0D. 2019【答案】A【解析】【分析】本题考查的是非负数的性质,熟知几个非负数的和为0时,每一项必为0是解答此题的关键.先根据非负数的性质求出a、b的值,再代入代数式进行计算即可.【解答】解:∵,∴a-2=0,b+3=0,∴a=2,b=-3,∴(a+b)2019= (2-3)2019 = (-1)2019=-1.故选A.18.已知实数a,b满足+|b-2|=0,那么点P(a,b)的坐标为()A. (-3,2)B. (-3,-2)C. (3,2)D. (3,-2)【答案】A【解析】解:∵+|b-2|=0,∴3+a=0,b-2=0,解得:a=-3,b=2,∴点P(a,b)的坐标为(-3,2),故选:A.根据算术平方根和绝对值具有非负性可得3+a=0,b-2=0,解可得a、b的值,进而可得P的坐标.此题主要考查了算术平方根,关键是掌握算术平方根和绝对值具有非负性.19.下列各式中没有意义的是()A. B. C. D.【答案】A【解析】【分析】本题考查了算术平方根的双重非负性和立方根的知识.根据算术平方根的性质和立方根的性质逐项判断即可.【解答】解:A.的被开方数-7<0,没有意义,故本选项正确;B.的被开方数0.01>0,有意义,故本选项错误;C.的被开方数(-3)2>0,有意义,故本选项错误;D.是开3次方,被开方数-8<0,有意义,故本选项错误;故选A.20.若x,y满足(x+2)2+=0,则的平方根是()A. ±4B. ±2C. 4D. 2【答案】B则=4的平方根是:±2.故选:B.直接利用偶次方的性质以及二次根式的性质得出x,y的值,进而利用平方根的定义得出答案.此题主要考查了算术平方根以及偶次方的性质,正确把握相关定义是解题关键.21.已知△ABC的三边为a,b,c,且a,b,c满足(a-6)2+|10-b|+=0,则△ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 以上都有可能【答案】A【解析】解:∵(a-6)2+|10-b|+=0,∴a-6=0,10-b=0,c-8=0,∴a=6,b=10,c=8,∴a2+c2=b2,∴△ABC是直角三角形,故选:A.根据非负数的性质列出算式,求出a、b、c的值,根据勾股定理的逆定理得出直角三角形即可.本题考查了勾股定理的逆定理,绝对值、偶次方的非负性的应用,能灵活运用勾股定理的逆定理进行推理是解此题的关键.22.已知、为实数,且,则的值为()A. -1B. 1C. -3D. 3【答案】A【解析】【分析】本题考查了代数式求值、偶次幂和二次根式的非负性的知识点,准确确定出x、y的对应关系是解题的关键.根据偶次幂和二次根式的非负性求出x、y,然后代入代数式进行计算即可得解.【解答】解:∵,∴x-1=0,y-2=0,解得:x=1,y=2,把x=1,y=2代入x-y,得:1-2=-1,故选A.23.若+(y+2)2=0,则(y+x)2019等于()A. -1B. 1C. 32018D. -32018【答案】A∴x=1,y=-2,∴(y+x)2019=-1.故选:A.直接利用非负数的性质得出x,y的值,再利用有理数的乘方运算法则计算即可.此题主要考查了非负数的性质,正确得出x,y的值是解题关键.24.已知+|b-2|=0,那么(a+b)2009的值为()A. -1B. 1C. 52009D. -52009【答案】A【解析】【解答】解:根据题意得,3+a=0,b-2=0,解得a=-3,b=2,∴(a+b)2009=(-3+2)2009=-1.故选:A.【分析】根据非负数的性质列式求出a、b的值,再代入代数式进行计算即可求解.本题考查了算术平方根,绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是求解的关键.25.已知=0,则x+y的值为()A. 10B. -10C. -6D. 不能确定【答案】C【解析】解:∵=0,∴x-2=0,y+8=0,解得x=2,y=-8,∴x+y=2-8=-6.故选:C.先根据非负数的性质求出x、y的值,再求出x+y的值即可.本题考查的是非负数的性质,熟知算术平方根具有非负性是解答此题的关键.26.当的值为最小时,的取值为()A. -1B. 0C.D. 1【答案】C【解析】【分析】本题考查的知识点有:二次根式的非负性,且有最小值,为0;没有最大值.根据二次根式的非负性可知≥0,由此得到4a+1=0为最小值,这样即可得出a的值.【解答】解:取最小值,即4a+1=0.得a=,故选C.27.若,则x,y的值为A. B. C. D.【答案】D【解析】【分析】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.根据二元一次方程组的解法以及非负数的性质即可求出答案.