第15讲 位似图形
位似图形ppt

拉伸变换
总结词
拉伸变换指的是将图形在某个方向上拉长或缩短的过程。
详细描述
拉伸变换可以改变图形的形状和大小,可以将图形沿着某个方向拉长或缩短。拉 伸变换通常用比例系数表示,可以是大于1或小于1的比例系数。
05
位似图形和相似图形的关系
相似图形的定义和性质
相似图形的定义
两个图形形状相同,且对应角相等,对应边成比例,这样的 两个图形称为相似图形。
位似图形和相似图形的判定方法比较
01
相似图形的判定方法
可以通过SSS(边边边)、SAS(角边角)、ASA(角角边)或AAA
(角角角)等判定方法确定两个图形是否相似。
02 03
位似图形的判定方法
可以通过位似变换的方式实现,即通过平移、旋转、缩放等变换使得 两个图形的对应点重合,且对应的线段成比例。在具体判定过程中, 需要确定变换的种类和参数,并通过计算确定位似比。
判定方法的比较
相似图形的判定方法较为简单,只需要满足必要条件即可;而位似图 形的判定方法较为复杂,需要满足充分条件,且需要考虑变换的种类 和参数的确定。
06
位似图形的练习题及解答
位似图形的练习题
总结词
指两个图形相似的变换,其中变换包括旋转、平移和缩放等。
详细描述
位似图形是几何学中的概念,指两个图形通过某种变换相互对应,并且对应点之间的距离成比例。位似图形的 变换包括旋转、平移和缩放等,例如将一个图形沿着中心旋转一定角度,或者将一个图形沿着某条直线平移一 定距离,都可以得到位似图形。
THANK YOU.
根据判定定理
如果两个图形中对应点的连线共点且垂直,那么它们是位似图 形,且对应点的连线为位似轴。
位似图形的判定举例
北师大版数学九年级上册《位似图形》教案

北师大版数学九年级上册《位似图形》教案一. 教材分析北师大版数学九年级上册《位似图形》是学生在学习了相似图形的基础上,进一步研究位似图形的性质和应用。
本节课的内容包括位似图形的定义、位似比、位似变换等,通过这些内容的学习,使学生能够理解位似图形的概念,掌握位似变换的方法,并能够运用位似图形的性质解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了相似图形的性质,对图形的相似性有一定的认识。
但是,对于位似图形的概念和性质,以及位似变换的方法,可能还比较陌生。
因此,在教学过程中,需要通过具体的实例和活动,帮助学生理解和掌握位似图形的性质和应用。
三. 教学目标1.理解位似图形的概念,掌握位似比的概念和计算方法。
2.掌握位似变换的方法,能够运用位似图形的性质解决实际问题。
3.培养学生的空间想象能力,提高学生的数学思维能力。
四. 教学重难点1.位似图形的概念和性质。
2.位似比的概念和计算方法。
3.位似变换的方法和应用。
五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等教学方法,通过具体的实例和活动,引导学生探究位似图形的性质和应用,激发学生的学习兴趣,培养学生的空间想象能力和数学思维能力。
六. 教学准备1.准备相关的教学实例和图片。
2.准备教学课件和板书设计。
3.准备练习题和作业。
七. 教学过程1.导入(5分钟)通过展示一些相关的实例和图片,引导学生回顾相似图形的性质,为新课的学习做好铺垫。
2.呈现(15分钟)介绍位似图形的定义和性质,通过具体的实例和活动,引导学生探究位似比的概念和计算方法,以及位似变换的方法。
3.操练(15分钟)通过一些练习题,帮助学生巩固位似图形的性质和应用,提高学生的解题能力。
4.巩固(10分钟)通过一些综合性的练习题,帮助学生巩固位似图形的性质和应用,提高学生的综合运用能力。
5.拓展(10分钟)通过一些拓展性的问题和活动,激发学生的学习兴趣,提高学生的数学思维能力。
位似图形精品课件

THANKS
感谢观看
相似多边形位似
总结词
多边形位似是指两个多边形在平面上 以相同的方向和比例放大或缩小,从 而得到的两个位似多边形。
详细描述
