数学分析3

合集下载

数学分析3测试题

数学分析3测试题
数学分析 3 测试题 1
一、填空题(每小题 4 分,共 24 分) 1. 由 | sin nx | ≤ n n

及 M 判别法可知级数 ∑
sin nx 在x ∈ n =1 n n .

内一致收敛.
2. 幂级数 ∑
3n ( x + 1) n 的收敛域为 n =1 n 1 x −x (e − e ) 在x=0的泰勒展开式 2 .收敛域为

x 的收敛域为 2 n n =1 (1 + x ) x 2 n+1 的收敛范围为 2n + 1

.
2. 幂级数 ∑ (−1)n
n =1
.
1 1 y 2 − x2 3. f , = , 则 f ( x, y ) = 2 xy x y
.
4
4. 设 x 2 + 2 y 2 + xy − z − 9 = 0 , 则 sin nx
( x , y )→ ( 0 , 0 )
.
, lim lim f ( x, y ) =
y → 0 x →0

lim
f ( x, y ) =
。 ,使 f(x,y)在全平面上
8. f ( x, y ) = 连续。 二、
x4 + y3 在(0,0)点定义 f 的值为 x2 + y2
计算及应用题(每小题 9 分,共 45 分)
2. 讨论函数 f ( x, y ) =
1
xy 2 , x 2 + y 2 ≠ 0; 2 4 3. 设 f ( x, y ) = x + y 试讨论函数f(x,y)在原点的连续性和一阶 0, 2 2 x +y =0 偏导数. 4. 用极限定义证明 lim xy − 1 = 3. y +1

数学分析3-期末考试真题

数学分析3-期末考试真题

3 数学分析试卷
11sin sin 01(),
0 0x y xy y x f x xy ⎧+≠⎪=⎨⎪=⎩
当、已知当()()
000000lim (,),lim lim (,)lim lim (,),x y x x y y f x y f x y f x y →→→→→→判断及是否存在,并说明理由。

2222
2,()1z z z x y x y h z x y ∂++=∂∂、已知=()是由确定的。

试求的值。

222
22231 x y z a b c
++=、求椭球体上任一点的切平面于坐标轴所围四面体体积的最大值。

22
22223/222 0()4(,)(,) 0 0x y x y x y f x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩
当、已知,判断的连续性及可微性。

当22265,0
x y z x y z ⎧++=⎨++=⎩、已知曲线方程为求在点(1,-2,1)处的切线方程和法平面方程。

23D 36,D x dxdy y xy
+⎰⎰、求二重积分已知为如图的区域。

7I ().1x y z dxdydz x y z Ω=++Ω++=⎰⎰⎰、计算三重积分其中为平面,
与三个坐标平面围城的空间区域。

2228I cos .1
xdydz ydzdx dxdy x y z ∑++∑++=⎰⎰、求曲面积分=其中为所谓区域的外侧。

L
9I sin . L Pdx x ydy =+⎰、求曲线积分已知如图所示。

S 22I (). S 2xy yz zx dS z x y ax ++=+=⎰⎰10、求曲面积分=已知为柱面所截的曲面。

数学分析 3,4,5章答案 华东师范大学

数学分析 3,4,5章答案 华东师范大学
9.(1)证明:若 存在,则 。
(2)若 存在,试问是否成立 ?
解:(1)证明因为 存在,设 ,则任给 ,存在 ,使得当 时,有 。此时取 ,则当 时, ,从而有 ,故有 。
(2)若若 存在, 并不一定成立。
例如
这里 存在,但 不存在,但是 则 。
3.函数极限存在的条件
1.叙述函数极限 的归结原则,并应用它证明 不存在。
所以 。
2.利用迫敛性求极限:
(1) ;(2) 。
解:(1)因为 趋于负无穷,所以当 时,
,而 ,由迫敛性定理得 。
(2)因为 趋于正无穷,所以当 时, 。而 , 。由迫敛性定理得 。
3.设 , ,证明:
(1) ;
(2) ;
(3) 。
证明:(1)因为 ,则对任给的 ,存在 ,当 时, 。 ,则对任给的 ,存在 ,当 时, 。对已给定的 ,取 ,当 时, 与 同时成立。当 时,
,对 ,存在 ,使得当 时,有 ,于是取 ,则当 ,即在 内有 。
8.求下列极限(其中 皆为正整数):
(1) ;(2) ;
(3) ;(4) ;
(5) 。
解:(1) 。
(2) 。
(3)由于
。由极限的四则运算法则,有