【解答】解:由题意可知:解得:故选D.28.如果,那么(xy)2019等于()A. 2019B. -2019C. 1D. -1【答案】D【解析】【分析】本题主要考查了绝对值和偶次方的非负性的运用和二次根式的运算,解答此题根据数的非负性可得关于x,y的方程,然后解之可得x,y的值,最后将x,y的值代入计算即可. 【解答】解:∵,由数的非负性可得:,解得:x=,y=,∴.故选D.29.若x,y为实数,且满足|x-1|+=0,则的算术平方根为( )A.4 B. 4 C. 2 D. 2【答案】C【解析】【分析】本题考查绝对值的非负性,算术平方根的非负性,算术平方根的定义,求代数式的值,关键是先根据绝对值的非负性,算术平方根的非负性求得x,y的值,再代入计算即可解答.【解答】解:因为|x-1|+=0,且|x-1|0,0,所以|x-1|=0,=0,所以x=1,y=15,==4,=2,所以的算术平方根为2.故选C.30.在平面直角坐标系中,点M(a,b)的坐标满足(a-3)2+=0,则点M在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】解:∵(a-3)2+=0,∴a=3,b=2,∴点M(3,2),故点M在第一象限.故选:A.直接利用偶次方的性质以及二次根式的性质得出a,b的值,进而确定其所在象限.此题主要考查了非负数的性质,正确得出a,b的值是解题关键.31.若满足,则的平方根是:A. B. C.4 D. 2【答案】B【解析】【分析】此题主要考查了算术平方根以及偶次方的性质,正确把握相关定义是解题关键.直接利用偶次方的性质以及二次根式的性质得出x,y的值,进而利用平方根的定义得出答案.【解答】解:∵,∴x=-2,y=18,则=4的平方根是:±2.故选B.32.若|x﹣2|+=0,则-xy的值为()A. ﹣8B. ﹣6C. 5D. 6【答案】D【解析】【分析】本题考查的是非负数的性质,一元一次方程的解法及代数式的求值.题目注重基础,比较简单.已知任何数的绝对值一定是非负数,二次根式的值一定是一个非负数,由于已知的两个非负数的和是0,根据非负数的性质得到这两个非负数一定都是0,从而得到一个关于x、y的方程组,解方程组就可以得到x、y的值,进而求出-xy的值.【解答】解:∵|x-2|≥0,≥0,而,∴x-2=0且y+3=0,∴x=2,y=-3,∴-xy=-2×(-3)=6.故选D.33.若,则点在第象限.A. 四B. 三C. 二D. 一【答案】D【解析】【分析】本题考查了非负数的性质及平面直角坐标系点的坐标特征,①非负数有最小值是零;②有限个非负数之和仍然是非负数;③有限个非负数的和为零,那么每一个加数也必为零.,初中范围内的非负数有:绝对值,算术平方根和偶次方.先根据非负数的性质求出x和y 的值,再根据平面直角坐标系点的坐标特征判断即可.【解答】解:∵,∴,解之得,∴点在第一象限.故选D.34.若x,y满足|x-3|+=0,则的值是()A. 1B.C.D.【答案】A【解析】解:∵|x-3|+=0,∴x-3=0,x+2y+1=0,解得:∴==1故选:A.根据非负数的性质,非负数之和等于0时,各项都等于0利用此性质列方程解决问题.此题考查了非负数的性质,熟练掌握运算法则是解本题的关键.35.已知+|b+3|=0,则P(-a,-b)的坐标为()A. B. C. D.【答案】C【解析】【分析】本题主要考查了算术平方根和绝对值的非负性的运用,坐标的确定,解答此题可先由数的非负性得到关于a,b的方程,然后解之即可求出a,b的值,从而可得点P的坐标. 【解答】解:∵,∴,解得:,∴点P的坐标为(-2,3),故选C.36.已知,则的值为( )A. 1B. -1C. 2017D. -2017【答案】A【解析】【分析】此题考查了解二元一次方程组,绝对值的非负性及算术平方根的非负性,有理数的乘方,熟练掌握运算法则是解本题的关键.根据非负数的性质列出方程组,求出方程组的解得到a与b的值,即可求出原式的值.【解答】解:∵,∴,解得:,则原式=(1-0)2017=1.故选A.二、填空题(本大题共58小题,共174.0分)37.若实数a、b满足|a+2|,则=______.【答案】1【解析】解:根据题意得:,解得:,则原式==1.故答案是:1.根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.38.若a,b,c为三角形的三边,且a,b满足,第三边c为奇数,则c=________.【答案】9【解析】【分析】本题主要考查了三角形三边关系以及非负数的性质,解题的关键是求出a和b的值,此题难度不大.先根据非负数的性质求出a和b的值,再根据三角形三边关系求出c的取值范围,进而求出c的值.