多边形位似的判断条件与四边形相似, 需要满足对应角相等和对应边成比例。 此外,还需要考虑多边形的边数和顶 点数是否相等。
相似圆位似
总结词
圆位似是指两个圆在平面上以相同的方向和比例放大或缩小,从而得到的两个位似圆。
图形。
利用位似变换作图
要点一
总结词
通过位似变换,可以将一个图形放大或缩小,从而得到另 一个图形。
要点二
详细描述
位似变换是一种常见的几何变换,它可以将一个图形放大 或缩小,同时保持其形状不变。利用这个变换,我们可以 方便地作出各种不同大小的位似图形。
利用位似图形构造复杂图形
总结词
通过组合和拼接位似图形,可以构造出复杂 的几何图形。
强化位似图形的应用能力培养
总结词
提升应用能力
详细描述
位似图形的应用是教学的重点和难点,教师需要结合实 际问题,引导学生运用位似图形的知识解决实际问题。 可以通过设计案例分析、数学建模等方式,提高学生的 应用能力。
提倡探究学习和合作学习相结合的教学方式
总结词
创新教学方式
详细描述
探究学习和合作学习是促进学生主动学习和合作学习 的有效方式。教师可以设置探究性问题,引导学生自 主探究,同时组织学生进行合作学习,通过交流、讨 论、分享等方式,促进学生对位似图形知识的深入理 解和掌握。
详细描述
位似图形是研究图形相似性的基础,它们在几何学中扮演着重要的角色。通过研 究位似图形的性质和特点,可以深入了解图形的相似性,进而解决各种几何问题 。位似图形在几何学中具有广泛的应用,如建筑设计、地图绘制等领域。
图形的位似课件

03
位似的判定
依据定义判定位似
定义
如果两个图形不仅是相似图形, 而且每组对应顶点间的距离都相 等,则称这两个图形为位似图形 。
判定方法
判断两个图形是否为位似图形, 需要满足两个条件:一是相似, 二是对应顶点间的距离相等。
依据性质判定位似
性质1
位似图形对应边长之比是一个常数,记作k。
性质2
位似图形对应角相等。
室内空间布局
在室内设计中,位似原理可以帮助设计师复制家具、灯具 或其他装饰元素,以实现整个空间的统一感和和谐感。
位似在机械设计中的应用
01 02
机械零件设计
在机械设计中,位似原理常用于创建具有特定功能的机械零件。通过复 制和调整现有零件的形状和尺寸,工程师可以快速设计出满足特定需求 的零件。
装配线设计
位似与等腰三角形
总结词
等腰三角形是一种具有两边长度相等且对应的角相等的三角 形。位似可以用来描述等腰三角形的形状和大小关系。
详细描述
等腰三角形具有两个相等的角和两条相等的边。在位似变换 下,一个等腰三角形可以变为另一个大小不同的等腰三角形 ,但它们的形状和角的大小保持不变。这种特性在几何证明 和实际问题中具有广泛应用。
04
位似的作图方法
ห้องสมุดไป่ตู้
依据定义作位似图
定义
位似图形是相似图形的一种特殊情况 ,当两个图形不仅是相似图形,而且 每对对应顶点连接后都经过同一个点 时,这两个图形称为位似图形。
描述
依据位似的定义,我们可以确定位似 图形的作图方法。首先,确定相似比 和相似中心,然后根据相似中心和相 似比绘制出位似图形。
依据性质作位似图
位似与等腰梯形
总结词
图形的位似ppt课件

点O就是它们的位似中心,位似比为 .
由作图还可以看到,
C
D
位似多边形必定是
C′
D′
相似多边形,位似比
A
也就是相似比.
B
A′
B′
O
11
11
探究新知
例1
判断下列各图形哪些是位似图形:
若是,请指出位似中心
(1)正五边形ABCDE与正五边形A'B'C'D'E';
(1‘)五边形ABCDE与五边形A'B'C'D'E';
E
x
-6
OA,OB,OC,OD,
-8
-10
F′
-12
G′
-14
就得到四边形G′C′E′F′,也是所求作的四
边形.
23
23
探究新知
如图,例题中平行四边形ABCD的顶点坐标分别为 A(0,4),
B(2,0),C(6,0),D(4,4).
(1)写出平行四边形GCEF的各个顶点坐标.
y
14
G
F
12
10
8
G(0,12),C(6,0),
2.确定关键点(一般是多边形的顶点);
3.找出新图形的关键点;
4.顺次连接各点,得到所求作的图形.