(4)由于 ,

(5)由于 ,当 时, 或 。对于两种形式,均有 ,由迫敛性定理得 。
解归结原则:设函数 为定义在 上的函数,则 存在的充要条件是:对任何含于 且趋于正无穷的数列 ,极限 都存在且相等。
证明由于 在 上有定义,设 ,则显然有 且 ,
但 ,有归结原则知 不存在。
2.设 为定义在 上的增(减)函数。证明: 存在的充要条件是 在 上有上(下)界。
证明只证一种情况即可。

第三学期 数学分析(3)试卷

第三学期 数学分析(3)试卷

一、填空题(每空3分,共24分)1、 设z x u ytan =,则全微分=u d __________________________。

2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则=x u _________________________。

3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。

4、 设,d ),()(sin 2y y x f x F xx⎰=),(y x f 有连续偏导数,则=')(x F __________________。

5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分⎰=Ls x yd _____________。

6、 在xy 面上,若圆{}122≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关于原点的转动惯量的二重积分表达式为_______________,其值为_____________。

7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=⎰⎰dxdy z S2_______。

二、计算题(每题8分,共56分) 1、 讨论yx y x y x f 1sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

2、 设),(2xy y x f u =具有连续的二阶偏导数,求二阶偏导数xx u 和xy u 。

3、 求22333),(y x x y x f --=在}16|),{(22≤+=y x y x D 上的最大值和最小值。

4、 求x x x e x xd sin e2⎰∞+---。

提示:C bx b bx a ba e x bx e ax ax+-+=⎰)cos sin (d sin 22。

5、 利用坐标变换求⎰⎰+-Dy x yx yx d d sec2,其中D 由1=+y x ,0=x 及0=y 围成。

数学分析3答案

数学分析3答案

一、单项选择题: 1.1220lim 1dxx αααα+→=++⎰.( B )A.2π B. 4π C. e D. +∞2.()Lx y ds +=⎰ 其中L 是以)1,0(),0,1(),0,0(B A O 为顶点的三角形 ( A )A. 1+B. 1C. D. 03.()Ly x dy -=⎰ .,其中L 为直线,AB(1,1),(2,3)A B ( A )A. 1B. 2C.12D. 3 4 Syzdxdy =⎰⎰ ,其中S 是球面2221x y z ++=的上半部分并取外侧为正向。

( D )A. 2πB. πC. 1D. 05.Lydx xdy +=⎰. , 其中22:1L x y += ( A )A. 0B. 1C. 2D. 3二、填空题:1. 22()Dx y dxdy +=⎰⎰2π, 其中22:1D x y +≤ 2.Vxyzdxdydz =⎰⎰⎰18. 其中:01,0V x y z ≤≤≤≤≤≤3. 将(,)DI f x y d σ=⎰⎰ 化成先对x 后对y 的累次积分为24422(,)y y dy f x y dx +-⎰⎰其中D 由24,2y x y x =-=围成。

4. 设L 是半圆周,0,sin ,cos :π≤≤⎩⎨⎧==t t a y t a x L则第一型曲线积分()22Lxy ds +=⎰ 3a π5. 格林公式建立了区域D 上二重积分与D 的边界曲线L的第二型曲线积分之间的联系。

设函数(,),(,)P x y Q x y 在闭区域D 上连续,且有一阶连续的偏导数,则格林公式可表示为LPdx Qdy +=⎰()DQ Pdxdy x y∂∂-∂∂⎰⎰。

三、计算题 1.计算22y DI x e dxdy -=⎰⎰,其中D 由0,1x y y x ===及围成。

解:此三条直线的交点分别为(1,1),(0,1),(0,0),所围区域如下图。

先对x 后对y 积分:2120yy I dy x edx -=⎰⎰213001[]3y yx e dy -=⎰ 2130111363y y e dy e-==-⎰2. 计算xdxdydz Ω⎰⎰⎰,其中Ω 是三个坐标面与平面 x+ y + z =1所围成的区域解 画出区域 D :0101y xx ≤≤-≤≤x d x d y d zΩ⎰⎰⎰ 11100x yxdxdy xdz ---=⎰⎰⎰110(1)x dxx x y dy -=--⎰⎰12011(1)224x x dx =-=⎰3计算⎰⎰d d Sxyz x y其中S 是球 面++=2221x y z 在≥≥0,0x y 部分并取球面的外侧。