【解答】解:∵a、b满足+(b-2)2=0,∴a-9=0,b-2=0,∴a=9,b=2,∵a、b、c为三角形的三边,∴7<c<11,∵第三边c为奇数,∴c=9.故答案为9.39.已知a、b满足(a-1)2+=0,则a+b=______.【答案】-1【解析】解:∵(a-1)2+=0,∴a=1,b=-2,∴a+b=-1.故答案为:-1.直接利用非负数的性质得出a,b的值,进而得出答案.此题主要考查了非负数的性质,正确得出a,b的值是解题关键.40.已知|2a+1|+=0,则ab= ______ .【答案】1【解析】【分析】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,2a+1=0,b+2=0,解得a=-,b=-2,所以,ab=(-)×(-2)=1.故答案为1.41.若|x2-16|+=0,则x+y=______.【答案】7或-1【解析】解:∵|x2-16|+=0,∴x2-16=0,y-3=0,解得x=±4,y=3,∴当x=4,y=3时,x+y=4+3=7;或当x=-4,y=3时,x+y=-4+3=-1.故答案为:7或-1.根据非负数的性质和算术平方根的概念求出x、y的值,代入代数式计算即可.本题考查了非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.42.已知+|3x+2y-15|=0,则的算术平方根为______.【答案】【解析】解:由题意得,x+3=0,3x+2y-15=0,解得x=-3,y=12,所以,==3,所以,的算术平方根为.故答案为:.根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据算术平方根的定义解答.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.43.若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为______ .【答案】(-3,-2)【解析】解:∵+(b+2)2=0,∴a=3,b=-2;∴点M(a,b)关于y轴的对称点的坐标为(-3,-2).先求出a与b的值,再根据平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出M的对称点的坐标.本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,也考查了非负数的性质.44.如果与(2x﹣4)2互为相反数,那么2x﹣y的平方根是____.【答案】±1【解析】【分析】此题主要考查了平方根以及算术平方根和偶次方的性质,正确得出x,y的值是解题关键.直接利用算术平方根以及偶次方的性质得出2x-y的值,进而得出答案.【解答】解:∵与互为相反数,∴,∴y-3=0,2x-4=0,解得:y=3,x=2,∴2x-y=1,∴2x-y的平方根是:±1.故答案为±1.45.已知,则b a+a c=________.【答案】11【解析】解:根据题意得:a-2=0,b+3=0,c-1=0,解得a=2,b=-3,c=1.则原式=9+2=11.故答案是:11.根据非负数的性质“非负数相加,和为0,这几个非负数的值都为0”求出a、b、c的值,再代入代数式求解.本题主要考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们的和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.46.若+|b+1|=0,则a-b=______.【答案】3【解析】【分析】本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0是解题的关键.根据非负数的性质进行计算即可.【解答】解:∵+|b+1|=0,∴a-2=0,b+1=0,∴a=2,b=-1,∴a-b=2+1=3,故答案为3.47.已知(x-y+1)2+=0,则x+y的值为______.【答案】【解析】解:由题意可知:解得:∴x+y=故答案为:根据非负数的性质以及二元一次方程的解法即可求出答案.本题考查学生的计算能力,解题的关键是正确列出方程组,本题属于基础题型.48.若+|2a-b+1|=0,则(b-a)2016=______.【答案】1【解析】解:∵+|2a-b+1|=0,∴,解得:,则原式=1.故答案为:1.根据题意,利用非负数的性质列出方程组,求出方程组的解得到a与n的值,代入原式计算即可得到结果.此题考查了解二元一次方程组,以及非负数的性质,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.49.已知,则x-20172=_____________。