18
18
探究新知
放缩尺是将图形进行放大或缩小的工具.
如图,点O位置固定不变,在A,A'处装
有画笔.当画笔A沿图形F运动时,画笔A'
画出图形F',图形F'将图形F放大了.反之,
图形F是图形F'的缩小图形.
△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是
图形的位似ppt课件

相似三角形对应边的比叫做相似比.
探索与思考
如图是一幅宣传海报,它由一组形状相同的图片组成.在图片①和图片②上任取一组对应点A,A’,可以发现:直线AA’都经过镜头中心点O,且 都等于一个固定值.请你实际试一试.
下图是两个相似五边形,设直线AA’与BB’相交于点O,那么直线CC’,DD’,EE’是否也都经过点O? , , , , 有什么关系?
D
EFΒιβλιοθήκη AOBC
D
E
F
A
O
B
C
结果会得到一个放大了的△DEF,且△DEF的三边是△ABC三边的2倍.即它们的位似比是2∶1.
做一做:
利用橡皮筋将一个图形放大
交流小结,收获感悟
1. 对自己说,你有什么收获? 2. 对同学说,你有什么温馨提示? 3. 对老师说,你还有什么困惑?
布置作业,强化目标 作业:习题4.13
教学目标
1.了解位似图形及其有关概念,能够利用作位似图形等方法将一个图形放大或缩小. 2.学生经历将一个图形放大或缩小的方法,并且在学习和运用过程中发展数学应用意识. 3.培养学生动手操作的良好习惯,以积极进取的思想探究数学学科知识,体会本节知识的实际应用价值和文化价值.
问题:什么叫相似多边形?什么叫相似多边形的相似比?
F
E
D
做一做:
例题讲解
(1)如果在射线OA,OB,OC上分别取D,E,F,使OD=2OA, OE=2OB, OF=2OC,那么,结果又会怎样?
(2)如果在射线AO,BO,CO上分别取点D,E,F使DO=OA,EO=OB,FO=OC,那么,结果又会怎样呢? 结果会得到一个与△ABC全等的△DEF,.即它们的位似比是1∶1.
《图形的位似》

VS
详细描述
相似图形的判断主要依据是它们的形状是 否相同,即它们的角和线段是否对应相等 。而位似图形在此基础上还要满足对应线 段平行且相等这一条件。因此,在判断两 个图形是否为位似图形时,需要先判断它 们是否为相似图形,然后再进一步判断对 应线段是否平行且相等。
位似图形的特性与识别方法
总结词
位似图形具有以下特性:每组对应点到位似中心距离的比等于相似比,对应线段平行且相等,对应角相等,且放 缩比例与位似中心无关。通过这些特性,我们可以总结出位似图形的识别方法。
详细描述
位似图形的特性表现在每组对应点到位似中心距离的比等于相似比,对应线段平行且相等,对应角相等。这些特 性使得我们可以通过比较这些特性来识别位似图形。此外,位似图形的放缩比例与位似中心无关,这也是我们识 别位似图形的一个重要特性。
位似图形的应用场景
总结词
位似图形在日常生活中有着广泛的应用场景,如建筑 设计、艺术创作、工程图纸绘制等。了解位似图形的 概念和应用场景有助于更好地理解和应用相关领域的 知识。
详细描述
在建筑设计方面,位似图形的应用可以帮助设计师更 好地掌握建筑物的比例和尺寸,从而设计出更加美观 实用的建筑。在艺术创作方面,位似图形的应用可以 帮助艺术家更好地掌握画面的比例和构图,从而创作 出更加优美的艺术作品。在工程图纸绘制方面,位似 图形的应用可以帮助工程师更好地掌握物体的比例和 尺寸,从而制作出更加精确的模型或零件。
分为共线位似和非共线位似。共线位似是指位似中心位于图 形上的一条直线上,而非共线位似是指位似中心位于图形内 或图形外。
根据位似比的方向
分为放大和缩小。当位似比大于1时,为放大;当位似比小于 1时,为缩小。
02
位似图形的识别与判断
位似-课件

辅助线构造
在几何证明或解题过程中,有时需要构造辅助线 来帮助解决问题。利用位似变换的性质,可以构 造出具有特殊性质的辅助线,从而简化问题的求 解过程。
解决几何问题
在解决一些几何问题时,可以利用位似变换来简 化问题或找到问题的解决方案。例如,在求解三 角形中的角或边长时,可以通过构造与已知三角 形位似的三角形来找到未知量。
。
案例二
利用位似变换进行图像压缩。介 绍如何利用位似变换进行图像压 缩的原理和步骤,并通过实例展
示其效果和应用价值。
案例三
利用位似思想解决实际问题。通 过具体案例说明如何利用位似思 想解决实际问题,如利用位似分 析物理现象、利用位似设计建筑
结构等。
THANK YOU
02 1. 对应角相等
位似图形中,对应角的大小相 等。
03
2. 对应边成比例
04
位似图形中,对应边的长度之比 等于相似比。
3. 位似中心
在位似变换中,存在一个固定点 (称为位似中心),使得任意一 对对应点与位似中心的连线段之 比等于相似比,且方向相同。
