高数第八章

合集下载

《高等数学》第八章复习要点

《高等数学》第八章复习要点

第八章 多元函数微分法及其应用 复习要点多元函数的微积分的概念、理论、方法是一元微积分中相应概念、理论、方法的推广和发展,它们既有相似之处(概念及处理问题的思想方法)又有许多本质的不同,要善于进行比较,既要认识到它们的共同点和相互联系,更要注意它们的区别,深刻理解,融会贯通。

1. 会求多元函数的偏导数对二元函数),(y x f z =, x y x f y x x f x z f x ∆-∆+=∂∂='→∆),(),(lim 01,yy x f y y x f y z f y ∆-∆+=∂∂='→∆),(),(lim 02 因此求x z ∂∂时,暂时将y 看作常数,对x 求导; 求y z ∂∂时,暂时将x 看作常数,对y 求导.同理,会求三元函数的偏导数。

2. 会求多元函数的高阶偏导数对二元函数),(y x f z =,有)(2211x z x x z f ∂∂∂∂=∂∂='', )(212xz y y x z f ∂∂∂∂=∂∂∂='', )(221y z x x y z f ∂∂∂∂=∂∂∂='', )(2222y z y yz f ∂∂∂∂=∂∂=''. 定理:xy z y x z x y z y x z ∂∂∂∂∂∂⇔∂∂∂=∂∂∂2222, 连续 3. 会求多元函数的全微分对二元函数),(y x f z =,dy yz dx x z dz ∂∂+∂∂= 对三元函数),,(z y x f u =,dz z u dy y u dx x u du ∂∂+∂∂+∂∂=4. 掌握多元复合函数的求导法则设)],(),,([),(),,(),,(y x v y x u f z y x v v y x u u v u f z =⇒===则 xv f x u f x v v z x u u z x z ∂∂⋅'+∂∂⋅'=∂∂⋅∂∂+∂∂⋅∂∂=∂∂21yv f y u f y v v z y u u z y z ∂∂⋅'+∂∂⋅'=∂∂⋅∂∂+∂∂⋅∂∂=∂∂21 重点:会求复合函数的二阶偏导数。

大学《高等数学》课件-第八章

大学《高等数学》课件-第八章

五、向量的模、方向角、投影
1. 向量的模与两点间的距离公式
则有
由勾股定理得

得两点间的距离公式:
对两点

例4. 求证以
证:

为等腰三角形 .
的三角形是等腰三角形 .
为顶点
例5. 在 z 轴上求与两点
等距
解: 设该点为
解得
故所求点为

思考:
(1) 如何求在 xOy 面上与A , B 等距离之点的轨迹方程?
四点共面, 求点 M 的坐标 x、y、z 所满足的方程.
解: A、B、 C、M 四点共面
展开行列式即得点 M 的坐标所满足的方程

内容小结

1. 向量运算
加减:
数乘:
点积:
叉积:
混合积:
2. 向量关系:
思考与练习
1. 设
计算
并求
夹角 的正弦与余弦 .
答案:
2. 用向量方法证明正弦定理:
总之:
运算律 :
结合律
分配律
因此
定理1.
设 a 为非零向量 , 则
( 为唯一实数)
, 取 =±

再证数 的唯一性 .

反向时取负号,

例1. 设 M 为
解:
三、空间直角坐标系
由三条互相垂直的数轴按右手规则
组成一个空间直角坐标系.
坐标原点
坐标轴
x轴(横轴)
y轴(纵轴)
z 轴(竖轴)
过空间一定点 O ,
备用题
解: 因
1. 设
求向量
在 x 轴上的投影及在 y 轴上的分
向量. P13(19)

高等数学第八章解析几何(数学第八章平面解析几何)

高等数学第八章解析几何(数学第八章平面解析几何)

高等数学第八章解析几何(数学第八章平面解析几何)
双曲线的定义:
2.双曲线的标准方程
双曲线与椭圆的比较
以F1,F2所在直线为某轴,线段F1F2的垂直平分线为y轴,建立平
面直角坐标系某Oy,此时双曲线的焦点分别为F1(-c,0),F2(c,0)设
P(某,y)是双曲线上一点,则,(,PF1,-,PF2,),=2a,因为,PF1,
=√(〖(某c)〗^2y^2),,PF_2,=√(〖(某-c)〗^2y^2),所以√(〖(某c)〗^2y^2)-√((某-c)^2y^2)=±2a①
且②与①右边同时取正号或负号,①②整理得
将③式平方再整理得〖c^2-a〗^2/a^2 某^2-y^2= 〖c^2-a〗^2 ④因
为c>a>0,所以〖c^2-a〗^2>0设〖c^2-a〗^2=b^2且b>0,则④可化为某
^2/a^2 -y^2/b^2 =1 (a>0,b>0) 求双曲线的标准方程:与求椭圆的标准
方程的方法相似,可以先根据其焦点位置设出标准方程,然后用待定系数法
求出a,b的值.若焦点位置不确定,可按焦点在某轴和y轴上两种情况讨论
求解,此方法思路清晰,但过程复杂.若双曲线过两定点,可设其方程为m某
² ny²=1(mn<0),通过解方程组即可确定m,n,避免了讨论,从而简化求解过程.双曲线的几何性质
(1)双曲线与椭圆的六个不同点:
(2)等轴双曲线:是实轴和虚轴等长的双曲线,它的渐近线方程是
y=±某,离心率为√2.(3)共轭双曲线:以已知双曲线的虚轴为实轴,实轴为
虚轴的双曲线叫做原双曲线的共轭双曲线
私信我领取全套免费学习资料,。