七年级数学上册专题提分精练绝对值的非负性基础篇(解析版)

七年级数学上册专题提分精练绝对值的非负性基础篇(解析版)

专题04 绝对值的非负性基础篇1.若|a﹣1|+|b﹣2|=0,则a+b的值为()A.3B.﹣3C.0D.3或﹣3【答案】A【解析】【分析】由绝对值的非负性,先求出a、b的值,然后相加即可得到答案.【详解】解:∵|a﹣1|+|b﹣2|=0,∴a﹣1=0,b﹣2=0,∴a=1,b=2,∴a+b=1+2=3;故选:A【点睛】本题考查了绝对值的非负性,解题的关键是掌握非负数的应用,正确求出a、b的值.2.若|a﹣3|+|2﹣b|=0,则a2+b2的值为()A.12B.13C.14D.15【答案】B【解析】【分析】先由非负数性质得出a、b的值,再代入算式计算可得.【详解】解:∵|a﹣3|+|2﹣b|=0,∴a﹣3=0且b﹣2=0,即a=3、b=2,则原式=32+22=13,故选:B.【点睛】本题考查代数式求值,解题关键是掌握绝对值的非负性.3.已知|4+a|+(4﹣2b)2=0,则a+2b=()A.﹣4B.0C.﹣8D.8【答案】B【解析】【分析】根据绝对值的非负性、偶次方的非负性解决此题.【详解】解:∵|4+a |≥0,(4﹣2b )2≥0,∴当|4+a |+(4﹣2b )2=0时,4+a =0,4﹣2b =0.∴a =﹣4,b =2.∴a +2b =﹣4+2×2=﹣4+4=0.故选:B .【点睛】本题考查非负数的定义,两个非负数相加为0,则分别为0.4.如果()2430x y -++=,那么x -y 的值为( )A .-1B .1C .-7D .7 【答案】D【解析】【分析】根据任何数的绝对值、平方都是非负数,可以得x -4=0,y +3=0,即可求解.【详解】解:∵|x -4|≥0,|y +3|≥0,而|x -4|+|y +3|=0,∴x -4=0,y +3=0,解得:x =4,y =-3,∴x -y =4-(-3)=7,故选:D .【点睛】本题考查了非负数的性质:多个非负数的和为零,那么每一个加数必为零.5.如果|3|3x x -=,则x 的取值范围是( )A .0x >B .0xC .0xD .0x < 【答案】B【解析】【分析】根据题意得30x ,进行解答即可得.【详解】解:∵|3|3x x -=∴30x ,∴0x ≥,【点睛】本题考查了绝对值,解题的关键是掌握绝对值的非负性.6.若|a |+|b |=0,则a 与b 的大小关系是( )A .a =b =0B .a 与b 互为倒数C .a 与b 异号D .a 与b 不相等【答案】A【解析】【分析】根据非负数的性质列出方程,求出a 、b 的值即可.【详解】解:∵|a |+|b |=0,|a |≥0,|b |≥0,∴|a |=0,|b |=0,∴a =0,b =0.故选:A .【点睛】本题考查了绝对值的非负性:注意两个非负数的和为0,则这两个非负数均为0. 7.若|1|a -与2b -互为相反数,则a +b 的值为( )A .3B .-3C .0D .3或﹣3 【答案】A【解析】【分析】根据非负数互为相反数,可得这两个数为零,可得a 、b 的值,再根据有理数的加法,可得答案.【详解】解:由||1|a -与2b -互为相反数,得a −1=0,b −2=0,解得a =1,b =2,a +b =1+2=3,故选:A .【点睛】本题考查了非负数的性质,利用非负数互为相反数得出这两个数为零是解题关键. 8.若|m -3|+(n+1)2=0,则m+n 的值是( )A .-2B .2C .-3D .3【解析】【分析】直接利用绝对值以及偶次方的性质得出m ,n 的值,进而得出答案.【详解】解:∵|m -3|+(n+1)2=0,∴m=3,n=-1,则m+n=3-1=2.故选:B .【点睛】此题主要考查了绝对值以及偶次方的性质,正确得出m ,n 的值是解题关键.9.若()21302a b ++-=.则( ) A .1,32a b == B .1,32a b =-= C .1,32a b ==- D .1,32a b =-=- 【答案】B【解析】【分析】 根据非负数的性质可列式12a +=,3b -=0,即可求出a 、b 的值. 【详解】 解:根据题意得:12a +=0,3b -=0, 解得132a b =-=,. 故选:B .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.若ABC ∆的三条边长分别是a 、b 、c ,且()20a b b c -+-=则这个三角形是( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 【答案】B【解析】【分析】根据非负性质求出a,b,c 的关系,即可判断.∵()20a b b c -+-=,∴a=b,b=c,∴a=b=c,∴△ABC 为等边三角形.故选B .【点睛】本题考查平方和绝对值的非负性,等边三角形的判定,关键在于利用非负性解出三边关系. 11.若|a -2|+|b+3|=0,则 -ab 的值为( )A .6B .-6C .12D .-12 【答案】A【解析】【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0求得a 和b 的值,进而求得代数式的值.