位似变换与相似变换关系
相似变换
相似变换是一种保持形状不变的变换,包括旋转、反射、缩放等。在相似变换下,图形的形状保持不变,但大小 和方向可能发生变化。
位似变换与相似变换的关系
位似变换是相似变换的一种特殊情况。在相似变换中,如果两个图形不仅形状相似,而且大小也成比例,并且存 在一个固定点(位似中心),使得任意一对对应点与位似中心的连线段之比等于相似比且方向相同,则称这两个 图形是位似的。因此,位似变换是相似变换的一个子集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15讲位似图形目标导航课程标准1.了解位似图形、位似中心的概念,掌握位似图形的性质,理解位似变换是特殊的相似变换。
2.会画位似图形,能够利用位似把一个图形放大或缩小。
3.掌握位似图形坐标的变化规律,会利用这个规律求某些特殊点的坐标。
知识精讲知识点01 位似多边形的有关概念一般地,如果两个相似多边形任意一组对应顶点A,A 所在的直线都,且有,那么这样的两个多边形叫做位似多边形,点O叫做。
实际上,k就是这两个相似多边形的相似比。
注意:位似图形与相似图形的区别位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形。
知识点02 位似图形的性质(1)位似图形上任意一对对应点到的距离之比等于相似比;(2) 位似图形上的每组和在同一条直线上;(3)位似图形的对应线段。
(4)位似图形是特殊的相似图形,因此位似图形具有。
知识点03 位似图形的画法1.位似变换利用位似图形的性质将一个图形进行或叫做位似变换。
2.画位似图形的一般步骤(1)确定位似中心。
(2)确定原图形的,通常是多边形的顶点。
(3)分别原图形中的和,并延长(或截取)。
(4)根据已知的相似比,确定所画位似图形 的位置。
(5) 各点,得到放大或缩小后的图形。
3.实例知识点04 平面直角坐标系中的位似变换1.位似多边形对应点的坐标的变化规律在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数)0( k k ,则所对应的图形与原图形位似,位似中心是 ,它们的相似比为 。
2.平移、轴对称、旋转与位似变换的坐标变化规律 名称 变换规律变换方式平移对应点的横坐标(或纵坐标)加上(或减去)平移的单位长度全等变换轴对称 若以x 轴为对称轴,则对应点的横坐标相等,纵坐标互为相反数;若以y 轴为对称轴,则对应点的纵坐标相等,横坐标互为相反数。
旋转若一个图形绕原点旋转180,则旋转前后两个图形对应点的横坐标与纵坐标均互为相反数。
位似当以原点为位似中心时,变换前后两个图形对应点的横坐标、纵坐标之比的绝对值均等于相似比。
相似变换(放大、缩小或不变)考法01 位似多边形【典例1】如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( )能力拓展A.△AOM和△AON都是等边三角形B.四边形MBON和四边形MODN都是菱形C.四边形AMON与四边形ABCD是位似图形D.MO∥BC且BM=CO【即学即练】如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长比是()A.1:2 B.2:1 C.1:3 D.3:1【典例2】在下列图形中,不是位似图形的是()A.B.C.D.【即学即练】在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMRC.四边形NHMQ D.四边形NHMR考法02 位似图形的性质【典例3】下列三个关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;其中正确命题的序号是()A.①②B.②③C.①③D.①②③【即学即练】下列说法中正确的有()①位似图形都相似;②两个等腰三角形一定相似;③两个相似多边形的面积比为4:9,则周长的比为16:81;④边数相同的正多边形一定相似;⑤矩形都相似.A.1个B.3个C.4个D.2个【典例4】按如下方法,将△ABC的三边缩小到原来的12,如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF;则下列说法错误的是()A.点O为位似中心且位似比为1:2B.△ABC与△DEF是位似图形C.△ABC与△DEF是相似图形D.△ABC与△DEF的面积之比为4:1【即学即练】如图,△ABC与△DEF是位似图形,位似比为2:3,已知DF=4,则AC的长为()A.23B.43C.83D.163考法03 平面直角坐标系中的位似变换【典例5】如图,△AOB中,A,B两个顶点在x轴的上方,点O是原点.