数学分析第三章极限与函数的连续性03

数学分析第三章极限与函数的连续性03
即函数 y sin x 对任意 x (, )都是连续的. 同理可证 :函数 y cos x在区间(, )内也连续。
二、连续函数的四则运算

lim
xx0
f (x)
f
( x0
),
lim
xx0
g(x)
g(x0 ),

(1)
lim
xx0
(f
(
x)

g(x))

f
应用反函数连续性定理,继续证明定理3.15。
(3) 反三角函数. 由于y sin x在[ , ]上单调增加且连续, 22
故 y arcsin x 在[1,1]上也是单调增加且连续.
同理 y arccos x 在[1,1]上单调减少且连续; 反三角函数在其定义域内皆连续.
(4) 对数函数. (5) 幂函数.
得一区间套 {[an , bn ],} 满足 f (an ) 0, f (bn ) 0
根据区间套定理,知存在 r [a ,b],有
lim
n
Байду номын сангаас
an

lim
n
bn
r
由 f (x) 在 r 连续,知
f
(r)

lim
n
f
(an )

0
f
(r)

lim
n
f
(bn
)

0
故 f (r) 0 定理证完。
(x), g(x)都是无穷小量, 如果
lim
x x0
f (x) g(x)

0,则称
f (x) 关于 g(x) 是高阶无穷小量(或g(x) 关于f (x)是

数学分析第三章 函数极限

数学分析第三章  函数极限

f (x)
sgn x
1 0
x 0, 1, x 0
x 0;
问题:函数 y f ( x) 在x x0 的过程中,对应 函数值 f ( x)无限趋近于确定值 A.
f ( x) A 表示 f ( x) A任意小;
0
x
x 0
表示x
x 的过程. 0
x0
x0
x0 x
点x0 的去心 邻域, 体现x 接近x0 程度.
x
.
" M"定义 lim f ( x) A x
0,M 0,使当x M时,恒有 f (x) A .
几点注记
(1) x M表示比M大的所有实数, 而不仅仅是某些
正整数n。lim f (x) A意味着: A的任意小邻域内,含 x 有f 在 的某个邻域内的全部函数值。
(2)
lim f (x) A的邻域描述: ,U (),
2 sin x x0 2
sin x x0 2
x x0
任给 0, 存在 , 当0 x x0 时,
cosx cosx0 x x0 成立,
lim
xx0
c
os
x
cos
x0
.
x2 1 2
例5 证明
lim
x1
2x2
x
1
3
证明:当x 1时
x2 1 2 x 1 2 x 1 2x2 x 1 3 2x 1 3 32x 1
1 x x 0(x x 0) 时函数极限的 定义
定义2 设函数 f (x)在点x0 的某个空心邻域
U0 x0 ; 内有定义,A为定数,若对
0, ( ) 0 ,当 0 | x x0 | 时,有
| f (x) A |