【详解】解:根据题意得:a -2=0,b+3=0,解得:a=2,b=-3,则原式=6,故选A .【点睛】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键. 12.若2|3|(1)0m n -++=,则m n +的值为( )A .﹣4B .﹣2C .2D .4 【答案】C【解析】【分析】 由非负数的性质可得:3010m n -=⎧⎨+=⎩,解方程组可得答案. 【详解】解:由题意得:3010m n -=⎧⎨+=⎩3,1m n =⎧∴⎨=-⎩()312m n ∴+=+-=.故选C .【点睛】本题考查的是非负数的性质,掌握非负数的性质是解题的关键.13.|x -2|+9有最小值为________.【答案】9【解析】【分析】根据绝对值的非负性解答即可.【详解】 解:∵20-≥x ∴299x -+≥ ∴29x -+的最小值为9.故答案为:9.【点睛】本题考查了非负数的性质,掌握绝对值的非负性是解题的关键.14.y 等于__时,式子|y -3|+1有最小值.【答案】3【解析】【分析】利用绝对值的非负性计算求值即可;【详解】解:∵|y -3|≥0,当y =3时,绝对值为零,∴当y =3时,|y -3|+1有最小值1,故答案为:3;【点睛】本题考查了绝对值(数轴上表示数a 的点与原点的距离,记作│a │;正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数);掌握定义是解题关键.15.当式子23b -+取最小值时,b =______,最小值是______.【答案】 2 3【解析】【分析】利用绝对值的非负性即可解答;解:∵|b -2|≥0,∴当b =2时,23b -+取得最小值3,故答案为:2,3;【点睛】本题考查了绝对值的性质;掌握其性质是解题关键.16.代数式101x -+-的最小值为________.【答案】-10【解析】【分析】直接运用绝对值的性质分析得出答案.【详解】解:∵|x -1|最小值为0,∴当x =1时,-10+|x -1|有最小值,最小值为:-10.故答案为:-10.【点睛】本题主要考查了非负数的性质,正确掌握绝对值的性质是解题关键.17.当a =________时,代数式43a -+有最小值是________.【答案】 4 3【解析】【分析】根据绝对值的非负性分析求解.【详解】解:|4|0a -,|4|33a ∴-+,∴当|4|0a -=,40a -=,即4a =时, 代数式43a -+的最小值是3,故答案为:4;3.【点睛】本题考查绝对值的非负性,解题的关键是理解||0a .18.式子2a -的最________(选:大,小)值是_______;当=a _______时,代数式()225a ++取得最小值是_______.【答案】 大 2 -2 5【分析】根据绝对值和平方的非负性求解即可.【详解】 解:∵0a ≥, ∴20a -≤,∴当0a =时,2a -有最大值2∵()220a +≥,∴()2255a ++≥∴当2a =-时,()225a ++的最小值是5,故答案为:大,2,-2,5.【点睛】本题主要考查了绝对值的非负性,平方的非负性,解题的关键在于能够熟练掌握相关知识进行求解.19.当5-|1x +|取最大值时,x =________;这时的最大值是________.【答案】 -1 5【解析】【分析】 结合题意,根据绝对值的性质,得当10x +=时,5-|1x +|取最大值;通过求解绝对值方程得x 的值,结合代数式的性质计算,即可得到答案. 【详解】 当1x +取最小值,即10x +=时,5-|1x +|取最大值;∴1x =- ∴515x -+=故答案为:-1,5.【点睛】本题考查了绝对值、代数式的知识;解题的关键是熟练掌握绝对值和代数式的性质,从而完成求解.20.代数式|2||2|x ++-的最小值等于__________.【答案】2【解析】【分析】根据绝对值的非负性即可得出结论【详解】解:∵|2|0x +≥ ;|2|-=2∴|2||2|x ++-的最小值为2【点睛】此题考查了绝对值的非负性和绝对值的意义,熟练掌握绝对值的性质是解本题的关键. 21.当21x y ++取最小值时,代数式423x y ++的值是________.【答案】3.【解析】【分析】 根据21x y ++取最小值时,2=0x y +,则2x+y=0,然后将代数式423x y ++变形为2(2x+y)+3,整体代入即可求解.【详解】 解:∵20x y +≥ ∴当21x y ++取最小值时,2=0x y +∴2x+y=0∴423x y ++=2(2x+y)+3=3故答案为:3.【点睛】本题主要考察了绝对值的性质、用整体代入法求代数式的值,解题的关键是熟练掌握绝对值的性质以及用整体代入法求代数式的值.22.如果x 为有理数,式子202063x ++的最小值等于________.【答案】2020【解析】【分析】根据绝对值的非负性解得即可【详解】∵x 为有理数, ∴根据绝对值的非负性:3x +≥0,∴63x +≥0,∴202063x ++≥2020, ∴202063x ++的最小值为2020,故答案为:2020.【点睛】本题考查了绝对值的非负性,解题的关键是掌握:任何一个数的绝对值都是非负数. 23.836x --有最大值是_______,此时x 的取值为__________ .