以点O为位似中心,在x轴的下方作△AOB的位似图形△A′OB′,且AB:A′B′=1:2.若点A的横坐标是a,则点A的对应点A′的横坐标是()A .﹣2aB .2aC .12a -D .12a【即学即练】如图,ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是()1,0,以点C 为位似中心,在x 轴的下方作ABC 的位似图形A B C ''△,使A B C ''△与ABC 的位似比为2:1,设点B 的横坐标是a ,则点B 的对应点B ′的横坐标是( )A .22a --B .21a -+C .22a -+D .23a -+【典例6】如图,在ABC 中,点A 的坐标为()3,6,以原点O 为位似中心,将ABC 位似缩小后得到A B C '''.若点A '的坐标为()1,2,A B C '''的面积为1,则ABC 的面积为( )A .2B .3C .4D .9【即学即练】如图,ABC 与DEF 位似,点O 为位似中心,相似比为2:3.若ABC 的周长为4,则DEF 的周长是( )A .4B .6C .9D .16题组A 基础过关练1.下列运动形式中:(1)传动带上的电视机;(2)电梯上的人的升降;(3)照相时底片上的投影与站在照相机前的人;(4)国旗上的红五角星.上述运动形式中不是位似变换的有( ) A .0个B .1个C .2个D .3个2.如图,在平面直角坐标系中,已知点A (﹣3,6),B (﹣9,﹣3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点B 的对应点B ′的坐标是( )A .(﹣1,2)B .(﹣3,1)C .(﹣3,﹣1)或(3,1)D .(﹣1,2)或(1,﹣2)3.如图,△ABC 和△A 1B 1C 1中,A 1B 1∥AB ,A 1C 1∥AC ,C 1为OC 的中点,△A 1B 1C 1面积是5,则△ABC 的面积为( )A .10B .20C .25D .504.如图,ABC 与DEF 位似,点O 是它们的位似中心,其中:1:2OA OD =,若4AB =,则DE 的长为( )A .4B .8C .12D .165.如图,ABC 中,A ,B 两个顶点在x 轴的上方,点C 在x 轴上.以点C 为位似中心,在x 轴的下方作ABC 的位似图形11A B C ,并把ABC 的边长放大到原来的2倍.设点A 的纵坐标是a ,则点1A 的纵坐标是( )分层提分A .12a -B .12aC .2a -D .2a6.如图,四边形1111D C B A 和四边形是以点O 为位似中心的位似图形,若1:5:3OA OA =,则四边形ABCD 与四边形1111D C B A 的面积比为( )A .5:3B .5:3C .5:9D .5:97.如图,以点O 为位似中心,将△OAB 放大后得到△OCD ,OA =2,OC =5,则ABCD=___.8.如图,△ABC 与△111A B C 是以原点O 为位似中心的位似图形,且位似比为1 : 2,则点A (1 , 2)在第一象限的对应点A1的坐标是______.9.如图,△EFD 和△CFB 是以点F 为位似中心的位似图形,EF :FC =1:2,若S △EFD =1,求四边形EBCD 的面积.10.如图、在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (4,1),B (2,3),C (1,2).(1)画出与△ABC 关于y 轴对称的△A 1B 1C 1;(2)以原点O 为位似中心,在第三象限内画一个△A 2B 2C 2,使它与△ABC 的相似比为2:1,并写出点B 2的坐标.题组B 能力提升练1.如图,△ABC 与△DEF 位似,点O 是它们的位似中心,其中OD =2OA ,△ABC 的周长为10,则△DEF 的周长是( )A .20B .30C .40D .902.如图,ABC 与DEF 位似,点O 是它们的位似中心,其中:2:1OA OD =,若4AB =,则DE 的长为( )A .1B .2C .4D .163.已知△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,则△ABC 与△A 1B 1C 1的面积比( ) A .1 :3B .1:6C .1:9D .3:14.如图,以C (0,1)为位似中心,在y 轴右侧作ABC 位似图形A B C '',使所作图形与原图形位似比为1:2,设点A 的坐标为(-3,4),则点A '的坐标为( )A .3,22⎛⎫- ⎪⎝⎭B .31,22⎛⎫- ⎪⎝⎭C .3,12⎛⎫- ⎪⎝⎭D .31,22⎛⎫⎪⎝⎭5.