08年淮安市中考数学试题及参考解答
2008江苏省南通市中考试卷及答案(数学)

2008年南通市初中毕业、升学考试数 学(满分150分,考试时间120分钟)一、填空题:本大题共14小题,每小题3分,共42分.不需写出解答过程,请 把最后结果填在题中横线上.1. 计算:0-7 =. 2. = .3. 已知∠A =40°,则∠A 的余角等于 度. 4. 计算:3(2)a = .5. 一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积是 cm 2.6. 一组数据2,4,x ,2,3,4的众数是2,则x =. 7. 函数y 中自变量x 的取值范围是 . 8. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小 正方形中任取一个涂上阴影,能构成这个正方体的表面展开图 的概率是 .9. 一次函数(26)5y m x =-+中,y 随x 增大而减小,则m 的取值 范围是 .10.如图,DE ∥BC 交AB 、AC 于D 、E 两点,CF 为BC 的延长线,若∠ADE =50°,∠ACF =110°,则∠A = 度.11.将点A (,0)绕着原点顺时针方向旋转45°角得到点B , 则点B 的坐标是 .12.苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克 元. (第8题)AB C FED(第10题)(第5题)13.已知:如图,△OAD ≌△OBC ,且∠O =70°,∠C =25°,则∠AEB = 度.14.已知三角形三个顶点坐标,求三角形面积通常有以下三种方法:方法1:直接法.计算三角形一边的长,并求出该边上的高. 方法2:补形法.将三角形面积转化成若干个特殊的四边形和 三角形的面积的和与差.方法3:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形. 现给出三点坐标:A (-1,4),B (2,2),C (4,-1),请你选择一种方法计算△ABC 的面积,你的答案是S △ABC = .二、选择题:本大题共4小题,每小题4分,共16分.在每小题给出的四个选 项中,恰有一项....是符合题目要求的,请将正确选项的代号填入题后括号内.15.下列命题正确的是 【 】A .对角线相等且互相平分的四边形是菱形B .对角线相等且互相垂直的四边形是菱形C .对角线相等且互相平分的四边形是矩形D .对角线相等的四边形是等腰梯形16.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 【 】A .203210x y x y +-=⎧⎨--=⎩,B .2103210x y x y --=⎧⎨--=⎩,C .2103250x y x y --=⎧⎨+-=⎩,D .20210x y x y +-=⎧⎨--=⎩,17.已知△ABC 和△A′B′C′是位似图形.△A′B′C′的面积为6cm 2,周长是△ABC 的一半.AB =8cm ,则AB 边上高等于 【 】 A .3 cm B .6 cm C .9cm D .12cm 18.设1x 、2x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且10x <,2130x x -<,则 【 】 A .1,2m n >⎧⎨>⎩B .1,2m n >⎧⎨<⎩C .1,2m n <⎧⎨>⎩D .1,2m n <⎧⎨<⎩O A B CD E (第13题) (第16题)三、解答题:本大题共10小题,共92分.解答时应写出文字说明、证明过程或演算步骤.(19~20题,第19题10分,第20题6分,共16分)19.(1)计算-; (2)分解因式2(2)(4)4x x x +++-.20.解分式方程225103x x x x-=+-.(21~22题,第21题7分,第22题8分,共15分)21.如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?A BP 北 东 (第21题)22.已知:如图,M 是AB 的中点,过点M 的弦MN 交AB 于点C ,设⊙O 的半径为4cm ,MN =.(1)求圆心O 到弦MN 的距离; (2)求∠ACM 的度数.(23~24题,第23题7分,第24题8分,共15分)23.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元. (1)求A 市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A 市三年共投资“改水工程”多少万元?24.已知点A (-2,-c )向右平移8个单位得到点A ',A 与A '两点均在抛物线2y ax bx c =++上,且这条抛物线与y 轴的交点的纵坐标为-6,求这条抛物线的顶点坐标.(第22题) A BC M NO·(25~26题,第25题10分,第26题12分,共22分)25.随着我国人民生活水平和质量的提高,百岁寿星日益增多.某市是中国的长寿之乡,截至2008年2月底,该市五个地区的100周岁以上的老人分布如下表(单位:人):解答下列问题:(1)请把统计图中地区二和地区四中缺失的数据、图形补充完整;(2)填空:该市五个地区100周岁以上老人中,男性人数的极差是 人,女性人数的中位数是 人;(3)预计2015年该市100周岁以上的老人将比2008年2月的统计数增加100人,请你估算2015年地区一增加100周岁以上的男性老人多少人?