【答案】 8 2【解析】【分析】 由绝对值的性质非负性,即360x -≥,减一个非负数,只有当减数最小时,差才最大,当36=0x -,836x --最大=8,此时3x —6=0,求出x 即可.【详解】 由360x -≥,当36=0x -,836x --最大值为8,此时3x —6=0,x =2.故答案为8;2.【点睛】本题考查最值问题,掌握减一个非负数,差最大,减数越小差越大,会利用非负数求最值问题.24.式子31x -+,当x =____时,它存在最小值,式子521x --,当x =_____时,它存在最大值.【答案】 312【解析】【分析】 分别找到3x -和21x -的最小值即可得出答案.【详解】 30x -≥,31011x ∴-+≥+≥,∴31x -+的最小值为1,此时30x -=,即3x =; 210x -≥,521505x ∴--≤-≤,∴521x --的最大值为5,此时210x -=,即12x =;故答案为:3,12.【点睛】本题主要考查最大值和最小值,掌握绝对值的非负性是解题的关键.25.当a =________时,式子82a 3--有最大值.【答案】1.5【解析】【分析】根据绝对值非负数解答即可.【详解】解:2a 30-=即a 1.5=时,式子82a 3--有最大值8.故答案为:1.5.【点睛】本题考查了绝对值非负性的应用,熟练应用绝对值的性质是解题关键.26.式子︱x +1︱的最小值是__ ,这时x 值为 ____ .【答案】 0 -1【解析】【分析】根据一个有理数的绝对值非负可得所求式子的最小值,进而可得x 的值.【详解】解:一个数的绝对值最小是0,所以1x +的最小值是0,此时10x +=,所以1x =-. 故答案为:0,﹣1.【点睛】本题考查了有理数的绝对值,明确题意、熟知绝对值的意义是关键.27.式子9-︱2m -1︱有最大值_____,m=______【答案】 912【解析】【分析】由绝对值的非负性可得出结论.【详解】 ∵210-≥m ∴9219--≤m 当21=0-m 即12m =时,921--m 有最大值9.本题考查绝对值的非负性,熟练运用非负性建立不等式是解题的关键.28.代数式51x --的最大值是______.【答案】5【解析】【分析】 根据绝对值的非负数判断1x -≥0,然后求解即可.【详解】 ∵1x -⩾0,∴当x=1时,代数式5−1x -的最大值,最大值为5.故答案为5.【点睛】此题考查非负数的性质:绝对值,解题关键在于掌握其性质.29.式子5-|a +b |的最大值是_______,当它取最大值时,a 与b 的关系是______.【答案】 5 互为相反数【解析】【分析】5-|a +b |有最大值,则只有当|a +b |取最小值时才满足,可知|a +b |是非负数,大于等于0,所以|a +b |最小值是0.由此判断出最大值和a 与b 的关系.【详解】因为5-|a +b |有最大值所以只有|a +b |有最小值因为|a +b |≥0所以|a +b |的最小值是0则当|a +b |=0时,5-|a +b |的最大值为5-0=5故此时a +b=0,所以a 与b 互为相反数.故答案为5; 互为相反数.【点睛】 本题需要注意的是非负数的形式为0a ≥,还有互为相反数的两个数和为0.30.当x =___________时,5-|2x -3|有最大值. 【答案】32【解析】若要5-|2x -3|取得最大值,则|2x -3|需取得最小值,而|2x -3|的最小值为0,据此求解可得.【详解】解:若要5-|2x -3|取得最大值,则|2x -3|需取得最小值,而|2x -3|的最小值为0,即2x -3=0,解得:x=32, 故答案为32. 【点睛】本题主要考查绝对值和非负数的性质,解题的关键是掌握任意一个数的绝对值都是非负数.31.用字母a 表示一个有理数,则||a 一定是非负数,也就是它的值为正数或0,所以||a 的最小值为0,而||a -一定是非正数,即它的值为负数或0,所以||a -有最大值0,根据这个结论完成下列问题:(1)||1a +有最_____值________;(2)5||a -有最______值_________;(3)当a 的值为________时,|1|2a -+有最_________值__________;(4)若|1||1|0a b -++=,则ab =____________.【答案】(1)小,1;(2)大,5;(3)1,小,2;(4)-1.【解析】【分析】(1)根据||a 的最小值为0即可得答案;(2)根据||a -有最大值0即可得答案;(3)根据|a -1|≥0可得|a -1|+2≥2,即可答案;(4)根据非负数性质可得a 、b 的值,即可求出ab 的值.【详解】(1)∵|a|≥0,∴|a|+1≥1,∴|a|+1有最小值1,故答案为:小,1(2)∵-|a|≤0,∴5-|a|≤5,∴5-|a|有最大值5,故答案为:大,5(3)∵|a -1|≥0,∴|a -1|+2≥2,∴a -1=0,即a=1时,|a -1|+2有最小值2,故答案为:1,小(4)∵|1||1|0a b -++=∴a -1=0,b+1=0,解得:a=1,b=-1,∴ab=1×(-1)=-1.故答案为:-1【点睛】本题考查非负数性质,如果几个非负数得和为0,那么这几个非负数都为0;熟练掌握非负数性质是解题关键.。