高等数学 第8章

高等数学 第8章
第八章 多元函数微分学及其应用
以前研究的函数都是只有一个自变量的一元函数,但在自 然科学和工程技术中的很多问题都要取决于多个因素,从而产 生了有几个自变量的函数,称为多元函数.多元函数的微分学 是在一元函数微分学的基础上发展起来的.由于多元函数是一 元函数的推广,它必然要保留一元函数的许多性质,但又由于 自变量的增多,也会产生某些本质的差别.因此在学习多元函 数的理论时,既要注意到它与一元函数的联系,又要弄清它们 之间本质的差别。
dz fx(x ,y)x f y(x ,y)y
由于 dx x,dy y 所以函数z=f(x, y)的全微分可记作
dz fx(x ,y)dx f y(x ,y)dy
三元及三元以上的多元函数的全微分,也有类似公式, 如三元函数u=f(x, y, z)的全微分存在,则
du f dx f dy f dz x y z
设P0(x0, y0)是平面上一点,称点集
(x ,y) (x x0 )2 ( y y0 )2
为点P0的邻域,记作U(P0, )。P0称为此邻域的 中心,称为此邻域的半径.
二、偏导数的概念
研究一元函数变化率时引入了导数的概念,对于多元函 数也需要讨论它的变化率。在实际问题中,常常需要了解 一个受到多种因素制约的变量,在其他因素固定不变的情 况下,该变量只随一种因素变化的变化率问题。
不是极值 不确定
利用定理1和定理2,我们把具有二阶连续偏导数的函 数z=f(x, y)的极值的求法叙述如下:
(1)求一阶偏导数fx’(x, y),fy’ (x, y),并解方程组
fx(x ,y) 0 ,
f
y(
x
,y)
0
.
求得一切实数解,即求得一切驻点.
(2)对每个驻点(x0, y0),求出二阶偏导数的值A,B, C。

高数第八章

高数第八章

高数第八章第八章第一节 向量及其线性运算重点:1.方向角与方向余弦 2.向量在轴上的投影典型题目:例7.已知两点M 1(2,2,2)和M 2(1.,3,0),计算向量21M M 的模、方向余弦和方向角。

解:21M M =(1-2,3-2,0-2)=(-1,1,-2),|21M M |=2222)(-(1)(-1)++=2211=++;COS α=-21,COS β=21,COS γ=-22;α=π32,β=3π,γ=43π.例9.设立方体的一条对角线为OM ,一条棱为OA ,且|OA|=a ,求.P OM OA OA rjOM方向上的投影在解:记∠MOA=θ,有COS θ=31||||=OM OA ,θθ于是OA rjOMP =|3aθ||=COS OA .θ马云赵振第二节数量积向量积混合积1.两向量的数量积a·b=│a││b│cos θθ为两向量间的角度(1)a·a=│a│2(2)如果两个向量垂直,那么数量积为0,反之亦然(3)数量积满足交换律,分配率结合律如下时才成立(Λa)·b=Λ(a·b)2.向量积a·b=│a││b│sin θ(1)b×a=-a×ba×b=0的充分必要条件是a平行于b(2)满足分配率 结合律如下时才成立(3)(Λa)×b=a×(Λb )=Λ(a×b ) 用三阶行列式表示i j ka×b=│a x a y a z│b x b y b z例题1.已知三角形ABC 的顶点分别是A (1,2,3),B (3,4,5),C (2,4,7),求三角形的面积解:S ABC =1∕2│c ││b │sinA=1∕2│c ×b │i j kc ×b=│2 2 2│=4i-6j+2k1 2 4S ABC =1∕2│4i-6j+2k │=2222)6(4+-+=142.a=3i-j-2k ,b=i+2j-k ,求3.(-2a )·(3b )4.a 、b 夹角的余弦解:(1)(-2a )·(3b )=-6(a·b )=18 二、cos<a,b>=a·b/│a │·│b │=3/221张浩康 赵奇第三节 曲面及其方程要点:1.几种常见二次曲面的标准方程: 球面 ()()()22022R z z y y x x =-+-+-椭球面 1222222=++cz b y a x单叶双曲面 1222222=-+c z b y a x双叶双曲面 1222222=--c z b y a x椭圆抛物面z b y a x =+2222双曲抛物面(马鞍面) z b y a x =-22222.空间曲面方程1)一般方程()0xF;yz,,=2)显式方程()y x F=;z,3)参数方程()v u x x,=()()平面上某区域y∈u,v=,y,其中uv为DDvu()v u z=z,3.设()平面上的曲线,则,C0:=z为yOzyf1)();0,22=z绕C轴旋转所得的曲面为fx+±zy2)().0y2,2=C轴旋转所得的曲面为f绕y+±zx旋转曲面由母线和旋转轴确定。