(第25题)26.如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E .(1)求证:AB ·AF =CB ·CD ;(2)已知AB =15 cm ,BC =9 cm ,P 是射线DE 上的动点.设DP =x cm (0x ),四边形BCDP 的面积为y cm 2.①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小,并求出此时y 的值.A B C D E FP · (第26题)27.在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.方案一方案二(第27题)28.已知双曲线kyx=与直线14y x=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线kyx=上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线kyx=于点E,交BD于点C.(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.2008年南通市初中毕业、升学考试数学试题参考答案与评分标准说明:本评分标准每题只提供一种解法,如有其他解法,请参照本标准的精神给分.一、填空题:本大题共14小题,每小题3分,共42分.1.-7 2.12 3.50 4.38a5.6 6.2 7.x≥2 8.4 79.m<3 10.60 11.(4,-4)12.4 13.120 14.5 2二、选择题:本大题共4小题,每小题4分,共16分.15.C 16.D 17.B 18.C三、解答题:本大题共10小题,共92分.19.(1)解:原式=-÷……………………………………………………4分=÷=2.………………………………………………………………5分(第28题)(2)解:原式=(2)(4)(2)(2)x x x x ++++- …………………………………………………7分=(2)(22)x x ++ ………………………………………………………………9分 =2(2)(1)x x ++.………………………………………………………………10分 20.解:方程两边同乘以x (x+3)(x -1),得5(x -1)-(x+3)=0.…………………………2分解这个方程,得2x =.……………………………………………………………………4分 检验:把2x =代入最简公分母,得2×5×1=10≠0.∴原方程的解是2x =.……………………………………………………………………6分21.解: 过P 作PC ⊥AB 于C 点,根据题意,得AB =18×2060=6,∠P AB =90°-60°=30°, ∠PBC =90°-45°=45°,∠PCB =90°, ∴PC =BC . ……………………………2分 在Rt △P AC 中, tan30°=6PC PCAB BC PC=++, …………4分6PCPC=+,解得PC=3+. 6分∵3+>6,∴海轮不改变方向继续前进无触礁危险.……………………………7分22.解:(1)连结OM .∵点M 是AB 的中点,∴OM ⊥AB . …………………………………1分过点O 作OD ⊥MN 于点D ,由垂径定理,得12MD MN ==. ………………………3分在Rt △ODM 中,OM =4,MD =,∴OD 2=. 故圆心O 到弦MN 的距离为2 cm . …………………………5分 (2)cos ∠OMD =MD OM =,…………………………………6分 ∴∠OMD =30°,∴∠ACM =60°.……………………………8分23.解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.…………………………………………………………………………2分解之,得0.4x =或 2.4x =-(不合题意,舍去).………………………………………4分所以,A 市投资“改水工程”年平均增长率为40%. …………………………………5分(第22题)A BCMN O· D (第21题)AP60︒45︒北东(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元. ………………………………………………7分24.解:由抛物线2y ax bx c =++与y 轴交点的纵坐标为-6,得c =-6.……………………1分∴A (-2,6),点A 向右平移8个单位得到点A '(6,6). …………………………3分 ∵A 与A '两点均在抛物线上,∴426636666a b a b --=⎧⎨+-=⎩,. 解这个方程组,得14a b =⎧⎨=-⎩,. ……………………………………6分故抛物线的解析式是2246(2)10y x x x =--=--.∴抛物线的顶点坐标为(2,-10). ……………………………………………………8分25.解:(1)……………………4分(2)22,50; ……………………………………………………………………………………8分 (3)[21÷(21+30+38+42+20+39+50+73+70+37)]×100=5,预计地区一增加100周岁以上男性老人5人. …………………………………………10分26.(1)证明:∵AD CD =,DE AC ⊥,∴DE 垂直平分AC ,∴AF CF =,∠DF A =∠DFC =90°,∠DAF =∠DCF .