《数学分析》第三章 一元函数微分学

《数学分析》第三章 一元函数微分学

第三章一元函数微分学一、本章知识脉络框图二、本章重点及难点微分学是数学分析的核心内容之一,导数是微分学的重要概念,用导数研究函数的性质是数学分析研究函数的一个特征.数学分析中的积分学、级数理论等也与导数有密切的联系.本章首先引入了函数导数与微分的概念;分析了可导性与连续性的联系;进而又讲述了导数的计算与高阶导数;最后介绍了几个比较重要的微分中值定理与导数的应用. 在学习过程中我们要注意导数与微分的概念及其实际意义;微分中值定理及其应用.本章的重点与难点主要有以下几个方面:● 函数导数的概念、可导性与连续性的关系;费马定理、导函数的介值定理;导数的运算(复合函数、反函数的求导法则);掌握参变量方程所确定的函数的导数;高阶导数的概念及其求法.● 微分(含高阶微分)概念的理解及其运算法则;函数连续性、可导性、可微性之间的关系.● 拉格朗日定理、柯西中值定理、泰勒定理及它们定理的应用推广;极值的三个充分条件及其证明过程;对函数凸性概念的理解及相关命题的证明;函数图象性态的列表表示法.三、本章的基本知识要点(一)导数与微分1. 设函数)(x f y =在点0x 的某邻域内有定义,若极限)()(lim00x x x f x f x x --→存在,则称函数f 在点0x 处可导,并称该极限为函数f 在点0x 处的导数,记作)(0x f ' 类似的,定义函数f 在点0x 处的左导数与右导数:x x f x x f x f x ∆-∆+='-→∆-)()(lim )(0000,)(0x f +'xx f x x f x ∆-∆+=+→∆)()(lim 000右导数和左导数统称为单侧导数.2. 设函数()x f y =定义在点0x 的某邻域()0x U 内.当给0x 一个增量x ∆,()00x U x x ∈∆+时,相应地得到函数的增量为()()00x f x x f y -∆+=∆.如果存在常数A ,使得y ∆能表示成()x x A y ∆+∆=∆则称函数f 在点0x 可微,并称()1式中的第一项x A ∆为f 在点0x 的微分,记作x A dy x x ∆==0或 ()x A x df x x ∆==0.由定义可见,函数的微分与增量仅相差一个关于x ∆的高阶无穷小量,由于dy 是x ∆的线性函数,所以当0≠A 时,也说微分dy 是增量y ∆的线性主部.容易看出,函数f 在点0x 可导和可微是等价的. 3. 导数与微分的基本性质.(1)(有限增量公式)若f 在点0x 可导,则()()x x x f y ∆+∆'=∆ 0(0→∆x );(2)(可导的充要条件)若函数)(x f y =在点0x 的某邻域内有定义,则)(0x f '存在⇔)(0x f +'与)(0x f -'都存在,且)(0x f +'=)(0x f -'; (3)(可导与可微的关系)函数f 在点0x 可导和可微是等价的;(4)(可微与连续性的关系)若f 在点0x 可微,则f 在点0x 必连续(反之不真);(5)(导数的几何意义)导数的几何意义解释是曲线的斜率,即函数f 在点0x 的导数)(0x f '是曲线)(x f y =在点)(0,0y x 的切线斜率若α表示这条切线与x 轴正向的夹角,则)(0x f '.tan α=从而0)(0>'x f 意味着切线与x 轴正向的夹角为锐角;0)(0<'x f 意味着切线与x 轴正向的夹角为钝角;0)(0='x f 示切线与x 轴平行;(6)(费马定理)设函数f 在点0x 的某邻域内有定义,且在点0x 可导.若点0x 为f 的极值点,则必有.0)(0='x f我们称满足方程)(x f '的点为稳定点.(7)(达布定理)若函数f 在],[b a 上可导,且)()(b f a f -+'≠',k 为介于)(a f +',)(b f -'之间任一实数,则至少存在一点),(b a ∈ξ,使得k f =')(ξ.4.求导(微分)法则.(1)(线性法则)'')'(g f g f βαβα±=±(其中βα,为常数); (2)(乘积法则)'')'(g f g f g f +=; (3)(商法则)22')'1(,'')'(g g g g fg g f g f -=-=(其中0≠g ); (4)(复合函数求导法则))())(()))(((x g x g f x g f ''='(也称链式法则);(5)(反函数求导法则)dxdydx dy 1=; (6)(莱布尼茨法则)()(),)(0)(k k n kn nk n g f C g f -=∑= 其中)!(!!k n k n C k n -=是组合系数.5. 若函数f 的导函数'f ,在点0x 可导,则称'f ,在点0x 的导数为f 在点0x 的二阶导数,记作()0''x f,即()()()0''00''0limx f x x x f x f x x =--→同时称f 在点0x 为二阶可导.利用数学归纳法可由f 的1-n 阶导函数定义f 的n 阶导函数(或简称n 阶导数),二阶以及二阶以上的导数都称为高阶导数,函数f 在点0x 处的n 阶导数记作 ()()()00||,0x x n n x x n n dxyd yx f==或 相应地,n 阶导函数记作: ()()n n n n dx y d y f或,.这里n n dx y d 亦写作为y dxd n n.6. 一阶微分形式不变性:不管u 是自变量还是中间量,f 的一阶微分始终具有()du u f u df '=)(的形式.7.基本初等函数的求导公式 (1)0)'(=c (c 为常数); (2)1)'(-=αααxx (α为任意实数);(3)x x x x sin )'(cos ,cos )'(sin -==; (4)x x x x 22csc )'(cot ,sec )'(tan -== x x x x x x c o t c s c )'(csc ,tan sec )'(sec -== (5)xxxxe e a a a ==)'(,ln )'(;(6)).1(ln ,ln 1)'(log xx a x x a == (二)微分中值定理1.罗尔中值定理 若函数f 满足如下条件:(i)f 在闭区间[]b a ,上连续;(ii)f 在开区间()b a ,内可导;(iii)()()b f a f =,则在()b a ,内至少存在一点ξ,使得()0='ξf .罗尔定理的几何意义是说:在每一点都可导的一段连续曲线上,如果曲线的两端点高度相等,则至少存在一条水平切线.注 定理中的三个条件缺少任何一个,结论将不一定成立.2. 拉格朗日(Lagrange )中值定理 若函数满足如下条件:()fi 在闭区间[]b a ,上连续;()f ii 在开区间()b a ,内可导, 则在()b a ,内至少存在一点ξ,使得()()()ab a f b f f --='ξ. 显然,特别当()()b f a f =时,本定理的结论即为罗尔定理的结论,这表明罗尔定理是拉格朗日定理的一个特殊情形.拉格郎日中值定理的几何意义是:在满足定理条件的曲线)(x f y =上至少存在一点))(,(ξξf P ,该曲线在该点出的切线平行于曲线俩短点的连线,我们在证明中引入的辅助线函数)(x F ,正是曲线=y )(x f 与直线ab a f b f a f y AB --+=)()()(()(a x -)之差.定理的结论称为拉格朗日公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析 3
一、选择填空(每题3分,共15分)
1.根据隐函数存在唯一性定理判断下面方程中在原点的某邻域内不能确定隐函数)(x f y =的是( )
A)xy e y x =+sin cos ; B) xy e x y =+sin sin ;
C)y x y sin 21=-; D) y x y cos 2
1
=-
2.若含参量反常积分⎰
+∞
=
c
dy x,y f x I )()(的被积函数),(y x f 在
)[][∞+⨯c,a,b 上连续,则下面结论不正确的是( )
A) 若⎰+∞
=
c
dy x,y f x I )()(在],[b a 上一致收敛,则)(x I 在],[b a 上连续;
B) 若)(x I 在],[b a 上不连续,则)(x I 在],[b a 上不一致收敛 C) 若⎰+∞
=c dy x,y f x I )()(在],[b a 上一致收敛,则)(x I 在],[b a 上可微; D) 若⎰
+∞
=
c
dy x,y f x I )()(在],[b a 上一致收敛,则)(x I 在],[b a 上可积。