高等数学第八章

高等数学第八章
若 x I,则 x r I ,
1 , x r Q , x Q, D( x r ) D( x ) . x I. 0 , x r I, 即任意正有理数是 D( x ) 的周期,但正有理数
中不存在最小值, D( x ) 无最小正周期 故 .
负整数集: {, 2,1} , 整数集: {, 1 0, } Z Z ,1 , ,
有理数集: {全体有理数 , Q } 无理数集: {全体无理数 , I } 实数集: Q I . R
3.常用不等式:
x , x0, 绝对值 : x R , x x , x 0 .
1 . x R, x 0 .
o
2 . x R, x x x .
o
3 . x h (h 0) h x h .
o
4 . x h (h 0) x h 或 x h .
o
5 . x, y R , x y x y x y .
1.1 函数的概念及其初等性质
1.1.1 预 备 知 识
1.一些常用的符号
“对每一个” . : 表示“对任意一个”或 “至少有一个” . :表示“存在一个”或 “ :表示“可推出”或若,则”.
或 :表示“当且仅当”“充分必要” 或“等价” .
2.常用数集 自然数集: * {0,1,2,} , 正整数集: ( N ) {1,2,3,} , N Z
若 在周期函数 f ( x ) 的所有周期中存在 最小的正 周期 T , 则称这个最小正周期T 为 f ( x ) 的 基本周期 . 通常我们所说的函数的 周期都是指基本周期.
常 用
f ( x ) sinx, cos x 的周期为T 2 , f ( x ) tan x, cot x 的周期为 T , F ( x) Asin( x B) C 的周期为T 2 ,

高等数学第八章知识点总结

高等数学第八章知识点总结

高等数学第八章知识点总结第八章是高等数学中的重要章节,主要涉及到数列和级数的概念和性质。

本文将对数列和级数的基本概念、极限、收敛性以及常见的数列和级数进行总结和归纳。

1. 数列的概念和性质数列是按照一定规律排列的一系列数的集合。

数列可以有界,也可以无界。

数列的性质包括有界性、单调性和有界单调性。

1.1 有界性:如果存在一个正数M,对于数列的每一项a_n,都有|a_n|≤M,那么称数列是有界的。

1.2 单调性:如果对于数列的每一项a_n,都有a_n≤a_(n+1)(或a_n≥a_(n+1)),那么称数列是递增的(或递减的)。

1.3 有界单调性:如果数列既是递增的又是有界的,那么称数列是有界递增的;如果数列既是递减的又是有界的,那么称数列是有界递减的。

2. 数列的极限数列的极限是数列中的数值趋于无穷时的极限值。

数列的极限可以是有限的,也可以是无限的。

2.1 数列的收敛性:如果存在一个实数a,对于任意给定的正数ε,都存在正整数N,使得当n>N时,有|a_n-a|<ε,那么称数列{a_n}收敛于a。

反之,如果不存在这样的实数a,则称数列{a_n}发散。

2.2 数列的极限存在唯一性:如果数列{a_n}收敛于a,并且又收敛于b,那么a=b。

3. 数列的运算数列的运算包括数列的加法、数列的乘法和数列的数乘。

3.1 数列的加法:若{a_n}和{b_n}是两个数列,定义数列{c_n} = {a_n + b_n},则称{c_n}为{a_n}和{b_n}的和。

3.2 数列的乘法:若{a_n}和{b_n}是两个数列,定义数列{c_n} = {a_n * b_n},则称{c_n}为{a_n}和{b_n}的乘积。

3.3 数列的数乘:若{a_n}是一个数列,k是一个实数,定义数列{b_n} = {k * a_n},则称{b_n}为{a_n}的数乘。

4. 级数的概念和性质级数是数列的和,级数的性质包括收敛性、发散性和级数的收敛域。

高数第八章知识点

高数第八章知识点
1 0 ( 1) 2 dxdy 2dxdy,
z

( x y z)dS

D xy
o x
D xy

5

y
2 ( x y 5 y )dxdy 2 (5 x )dxdy
2 5dxdy 125 2.
Dxy
例8
计算 | xyz | dS ,

2 2 其中 为抛物面 z x y ( 0 z 1).
解 依对称性知:
z
2
抛物面z x y
2
关于z轴对称,
被积函数| xyz | 关于 xoz 、 yoz 坐标面对称
x
y
有 4 成立,(1为第一卦限部分曲面)
1
2 2 dS 1 z x z y dxdy
0
2
a 2 adt 2a 3 0
2
例3 (书P169例2 )
计算 R 2 x 2 y 2 ds,其中 L为上半圆弧 x 2 y 2 Rx , y 0.
L
解:
y
x OL cos , y OL sin;
o

L
OL R cos
y xR
x
(3)
AB

AC

CB

AB

BA
二、第二类曲线积分的计算法
x R cos 2 , (0 ) 2 y R cos sin
推广: 空间R3中的曲线:x=x(t), y=y(t), z=z(t), ≤t≤ z