……………………………1分 ∵∠DAB =∠DAF +∠CAB =90°,∠CAB +∠B =90°,∴∠DCF =∠DAF =∠B .2分 在Rt △DCF 和Rt △ABC 中,∠DFC =∠ACB =90°,∠DCF =∠B ,∴△DCF ∽△ABC . ……………………………………………………………………3分∴CD CF AB CB =,即CD AFAB CB=.∴AB ·AF =CB ·CD . ………………………………4分 (2)解:①∵AB =15,BC =9,∠ACB =90°,∴12AC ===,∴6CF AF ==.……………………………5分(第25题)∴1963272y x x=+⨯=+()(0x>).………………………………………………7分②∵BC=9(定值),∴△PBC的周长最小,就是PB+PC最小.由(1)知,点C关于直线DE的对称点是点A,∴PB+PC=PB+P A,故只要求PB+P A最小.显然当P、A、B三点共线时PB+P A最小.此时DP=DE,PB+P A=AB.………8分由(1),ADF FAE∠=∠,90DFA ACB∠=∠=︒,得△DAF∽△ABC.EF∥BC,得11522AE BE AB===,EF=92.∴AF∶BC=AD∶AB,即6∶9=AD∶15.∴AD=10.……………………………10分Rt△ADF中,AD=10,AF=6,∴DF=8.∴925822DE DF FE=+=+=.………………………………………………………11分∴当252x=时,△PBC的周长最小,此时1292y=.………………………………12分27.解:(1)理由如下:∵扇形的弧长=16×π2=8π,圆锥底面周长=2πr,∴圆的半径为4cm.………2分由于所给正方形纸片的对角线长为,而制作这样的圆锥实际需要正方形纸片的对角线长为16420++=+cm,20+>,∴方案一不可行.………………………………………………………………………5分(2)方案二可行.求解过程如下:设圆锥底面圆的半径为r cm,圆锥的母线长为R cm,则(1r R++=,①2π2π4Rr=.②…………………………7分由①②,可得R==r==.………………9分cm.………10分28.解:(1)∵D(-8,0),∴B点的横坐标为-8,代入14y x=中,得y=-2.∴B点坐标为(-8,-2).而A、B两点关于原点对称,∴A(8,2).从而8216k=⨯=.……………………………………………………………………3分(2)∵N(0,-n),B是CD的中点,A、B、M、E四点均在双曲线上,∴mn k =,B (-2m ,-2n ),C (-2m ,-n ),E (-m ,-n ). ……………4分 S 矩形DCNO 22mn k ==,S △DBO =1122mn k =,S △OEN =1122mn k =, ………………7分 ∴S 四边形OBCE = S 矩形DCNO -S △DBO - S △OEN =k .∴4k =. …………………………8分 由直线14y x =及双曲线4y x=,得A (4,1),B (-4,-1), ∴C (-4,-2),M (2,2).………………………………………………………9分 设直线CM 的解析式是y ax b =+,由C 、M 两点在这条直线上,得42,2 2.a b a b -+=-⎧⎨+=⎩ 解得23a b ==. ∴直线CM 的解析式是2233y x =+.………………………………………………11分 (3)如图,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1、M 1.设A 点的横坐标为a ,则B 点的横坐标为-a .于是 111A M MA a m p MP M O m -===. 同理MB m a q MQ m+==,……………………………13分 ∴2a m m a p q m m -+-=-=-.……………………14分。
江苏省淮安市中考数学模拟卷解析版

江苏省淮安市中考数学模拟卷一、单选题(每题3分,共24分)1.在-3,0.3,0,-这四个数中,绝对值最小的数是()A.-3B.0.3C.0D.-2.今年的春晚继续拓展中央广播电视总台全媒体融合传播优势,刷新了跨媒体传播纪录.数据显示,春晚跨媒体受众总规模达12.72亿人.其中数据12.72亿用科学记数法表示为()A.B.C.D.3.下列计算正确的是()A.B.C.D.4.在下面的四个几何体中,主视图是三角形的是()A.圆锥B.正方体C.三棱柱D.圆柱5.下列事件中,属于必然事件的是()A.任意抛掷一只纸杯,杯口朝下B.a为实数,|a|<0C.打开电视,正在播放动画片D.任选三角形的两边,其差小于第三边6.下面命题中,为真命题的是()A.内错角相等B.一组对边平行,另一组对边相等的四边形是平行四边形C.弧长相等的弧是等弧D.平行于同一直线的两直线平行7.如图,矩形ABCD中,AB=8cm,AD=6cm,EF是对角线BD的垂直平分线,则EF的长为()cm.A.B.5C.D.88.我国古代数学著作《增删算法统宗》中有这么一首诗:“今有布绢三十疋,共卖价钞五百七.四疋绢价九十贯,三疋布价该五十.欲问绢布各几何?价钞各该分端的.若人算得无差讹,堪把芳名题郡邑.”其大意是:今有绵与布30疋,卖得570贯钱,4疋绢价90贯,3疋布价50贯,欲问绢布有多少,分开把价算,若人算得无差错,你的名字城镇到处扬.设有绢疋,布疋,依据题意可列方程组为()A.B.C.D.二、填空题(每题3分,共24分)9.