中考数学考点专题复习 应用非负性质解题

中考数学考点专题复习 应用非负性质解题

应用非负性质解题
在初中代数中出现的非负数主要有三类:
1. 绝对值:任何一个实数的绝对值都是非负数,即。

2. 平方:任何一个实数的平方都是非负数,即。

3. 算术平方根:任何一个非负数的算术平方根都是一个非负数,即。

解题过程中巧用以上三个非负性质可以简捷地处理许多问题。

现举例说明如下。

例1. 已知a 、b 为实数,且满足,求ab 的值。

分析:解决本题只需从已知等式中求出a 、b 值即可。

应用中的非负性质可以立即求出b 的值,从而进一步得到a 的值。

解:由题意可知且
例2. 若a 、b 、c 满足,求的值。

解:由非负数的性质可知,且,且
例3. 已知,求的值。

解:已知等式可化为
a ≥0a 20≥a a ≥≥00()a
b b =-+-+21121a a ≥0210b -≥120-≥b ∴=⨯=ab 11212a b
c a b c -++⎛⎝ ⎫⎭⎪+-+=312402a c a b -+a -=301202
b c +⎛⎝ ⎫⎭⎪=40a b c -+=()x y x y ++-=12x y +()x y x y +-+-=2
20
()()∴+++-=+≥∴++>∴+-=∴+=∴+=x y x y x y x y x y x y x y 1200
10
20
2
4。

初中数学重点梳理:非负数

初中数学重点梳理:非负数

非负数知识定位知道常见的几种非负数,偶次根式,绝对值,二次方程有根的判别系数,常见的题型主要是利用非负数的性质建立方程,不等式,从而求值或证明。

知识梳理非负数:正数和零统称为非负数1、几种常见的非负数(1)实数的绝对值是非负数,即|a|≥0在数轴上,表示实数a的点到原点的距离叫做实数a的绝对值,用|a|来表示设a为实数,则绝对值的性质:①绝对值最小的实数是0②若a与b互为相反数,则|a|=|b|;若|a|=|b|,则a=±b③对任意实数a,则|a|≥a,|a|≥-a④|a·b|=|a|·|b|,(b≠0)⑤||a|-|b||≤|a±b|≤|a|+|b|(2)实数的偶次幂是非负数如果a为任意实数,则≥0(n为自然数),当n=1时,≥0(3)算术平方根是非负数,即≥0,其中a≥0.算术平方根的性质:(a≥0)=2、非负数的性质(1)有限个非负数的和、积、商(除数不为零)是非负数(2)若干个非负数的和等于零,则每个加数都为零(3)若非负数不大于零,则此非负数必为零3、对于形如的式子,被开方数必须为非负数;例题精讲◆专题一:利用非负数的性质解题: 【试题来源】【题目】已知实数x 、y 、z 满足,求x +y +z 的平方根。