如图,以点O 为位似中心,把ABC 放大为原图形的2倍得到A B C ''',以下说法正确的有( )个①:1:2ABC A B C S S '''=△△ ②:1:2AB A B ''=③点A ,O ,A '三点在同一条直线上 ④BC B C ''∥ A .1B .2C .3D .46.如图,在平面直角坐标系中,已知点A (﹣3,6)、B (﹣9,﹣3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点B 的对应点B ′的坐标是( )A .(﹣3,﹣1)B .(﹣1,2)C .(﹣9,1)或(9,﹣1)D .(﹣3,﹣1)或(3,1)7.如图,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且位似比为13.点A 、B 、E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为 ________.8.如图,已知△ABC与△DEF位似,位似中心为O,且△ABC的面积与△DEF的面积之比是16:9,则AO:OD=_____.9.已知△OAB在平面直角坐标系中的位置如图所示.(1)将△ABO绕原点O顺时针旋转90°得△OA1B1;(2)以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2.10.如图,BD,AC相交于点P,连接AB,BC,CD,DA,∠DAP=∠CBP.(1)求证:△ADP∽△BCP;(2)直接回答△ADP与△BCP是不是位似图形;(3)若AB=8,CD=4,DP=3,求AP的长.题组C 培优拔尖练1.如图,将△ABC以点O为位似中心放大后得到△A1B1C1,若OB:OB1=1:2,且△ABC的面积为3,则△A1B1C1的面积为()A .6B .9C .12D .182.在平面直角坐标系中,已知点E (-4,2),F (-3,-3),以原点O 为位似中心,相似比为12,把△EFO 缩小,则点E 的对应点E ′的坐标是( ) A .(-2,1)B .(-8,4)C .(-8,4)或(8,-4)D .(-2,1)或(2,-1)3.如图,在网格图中,以O 为位似中心,把△ABC 缩小到原来的12,则点A 的对应点为( )A .D 点B .E 点C .D 点或G 点 D .D 点或 F 点4.如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233////A B A B A B ,213243////A B A B A B .若212A B B △,323A B B △的面积分别为1,4,则图中三个阴影三角形面积之和为 ( )A .8B .9C .10D .10.5故选D .5.如图,△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =8,DC =7,则AB 的值为( )A.15 B.20 C.22+7 D.22+76.如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x、y轴的正半轴上,正方形A B C D''''与正方形ABCD是以AC的中点O'为中心的位似图形,已知32AC=,若点A'的坐标为(1,2),则正方形A B C D''''与正方形ABCD的相似比是()A.16B.13C.12D.237.如图,已知ABC和EDC△是以点C为位似中心的位似图形,且点C与点D在直线AB同侧ABC和EDC△的周长之比为1:2,点C的坐标为(-2,0),若点A的坐标为(-4,3),则点E的坐标为______.8.如图,在直线m上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=12CE,F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S1,S,S3,若S1+S3=10,则S=__.9.如图,在平面直角坐标系中,每个小正方形的边长都是1个单位长度,ABC的顶点都在格点上.(1)以原点O为位似中心,在第三象限内画出将ABC放大为原来的2倍后的位似图形111A B C△;(2)已知ABC的面积为72,则111A B C△的面积是多少?10.如图在△ABC中,∠C=90°,AC=3,BC=4,点D在AC上,点E在AB上,连接DE.(1)当DE∥BC时,如图1.①若DE平分△ABC的面积(即把△ABC的面积分成相等的两部分),求AD的长;②若DE平分△ABC的周长,求AD的长;(2)如图2,试问:是否存在DE将△ABC的周长和面积同时平分?若存在,求出AD的长;若不存在,请说明理由.。