分解因式:a2﹣ab=;10.某校数学课外兴趣小组10个同学数学素养测试成绩如图所示,则该兴趣小组10个同学的数学素养测试成绩的众数是分.11.分式方程的解是.12.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是.13.已知三角形两边长分别是2和9,第三边的长为一元二次方程x2-14x+48=0的一个根,则这个三角形的周长为14.正比例函数和反比例函数的图象都经过点A(-1, 2),若,则x的取值范围是.15.如图,已知⊙O是⊙ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,⊙ABD=56°,则⊙BCD 等于.16.如图,点D为边长是的等边⊙ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持⊙ADB=120°不变,则四边形ADBC的面积S的最大值是.三、解答题(共11题,共102分)17.计算或解方程(1).(2)(配方法)18.先化简,再求值:(1,其中x=3.19.如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.20.某校要加强中小学生作业、睡眠、手机、读物、体质管理.数学社团成员采用随机抽样的方法,抽取了七年级若干名学生,对他们一周内平均每天的睡眠时间t(单位:h)进行了调查,将数据整理后得到下列不完整的统计图表和扇形统计图:请根据图表信息回答下列问题:(1)本次被抽取的七年级学生共有名;(2)统计图表中,m=;(3)扇形统计图中,C组所在扇形的圆心角的度数是°;(4)请估计该校800名七年级学生中睡眠不足7小时的人数.21.现有三张完全相同的不透明卡片。
2008年江苏省中考数学几何解答题精选37题

2008年江苏省中考数学几何解答题精选37题1(08年江苏常州)(本小题满分7分) 已知:如图,AB=AD,AC=AE,∠BAD=∠CAE. 求证:AC=DE.2(08年江苏常州)已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED. 求证:AE 平分∠BAD.3(08年江苏常州)如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意..图.,并写出它们的周长.4(08年江苏常州)(本小题满分8分)如图,港口B 位于港口O 正西方向120海里外,小岛C 位于港口O 北偏西60°的方向.一艘科学考察船从港口O 出发,沿北偏东30°的OA 方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B 出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C 用1小时装补给物资后,立即按原来的速度给考察船送去.(1) 快艇从港口B 到小岛C 需要多少时间?(2) 快艇从小岛C(第22题)(第23题)5(08年江苏淮安24题)(本小题9分)已知;如图.矩形ABCD的对角线AC与BD相交于点O,点O关于直线AD的对称点是E,连结AE、DE. (1)试判断四边形AODE的形状,不必说明理由; (2)请你连结EB、EC.并证明EB=EC.6(08年江苏淮安26题)(本小题10分)如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若,DE=3.求:(1) ⊙O的半径; (2)弦AC的长; (3)阴影部分的面积.7(08年江苏淮安27题)(本小题lO分)我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图l是由△A复制出△A1,又由△Al复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A 全等的三角形)之间既无缝隙也无重叠.(1)图l中标出的是一种可能的复制结果.它用到_____次平移._______次旋转.小明发现△B∽△A,其相似比为_________.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是________;(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;(4)图3是正五边形EFGHI.其中心是O.连结O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.8(08年江苏连云港18题)(本小题满分8分)如图,A B C △内接于O ,A B 为O 的直径,2B A C B ∠=∠,6A C =,过点A 作O 的切线与O C 的延长线交于点P ,求P A 的长.9(08年江苏连云港20题)(本小题满分8分)如图,在直角梯形纸片A B C D 中,A B D C ∥,90A ∠= ,C D AD >,将纸片沿过点D 的直线折叠,使点A 落在边C D 上的点E 处,折痕为D F .连接E F 并展开纸片. (1)求证:四边形AD EF 是正方形;(2)取线段A F 的中点G ,连接E G ,如果B G C D =,试说明四边形G B C E 是等腰梯形.10(08年江苏连云港25题)(本小题满分12分)我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段A B 的最小覆盖圆就是以线段A B 为直径的圆.