x
O
y


f ( x, y, z )ds
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第25,26讲 第八章 重 积 分上一章把一元函数微分学推广到多元函数情形.现在要把一元函数定积分推广为多元函数的多重积分、曲线积分和曲面积分.定积分(特定构造的和式极限,“高级和”)所讨论的是分布在某区间上的几何量(曲边梯形面积)或物理量(变速直线运动路程)的积累问题.而多重积分,曲线、曲面积分则能求出分布在平面区域,平面曲线,空间曲面上的整体量,以扩大积分学的应用范围.第一节 二重积分的概念和性质一、二重积分的概念 1.两个实例例1 求曲顶柱体的体积.曲顶柱体是指:以平面上的有界闭区域D 为底,以D 上方的曲面S 为顶,周围是母线平行于z 轴的柱面(见P.306图8-1)今设曲顶方程为(,),(,)z f x y x y D =∈,且设(,)f x y 连续,,(,)0f x y ≥,求该曲顶柱体的体积.V 解 第一步 :“分割”— 化整为零.用一组曲线网将区域D 分成n 个小区域:12,,,n σσσ∆∆∆ ,并用它们记各小区域的面积.,于是大体积相应被分割为n 个曲顶柱体,记体积为:12,,,n v v v ∆∆∆ (见P.306图8-2).第二步:“近似代替”— 以平代曲.i σ∆上任意取一点(,)i i ξη,(,)f x y 在D 上连续,∴当分割充分细小时,可用小平顶柱体体积,()i i i f ξησ∆近似代替小曲顶柱体的体积(,)(1,2,,).i i i i v f i n ξησ∆≈∆= 第三步:“求和”— 积零为整. 11(,)nni i i i i i V v f ξησ===∆≈∆∑∑.第四步:“取极限”— 由近似到精确.1l i m (,)ni i i i V f λξησ→==∆∑,其中λ是n 个小区域i σ∆的直径最大者,即 1max ()i i nd λσ≤≤=∆.例2 求不均匀平面薄板的质量(薄即厚度可忽略不计).设有一块质量分布不均匀的薄板,在xoy 平面上占有区域D (见P.307图8-3), 面密度为ρ(,)x y ,求该薄板 的质量M .解 也分四步完成.“ 分割”: 在xoy 平面上将薄板D 分割为n 小块:12,,,n σσσ∆∆∆ .“近似代替”:在i σ∆上任取一点(,)i i ξη,将此小块近似看作是均匀的,则小块质量为: i M ∆≈ρ(,),(1,2,,)i i i i n ξησ∆= . “求和”: 11nni i i M M ===∆≈∑∑ρ(,)i i i ξησ∆.“取极限”:01lim ni M λ→==∑ρ(,)i i i ξησ∆.以上两例,虽内容不同,但解决问题的方法是一样的,都归结为求一种具有相同结构的“和式的极限”,我们把它抽象出来,得到2.二重积分的定义设二元函数(,)z f x y =在有界闭区域D 上有定义,用任意的曲线网分D 为n 个小区域 12,,,n σσσ∆∆∆ , 并用它们记小区域的面积. 又记 i σ∆的直径为()i d σ∆,并令1max ()i i nd λσ≤≤=∆,在i σ∆上任取一点(,)i i ξη,作乘积 (,),(1,2,,)i i i f i n ξησ∆= , 作和数(称为积分和,或Rimann 和)1(,)nn i i i i S f ξησ==∆∑,令0λ→,若积分和有极限 Ⅰ(它不依赖于区域D 的分法及中间点的取法),则称此极限值为函数(,)z f x y =在区域D 上的二重积分,记作:Ⅰ=01lim (,)(,)ni i i i Df f x y d λξησσ→=∆=∑⎰⎰ (1)其中D 称为积分区域,(,)f x y 称为被积函数,(,)f x y d σ称为被积表达式,d σ称为面积元素.若二重积分(,)Df x y d σ⎰⎰存在,则称(,)z f x y =在区域D 上可积.重要结论:二元连续函数是可积的.(不证)由二重积分的定义知:例1中取顶柱体的体积V 是曲顶柱体函数(,)f x y 在底面区域D 上的二重积分,即 (,)DV f x y d σ=⎰⎰.例2中平面薄板的质量M 是面密度函数ρ(,)x y 在所占区域D 上的二重积分, 即 DM =⎰⎰ρ(,)x y d σ.3.二重积分的几何意义 (1)当(,)0f x y ≥时,则(,)Df x y ⎰⎰d σ表示以(,)z f x y =为顶,以D 为底的曲顶柱体的体积.(2)当(,)0f x y ≤时,则(,)Df x y d σ⎰⎰表示曲顶柱体体积前面加了一个负号.(但不能说是负体积)(3)当(,)1f x y ≡时,(,)DDf x y d d σσσ==⎰⎰⎰⎰为D 的面积.二、二重积分的性质 (P.308)性质1 “常数因子提出来” 若(,)f x y 在区域D 上连续,则(,)(,),(DDkf x y d k f x y d k σσ=⎰⎰⎰⎰为常数)性质2 “一项一项分开积” 若(,),(,)f x y g x y 在D 上连续,则[](,)(,)(,)(,)DDDf x yg x y d f x y d g x y d σσσ±=±⎰⎰⎰⎰⎰⎰.性质3 设区域D 由1D 与2D 组成,且1D 与2D 除边界上点外无公共点,又(,)f x y 在D 上连续,则12(,)(,)(,).DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰性质4 若(,),(,)f x y g x y 在D 上连续,且 (,)(,)f x y g x y ≤,则有不等式(,)(,)DDf x y dg x y d σσ≤⎰⎰⎰⎰特殊地,由于(,)(,)(,)f x y f x y f x y -≤≤,又有不等式(,)(,).DDf x y d f x y d σσ≤⎰⎰⎰⎰性质5 设M ,m 分别是(,)f x y 在D 上的最大值和最小值,σ是D 的面积,则有 (,)Dm f x y d M σσσ≤≤⎰⎰ (估值不等式)性质6 (二重积分的中值定理)设(,)f x y 在闭区域D 上连续,σ为D 的面积,则在D 上至少存在一点(,)ξη,使得(,)(,)Df x y d f σξησ=⋅⎰⎰习 题 8-14 (1)—(4)5 (1)—(4)4. 