3.设区域D 为圆域:1≤+2
2
y x ,+
L 为D 的边界,逆时针方向,则下面
不能计算区域D 面积的是 ( )
A)
dx x 2-2⎰
-1
1
1; B) ⎰⎰D
d σ
C) ⎰+-L
ydx xdy 21 D) ⎰-L xdx ydy 21
4.下列积分与路线有关的是( )
A) ⎰--L dy dx y x ))((; B) ⎰++L xcosydy dx siny x )2( C)
⎰++L xcosydx dy siny x )2(;D) ⎰++L dy dx y x ))((
5.累次积分

⎰2
x 0
0dy y x f dx ),(1
交换积分顺序后,正确的是( )
A)

⎰y 0
0dx y x f dy ),(1
; B) ⎰⎰1
1
),(y
dx y x f dy ;
C)

⎰y
dx y x f dy 1
1),(; D) ⎰⎰0
1),(y
dx y x f dy
二、填空题(每题3分,共15分)
1.求6=++2223z 2y x 在(1,1,1)处的切平面方程 。

2.⎰⎰+'D
22dxdy )y x (f = ,其中}|),{(222R y x y x D ≤+=。

3.计算向量场),,(A 222222y x x z z y +++=的散度 。

4.求dx x lim 1
1
-220⎰
+→αα= 。

5.设⎰
+=
2
x x
dy y x sin x F )()(,求)(x F '= 。

三、计算题(每题6分,共36分)
1.设02=-+-z xy
e z e ,求
y
z x z ∂∂∂∂,
2.计算第一型曲线积分
⎰++L
222ds z y x )(,其中L 为螺旋线
,acost x =)0(,π2t bt z asint y ≤≤==的一段。

3.计算第二型曲线积分⎰++L zdz ydy xdx ,其中:L 从(1,1,1)到(2,3,4)
的直线段。

4. 计算三重积分⎰⎰⎰V
zdxdydz ,其中V:是由122
222
2
≤++
c
z b y a x 与0≥z 所围成的区域。

5.用高斯公式计算曲面积分⎰⎰++S
333dxdy dzdy dydz z y x ,其中S 是单位球
面1=++2
22z y x 的外侧。

6.应用斯托克斯公式计算曲线积分
⎰-+-++L dz x y dy z x dx z 2y )()()(
其中L 为平面1=++z y x 与各坐标面的交线,取逆时针方向为正。

四、证明题(18分)
1.证明⎰
+∞
-=
xy dy xe x I )(
(1)在)0](,[>a b a 上一致收敛;(6分) (2) 在],0(b 上连续。

(3分) 2.证明二重积分
⎰⎰D
dxdy xy f )(=⎰⋅2
1
)(2ln dx x f ,
其中}21,41|),{(≤≤≤≤=xy x
y
y x D 。

(9分)
五、应用题(16分)
1.设平面薄片所占的区域D 由抛物线2
x y =及直线x y =所围成,它在点
),(y x 处的密度y x y x ρ2=),(,求此薄片重心。

(8分)
2.求两平面1z y x =++与14z y 2x =++的交线上距原点最近的点。

(8分)。

相关文档
最新文档