(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明);(3)某地有四个村庄E F G H ,,,(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.BCPO A(第18题图) ECBDAGF(第20题图)AAB BCC 80100(第25题图1)F11(08年江苏南京21题)(6分)如图,在A B C D 中,E F ,为B C 上两点,且B E C F =,AF D E =. 求证:(1)A B F D C E △≌△;(2)四边形A B C D 是矩形.12(08年江苏南京22题)(6分)如图,菱形A B C D (图1)与菱形E F G H (图2)的形状、大小完全相同.(1)请从下列序号中选择正确选项的序号填写;①点E F G H ,,,;②点G F E H ,,,;③点E H G F ,,,;④点G H E F ,,,.如果图1经过一次平移后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次轴对称后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次旋转后得到图2,那么点A B C D ,,,对应点分别是 ; (2)①图1,图2关于点O 成中心对称,请画出对称中心(保留画图痕迹,不写画法); ②写出两个图形成中心对称的一条..性质: .(可以结合所画图形叙述)13(08年江苏南京23题)(6分)如图,山顶建有一座铁塔,塔高30m C D =,某人在点A 处测得塔底C 的仰角为20,塔顶D 的仰角为23,求此人距C D 的水平距离A B .(参考数据:sin 200.342≈,cos 200.940≈,tan 200.364≈,sin 230.391≈,cos 230.921≈,tan 230.424≈)(第21题)A BCDEF图1(第22题)B图2EF G(第23题)ABCD 202314(08年江苏南通21题)如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?15(08年江苏南通22题)已知:如图,M 是 AB 的中点,过点M 的弦MN 交AB 于点C ,设⊙O 的半径为4cm ,MN =4.(1)求圆心O 到弦MN 的距离; (2)求∠ACM 的度数.16(08年江苏南通27题)在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm 的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切) (1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.(第22题)ABC MNO ·A BP北东(第21题)(第27题)方案一A 方案二A CD17(08年江苏苏州23题)(本题6分)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4. 求证:(1)△ABC ≌△ADC ; (2)BO=DO .18(08年江苏苏州27题)(本题9分)如图,在△ABC 中,∠BAC=90°,BM 平分∠ABC 交AC 于M ,以A 为圆心,AM 为半径作OA 交BM 于N ,AN 的延长线交BC 于D ,直线AB 交OA 于P 、K 两点.作MT ⊥BC 于T (1)求证AK=MT ; (2)求证:AD ⊥BC ; (3)当AK=BD 时, 求证:B N A C B PB M=.19(08年江苏宿迁21题)(本题满分8分)如图,在平行四边形ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F . (1)求证:CF AB =;(2)当BC 与AF 满足什么数量关系时, 四边形ABFC 是矩形,并说明理由.20(08年江苏宿迁23题)(本题满分10分) 如图,⊙O 的直径AB 是4,过B 点的直线MN 是⊙O 的切线,D 、C 是⊙O 上的两点,连接AD 、BD 、CD 和BC .(1)求证:CDB CBN ∠=∠;(2)若DC 是ADB ∠的平分线,且︒=∠15DAB ,求DC 的长.NMBAFEDCBA第21题21(08年江苏泰州23题)如图,⊿ABC 内接于⊙O ,AD 是⊿ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,⊿ABE 与⊿ADC 相似吗?请证明你的结论。
江苏省淮安市2022年中考数学真题试题(含答案)