根据二重积分的性质,比较下列积分的大小:(1) 2()d Dx y σ+⎰⎰与3()d Dx y σ+⎰⎰,其中积分区域D 是由x 轴、y 轴与直线1x y +=所围成;(2) 2()d Dx y σ+⎰⎰与3()d Dx y σ+⎰⎰,其中积分区域D 是由圆周22(2)(1)2x y -+-=所围成;(3)ln()d Dx y σ+⎰⎰与2[ln()]d Dx y σ+⎰⎰,其中D 是三角形闭区域,三顶点分别为(1,0),(1,1),(2,0);(4) ln()d Dx y σ+⎰⎰与2[ln()]d Dx y σ+⎰⎰,其中{(,)35,01}D x y x y =≤≤≤≤.解 (1) 在积分区域D 上,01x y ≤+≤,故有32()()x y x y +≤+,根据二重积分的性质4,可得32()d ()d .DDx y x y σσ+≤+⎰⎰⎰⎰(2) 由于积分区域D 位于半平面{(,)|1}x y x y +≥内,故在D 上有23()()x y x y +≤+.从而23()d ()d .DDx y x y σσ+≤+⎰⎰⎰⎰(3) 由于积分区域D 位于条形区域{(,)|12}x y x y ≤+≤内,故知D 上的点满足0l n ()1x y ≤+≤,从而有2[ln()]ln()x y x y +≤+.因此2[ln()]d ln()d .DDx y x y σσ+≤+⎰⎰⎰⎰ (4) 由于积分区域D 位于半平面{(,)|e}x y x y +≥内,故在D 上有ln()1x y +≥,从而有2[ln()]ln()x y x y +≥+.因此2[ln()]d ln()d .DDx y x y σσ+≥+⎰⎰⎰⎰5. 利用二重积分的性质估计下列积分的值:(1) ()d DI xy x y σ=+⎰⎰其中{(,)01,01}D x y x y =≤≤≤≤;(2) 22sin sin d DI x y σ=⎰⎰其中{(,)0,0}D x y x y ππ=≤≤≤≤;(3) (1)d DI x y σ=++⎰⎰其中{(,)01,02}D x y x y =≤≤≤≤;(4) 22(49)d DI x y σ=++⎰⎰其中22{(,)4}D x y x y =+≤.解 (1) 在积分区域D 上,01x ≤≤,01y ≤≤,从而0()2xy x y ≤+≤,又D 的面积等于1,因此0()d 2.Dxy x y σ≤+≤⎰⎰(2) 在积分区域D 上,0sin 1x ≤≤,0sin 1y ≤≤,从而220sin sin 1x y ≤≤,又D 的面积等于2π,因此2220sin sin d π.Dx y σ≤≤⎰⎰(3) 在积分区域D 上,014x y ≤++≤,D 的面积等于2,因此2(1)d 8.Dx y σ≤++≤⎰⎰(4) 在积分区域D 上,2204x y ≤+≤,从而22229494()925,x y x y ≤++≤++≤,又D 的面积等于4π,因此2236π(49)d 100π.Dx y σ≤++≤⎰⎰第27,28讲 第二节 二重积分的计算方法— 化为两个定积分,即累次积分. 一、在直角坐标系下计算二重积分当(,)f x y 在区域D 上可积时,其积分值与分割方法无关,因此取特殊的分割法来计算二重积分1.用两组分别平行于x 轴,y 轴的直线分割区域D ,这时面积元素d dxdy σ=, 从而(,)(,)DDf x y d f x y dxdy σ=⎰⎰⎰⎰.2.化二重积分为累次积分 设(,)0f x y ≥,则(,)Df x y dxdy ⎰⎰表示曲顶柱体的体积V ,用“切片法”求V(1)设区域D 由直线,x a x b == 及曲线12(),()y x y x ϕϕ==围成: 12()()x y x a x bϕϕ≤≤⎧⎨≤≤⎩(这称x -型区域)回忆:已知平行截面面积,求立体体积公式 8-4 ()a ()baV A x dx =⎰, ()A x 是平行截面面积.现用平行于yoz 的平面0x x =去截曲顶柱体,得截面,其面积为A 0()x (图8-5)是一个曲边梯形,曲边方程为:0(,)z f x y =,因此,由定积分的几何意义,2010()00()()(,)x x A x f x y dy ϕϕ=⎰ (1)'让0x 取遍整个[],a b ,得到截面面积 21()()()(,)x x A x f x y dy ϕϕ=⎰ (1)''于是,由“已知平行截面面积求立体体积公式”⇒ 22111()()()()()(,)(,)bbx b x aax a x V A x dxf x y dy dx dx f x y dy ϕϕϕϕ''⎡⎤===⎢⎥⎣⎦⎰⎰⎰⎰⎰()代入 (1)这叫累次积分.第一次对y 的积分,是求x 处的截面面积()A x ,将x 看作常数,第二次对x 积分,是沿x 轴加这些薄片的体积()A x dx ,这时x 是积分变量.注 公式(1)成立的条件是“(,)f x y 在D 上连续”,并不要求(,)0.f x y ≥公式(1)是在x -型积分域下,将二重积分化为先对y 后对x 的两次定积分.如何确定两次的积分限呢?先用平行于y 轴的直线在[],a b 内一点x 处穿入D 的下边界,穿出上边界,其交点的坐标12(),()x x ϕϕ为第一次先对y 积的下限与上限,再将D 投影到x 轴上,得交点,a b 为第二次对x 积分的下限与上限.(称“穿口法”,定限口诀是:后积先定限(常数),限内画条线,先交下限写,后交上限见.) 例1 化二重积分(,)Df x y d σ⎰⎰为累次积分.