【答案】0 【解析】∵,∴.∵|x-y|>=0, , ,∴解得x +y +z =0所以求x +y +z 的平方根为0 【知识点】非负数 【适用场合】当堂例题 【难度系数】2【试题来源】【题目】已知()0446222=+-+++y xy x y x ,则的值为______________;【答案】2【解析】(x+y-6)²≥0, 2244y xy x +- ≥0,(x+y-6)²+ 2244y xy x +- =0,两个非负数的和为0,只能都是0.所以x+y-6 =0,x²-4xy+4y²=(x-2y)²=0, 即x+y-6 =0, x-2y =0, 解得x=4,y=2. ∴x-y=2,【知识点】非负数 【适用场合】当堂练习题 【难度系数】3【试题来源】 【题目】若,的值【答案】【解析】解:因为,所以,从而.所以【知识点】非负数 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】设a 、b 、c 是实数,若,求a 、b 、c 的值【答案】1130===c ,b ,a 【解析】,,,,,【知识点】非负数 【适用场合】当堂练习题 【难度系数】3◆专题二:对于 的应用【试题来源】【题目】已知x 、y 是实数,且 ;【答案】81 【解析】根据题意32112+-+-=x x y ,知012≥-x 且021≥-x ,所以21=x ,y=381=y x【知识点】非负数 【适用场合】当堂例题 【难度系数】3【试题来源】 【题目】已知、、适合关系式:y x y x z y x z y x --+-+=-++--+20152015223 ,求z y x -+3 的平方根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用非负数的性质解题
长安中学 王尊丰
大于或等于零的实数统称非负数,非负数的类型有:(1)实数的绝对值是非负数;(2)非负数的算术平方根是非负数;
(3)实数的偶次方是非负数。

常用的非负数的性质有:
(1)有限个非负数之和,仍为非负数;
(2)若有限个非负数之和等于零,则每一个非负数必为零。

例1:已知0|72|)1(2=+++--y x y x ,求2x-3y 的值。

分析:有限个非负数的和等于零,则每个非负数都为零。

解:由题意得:⎩
⎨⎧=++=--07201y x y x 解方程组得:⎩⎨
⎧-=-=3
2y x 故2x-3y=5 例2:0|2|12=-+-b a ,则a 2+b 2= 解:∵12-a 与|2|-b 均为非负数。

∴⎩⎨⎧=-=-02012b a 解得 ⎪⎩⎪⎨⎧==221b a ∴4
142)21(2222=+=+b a
例3:0||2)1(2=+-++++-c b a b a a ,求代数式ab-c 2的值。

解:∵2)1(2++-b a 、a 与|a-b+c|均为非负数。

∴⎪⎩⎪⎨⎧=+-=++=-0020
12c b a b a x
解得⎪⎩
⎪⎨⎧-=-==431c b a ∴19)4()3(122-=---⨯=-c ab
例4:若x 、y 、z 均为实数,且x 、y 、z 满足关系0)522(3
134|73|212=+-+-+++-z x z y y x ,求(y-x )xz 的值。

解:由题意得⎪⎩
⎪⎨⎧=+-=-+=+-05220340
73z x z y y x 解得⎪⎪⎩
⎪⎪⎨⎧==-=2112z y x ∴3
13)21()(121
2==+=--⨯-xz x y 例5:求方程145222-=++-y y xy x 的实数解。

分析:应用常规的方法不可能求出方程的实数解,因此,必须将方程变形:0)144()2(222=++++-y y y xy x ,因此,222)(2y x y xy x -=+-,22)12(144+=++y y y ,则0)12()(22=++-y y x ,至此,可应用非负数的性质求解。

解:将原方程变形:0)144()2(222=++++-y y y xy x
0)12()(22=++-y y x
根据非负数性质可得⎩⎨⎧=+=-0
120y y x
∴2
1-==y x
例6:设四边形的四条边分别为a 、b 、c 、d ,且满足等式a 4+b 4+c 4+d 4=4abcd ,求证这四边形为菱形。

证明:∵ a 4+b 4+c 4+d 4=4abcd
∴a 4+b 4+c 4+d 4-4abcd=0
024222222242244224=+-++-++-d c abcd b a d d c c b b a a 0)(2)()(2222222=-+-+-cd ab d c b a
∴0)(222=-b a 0)(222=-d c 0)(22=-cd ab 解得a=b=c=d ,∴此四边形为菱形。

解多个元只有一个方程而有求值问题的重要而基本的方法,就是应用非负数的性质,或通过配方变形,应用非负数的性质,列方程组求解。

相关文档
最新文档