其中;(1) D 由1,2,0,2x x y y =-===围成; (2)D 由2,y x =及2x y =围成. (3)D 由2,,2y x y x y x ==-=-围成. 解 计算二重积分时,先画好积分区域的草图.(1)积分域是x -型的矩型域,由公式(1)⇒221(,)(,)Df x y d dx f x y dy σ-=⎰⎰⎰⎰.(2)解方程组求交点,画积分域草图2201,01x x y x y y x y ==⎧=⎧⎧⇒⎨⎨⎨===⎩⎩⎩这时x -型积分域,由公式(1)⇒(先对y 积分,将x 看作常数,积分限是x 的函数,第二次对x 积分,积分限为常数)21(,)(,).xDf x y d f x y d yσ=⎰⎰⎰(3)解方程组求交点,画积分区域草图1212y x x y x =-⎧⇒=-⎨=-⎩, 2212y xx y x =⎧⇒=⎨=-⎩如先对y 积分时,用平行y 轴的直线不能一次穿过区域D 时,需将D 分为1D 域2D ,然后由积分的可加性质3及公式(1),得到22122121(,)(,)(,).x x xxDD D f x y d dx f x y dy dx f x y dy σ----=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰例2 求ⅠDxyd σ=⎰⎰,其中D 由,y x =与2y x =围成. 解 解方程组求交点,画区域草图 1220,1y xx x y x=⎧⇒==⎨=⎩由公式(1)⇒222111350()211().224x x x xDy xyd xdx ydy x dxx x dx σ===-=⎰⎰⎰⎰⎰⎰例3 求Ⅰ(32),D x y d D σ=+⎰⎰由2x y +=及,x y 轴围成.解 由积分区域草图及定理1 Ⅰ2222222020(32)(3)2(2).3xx dx x y dy xy y dx x x dx --=+=+=+-=⎰⎰⎰⎰(2)若积分区域D 是由,y c y d ==及12(),()x y x y ψψ==围成,这称y -型积分域. 二重积分化为累次积分时,应先对x 后对y 积分,这时积分公式为: 21()()(,)(,)dy cy Df x y d dy f x y dx ψψσ=⎰⎰⎰⎰(2)对y -型积分域,如何确定两次的积分限呢? 图8-6 ()a 先用平行于x 轴的直线在[],c d 内一点y 处,穿入D 的左边界,穿出右边界,交点的坐标12(),()y y ψψ为第一次先对x 积分的下限与上限(是y 的函数),然后将D 投影到y 轴上得交点,c d 为第二次对y 积分的下限与上限(是常数).例4 求Ⅰ22Dx d yσ=⎰⎰,其中D 由2,,1y y x xy ===围成.解 解方程组求交点的坐标,画出积分域的草图11x yy xy =⎧⇒=⎨=⎩ 这是y -型积分域,先选择对x 后对y 积分, 及公式(2)⇒Ⅰ224222235122111111111127().3332464yy yyy y dy x dx x dy y y dy y y --⎡⎤⎡⎤===-=+=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ 注 如若选择先对y 积分时,需把D 分块,则繁. 例5求ⅠDxyd σ=⎰⎰其中D 由抛物线2y x =及直线2y x =-围成. 解 解方程组求交点,画积分域草图214,122x x y xy y y x ⎧===⎧⎧⇒⎨⎨⎨=-==-⎩⎩⎩ 强调 积分次序的选择原则:① 考虑积分域的特点; ② 被积函数(下例说明)本题D 即是x -型域,又是y -型域,这时,根据D 的特点,应选择先对x 积分(因为平行x 轴直线可一次穿过D 的左,右边界,而先对y 积分时,D 应分块). 故由公式(2)⇒ Ⅰ222222211145().28y y y y ydy xdx y x dy ++--===⎰⎰⎰例6 求Ⅰsin Dy d yσ⎰⎰,其中D 由2y x =及y x =围成.解 解方程组求交点,画出积分区域草图 20,1y xy y y x=⎧⇒==⎨=⎩这时不能选择先对y 积分,因考虑到被积函数,积不出来,故应先对x 积分,由公式(2)⇒ Ⅰ2211sin sin 1y yy yy y dy dx dy dx yy==⋅⎰⎰⎰⎰11120sin ()sin sin y y y dy ydy y ydy y=-=-⎰⎰⎰110cos11cos cos y yydy =-++-⎰cos11cos1sin11sin10.1585.=-++-=⋅≈习 题 8-21 (1)(3) 2(2)(4) 4(1)(3)(5)1. 计算下列二重积分:(1) 22()d D xy σ+⎰⎰,其中{(,)|||1,||1}D x y x y =≤≤;(2) (32)d Dx y σ+⎰⎰,其中D 是由两坐标轴及直线2x y +=所围成的闭区域; (3)323(3)d D xx y y σ++⎰⎰,其中{(,)|01,01}D x y x y =≤≤≤≤;(4) cos()d Dx x y σ+⎰⎰其中D 是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域.解 (1) 1311112222221111128()d d ()d d (2)d .333Dy x y x x y y x y x x x σ-----⎡⎤+=+=+=+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰ (2) D 可用不等式表示为03,02y x x ≤≤-≤≤,于是2222200022(32)d d (32)d [3]d 20(422)d .3xxDx y x x y y xy y xx x x σ--+=+=+=+-=⎰⎰⎰⎰⎰⎰(3)11323323(3)d d (3)d Dx x y y y x x y y x σ++=++⎰⎰⎰⎰ 1411333001d ()d 1.44x x y y x y y y y ⎡⎤=++=++=⎢⎥⎣⎦⎰⎰(4) D 可用不等式表示为0,0πy x x ≤≤≤≤,于是ππ00πcos()d d cos()d [sin()]d 3(sin 2sin )d π.2xxDx x y x x x y y x x y xx x x x σ+=+=+=-=-⎰⎰⎰⎰⎰⎰2. 画出积分区域,并计算下列二重积分:(1) Dσ⎰⎰,其中D是由两条抛物线y =,2y x =所围成的闭区域;(2)2d Dxy σ⎰⎰,其中D 是由圆周224xy +=及y 轴所围成的右半闭区域;(3) e d x y Dσ+⎰⎰,其中{(,)|||||1}D x y x y =+≤; (4)22()d Dxy x σ+-⎰⎰,其中D 是由直线2y =,y x =及2y x =所围成的闭区域.解 (1) D可用不等式表示为201x y x ≤≤≤≤,于是237111424000226d d (-)d .3355Dx x x y x y x x x x σ⎡====⎢⎥⎣⎦⎰⎰⎰⎰⎰(2) D可用不等式表示为022x y ≤≤-≤≤,于是22222222164d d d (4)d .215Dxy y y x y y y σ--==-=⎰⎰⎰⎰(3) 12D D D = ,其中1{(,)|11,10}D x y x y x x =--≤≤+-≤≤,1{(,)|11,01}D x y x y x x =-≤≤-+≤≤,于是121111101012112111e d e d e d e d e d e d e d (e e )d (e e )d e e .x y x y x yD D D x x x y x y x x x x x y x y x x σσσ+++++----+----=+=+=-+-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(4) D 可用不等式表示为,022y x y y ≤≤≤≤,于是22222023222232002()d d ()d 19313d d .322486yy Dyy x y x y x y x xx x y x y y y y σ+-=+-⎡⎤⎛⎫=+-=-=⎢⎥ ⎪⎝⎭⎣⎦⎰⎰⎰⎰⎰⎰4. 改换下列二次积分的积分次序:(1) 1d (,)d yy f x y x ⎰⎰ ; (2)2220d (,)d y y y f x y x ⎰⎰;(3) 10d (,)d y f x y x ⎰;(4)212d (,)d xx f x y y -⎰;(5)eln 1d (,)d xx f x y y ⎰⎰; (6)πsin 0sin2d (,)d xx x f x y y -⎰⎰.解 (1) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|0,01}D x y x y y =≤≤≤≤,D 可改写为{(,)|1,01}x y x y x ≤≤≤≤,于是原式11d (,)d .xx f x y y =⎰⎰(2) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中2{(,)|2,02}D x y y x y y =≤≤≤≤,D可改写为{(,)|04}2x x y y x ≤≤≤≤,于是原式42d (,)d .x x f x y y =⎰⎰(3) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|01}D x y x y =≤≤≤,D可改写为{(,)|011}x y y x ≤≤-≤≤,于是原式110d (,)d .x f x y y -=⎰(4) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|212}D x y x y x =-≤≤≤≤,D可改写为{(,)|2101}x y y x y -≤≤+≤≤,于是原式1102d (,)d .yy f x y x -=⎰⎰(5) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|0ln ,1e}D x y y x x =≤≤≤≤,D 可改写为{(,)|e e,01}y x y x y ≤≤≤≤,于是原式1ee d (,)d .yy f x y x =⎰⎰(6) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,将D 表示为12D D ,其中1{(,)|arcsin πarcsin ,01}D x y y x y y =≤≤-≤≤,2{(,)|2arcsin π,10}D x y y x y =-≤≤-≤≤,于是原式1πarcsin 0π0arcsin 12arcsin d (,)d d (,)d .yyyy f x y x y f x y x ---=+⎰⎰⎰⎰第29,30讲 二、在极坐标系下计算二重积分复习:直角坐标与极坐标(参见教材P.476附录4)的关系: (,)x y (,)r θcos sin x r y r θθ==tan r y xθ==1 圆心在极点,半径为a 的圆周222x y a += ,02r a θπ=≤≤ 2 圆心在(,0)a ,半径为a 的圆周222()x a y a -+= 22cos r ar θ= 222x y ax += 2cos ,22r a ππθθ=-≤≤3 圆心在(0,)a ,半径为a 的圆周22222()2x y a a x y ay+-=+=22sin 2sin ,0r ar r a θθθπ==≤≤在极坐标系下计算二重积分,需将被积函数(,)f x y ,积分域D 及面积元素d σ都用极坐标表示 :(,)f x y 的极坐标形式为 (cos ,sin )f r r θθ,为了得到极坐标系下面积元素d σ, 可用坐标曲线网去分割区域D , 即用 r =常数(一组同心圆) θ=常数 (一束射线),去分割D 面积元素可近似看作小矩形:两边长分别为dr 和(弧长)=rd θ(半径⨯圆心角) (见P.315图8-14) 所以 ()d rd dr rdrd σθθ=⋅=, 于是⇒ (,)(cos ,sin )DDf x y d f r r rdrd σθθθ=⎰⎰⎰⎰ (4)(ⅰ)当极点o 在D 的外部: 一般先对r 后对θ积分,定限时,用从极点出发的射线穿入区域, 入口的交线1()r θ,穿出区域出口的交线2()r θ为对r 积分的下限与上限,而θ的变范围则是后对θ积分的下限与上限. 图8-15(a )21()()(,)(cos ,sin (cos ,sin )DDr r f x y d f r r rdrd d f r r rdrβθαθσθθθθθθ⇒==⎰⎰⎰⎰⎰⎰(5)(ⅱ)当极点o 在D 的边界上,D 为曲边扇形()(cos ,sin ).r Dd f r r rdr βθαθθθ⇒=⎰⎰⎰⎰(6) 图8-17(ⅲ)当极点o 在D 的内部2()(cos ,sin ).r Dd f r r rdr πθθθθ⇒=⎰⎰⎰⎰(7)例1 化二重积分为累次积 图8-1822:,(0)D x y Rx R +=>解 222()()22RRx y -+= 这是圆心在(,0)2R ,半径为2R的圆,极坐标方程为:cos ,22r R ππθθ=-≤≤,这是极点在D 的边界上.由公式(6)⇒ cos 202(cos ,sin ).R Dd f r r rdr πθπθθθ-=⎰⎰⎰⎰例2 求Ⅰ=2Dxy d σ⎰⎰其中D 为 圆 221,x y +=和224x y +=之间在第一象限的部分(圆环) 解 这是极点在域D 外部的情形,由公式(5)⇒ Ⅰ=2cos (sin )Dr r rdrd θθθ⎰⎰=24221cos sin d r dr πθθθ⎰⎰=22421sin cos d r drπθθθ⎰⎰=用凑微分31.15例3 求Ⅰ=22x y De d σ--⎰⎰,其中D 是222,(0)x y a a +≤>在第一象限的部分. 解 因为 22,x y ee --的原函数不是初等函数,故在直角坐标系下积不出来.但D 是圆域,故可采用极坐标系.由于极点在边界上,由公式(6),得到 Ⅰ=2222(1).4ar r a oDe rdrd d e rdr e ππθθ--==-⎰⎰⎰⎰(这里用凑微分积) 利用此结果,可计算无穷积分(广义积分):2x e dx +∞-⎰(概率积分).例4利用二重积分证明概率积分22x e dx +∞-=⎰.(求正态分布的方差时用)证明22limax x a edx e dx +∞--→+∞=⎰⎰‘考虑正方形区域D ,在D 上计算二重积分 2222a axy x y De dxdy e dx e dy ----=⎰⎰⎰⎰=220a x e dx -⎡⎤⎢⎥⎣⎦⎰ 图8-19为了求出左端的二重积分,可以a (正方形对角线)为半径画圆,得到图中的区域12D D D ⊂⊂, 220xy e --> 22222212xy xy xy D DD e d e d e d σσσ------∴≤≤⎰⎰⎰⎰⎰⎰由例3知:22222(1)(1)44a xy a De e dxdy e ππ-----≤≤-⎰⎰(=22ax edx -⎡⎤⎢⎥⎣⎦⎰)令a →+∞,有 220lim 44a x a e dx ππ-→+∞⎡⎤≤≤⎢⎥⎣⎦⎰,即22044x e dx ππ+∞-⎡⎤≤≤⎢⎥⎣⎦⎰ 由极限的夹逼准则,所以 2204x e dx π+∞-⎡⎤=⎢⎥⎣⎦⎰ ,202x e dx +∞-==⎰例5 求球体22224x y z a ++≤被圆柱面222,(0)x y ax a +=>所截得部分的体积. 解 将圆柱面的方程化为:2222()x a y a -+= 被球面22224x y z a ++=所截,有对称性,只须求出图中第一卦限的体积1V ,再4倍,1V 的曲顶为z =11D V ⇒=其中 1D 如右图所示 采用极坐标系111D D V θ⇒==⎰⎰⎰⎰ 图8-20(a )(b )2cos 202cos 122222200322222cos 3320233301(4)(4)2128(4)((1sin )233882(sin )().32323a a a d d a r d a r a r d a d a d a πθπθππθπθθθθθππθθ==---=--⋅=-=-=-⎰⎰⎰⎰⎰⎰⎰所以 13224().323V V π==- 递推公式:3n =为奇数 Ⅰ212!!,1(21)!!m m m m +==+小结:何时用极坐标系计算二重积分? ① 积分区域是圆形或环形; ② 被积函数含22x y +.习 题 8-28(1)(3) 9(1)(4) 10(1)8. 化下列二次积分为极坐标形式的二次积分: (1) 11d (,)d x f x y y ⎰⎰ ;(2)2d (,)d xx f x y y ⎰;(3)11d (,)d xx f x y y -⎰ ; (4)21d (,)d x x f x y y ⎰⎰.解 (1) 用直线y x =将积分区域D 分成1D 、2D 两部分:1π{(,)|0sec ,0}4D ρθρθθ=≤≤≤≤,2ππ{(,)|0c ,}.42D cs ρθρθθ=≤≤≤≤, 于是原式sec csc 4204d (cos ,sin )d d (cos ,sin )d .f f ππθθπθρθρθρρθρθρθρρ=+⎰⎰⎰⎰(2) 在极坐标中,直线2,x y x ==和y =的方程分别是π2sec ,4ρθθ==和3πθ=。

相关文档
最新文档