江苏省淮安市2018年中考数学真题试题注意事项:1.试卷分为第I卷和第II卷两部分,共6页,全卷 150分,考试时间120分钟.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效.4.作图要用2B铅笔,加黑加粗,描写清楚.5.考试结束,将本试卷和答题卡一并交回.第I卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上)1.﹣3的相反数是A.﹣3 B.13- C.13D.32.地球与太阳的平均距离大约为150 000 000km,将150 000 000用科学记数法表示应为 A.15×107 B.1.5×108 C.1.5×109 D.0.15×1093.若一组数据3、4、5、x、6、7的平均数是5,则x的值是A.4 B.5 C.6 D.74.若点A(﹣2,3)在反比例函数kyx=的图像上,则k的值是A.﹣6 B.﹣2 C.2 D.65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是A.35° B.45° C.55° D.65°6.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是A.20 B.24 C.40 D.487.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是A.﹣1 B.0 C.1 D.28.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是A.70° B.80° C.110° D.140°第II卷(选择题共126分)二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:23()a= .10.一元二次方程x2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01). 12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是32x y =⎧⎨=⎩,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数21y x =-的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 . 三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:02sin 45(1)1822π︒+--; (2)解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩.18.(本题满分8分)先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3. 19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数. 21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率. 22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2 1.414≈,3 1.732≈)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径为2,∠B =50°,AC =4.8,求图中阴影部分的面积.25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.26.(本题满分12分)+=90°,那么我们称这样的三角形为“准互如果三角形的两个内角α与β满足2αβ余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.27.(本题满分12分)如图,在平面直角坐标系中,一次函数243y x=-+的图像与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.参考答案题号 1 2 3 4 5 6 7 8 答案DBBACABC题号 910答案 a 610x =,21x =题号 11 12 答案 0.90 4 题号 13 14答案 65° 22y x =+题号 1516答案85 19()2n - 17.(1)1;(2)13x ≤<. 18.化简结果为12a -,计算结果为﹣2. 19.先证△AOE ≌△COF ,即可证出AE =CF . 20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名. 21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2); (2)点A 落在第四象限的概率为13. 22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米. 24.(1)先根据“SSS ”证明△AEO ≌△DEO ,从而得到∠ODE =∠OAE =90°,即可判断出直线DE 与⊙O 相切; (2)阴影部分面积为:241059π-. 25.(1)180;(2)2[20010(50)](40)10(55)2250y x x x =---=--+, ∴当每件的销售价为55元时,每天获得利润最大为2250元. 26.(1)15°; (2)存在,BE 的长为95(思路:利用△CAE ∽△CBA 即可); (3)20,思路:作AE ⊥CB 于点E ,CF ⊥AB 于点F ,先根据△FCB∽△FAC计算出AF=16,最后运用勾股定理算出AC=20.27.(1)(4,0);(2)22233,01439418,1434312,23t tS t t tt t⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩;(3)OT+PT的最小值为1825.。
08年江苏省宿迁市中考数学试卷及答案

2008年江苏省宿迁市中考数学试卷及答案学习改变命运,思考成就未来2008年江苏省宿迁市中考数学试题及答案答题注意事项1.答案全部写在答题卡,写在本试卷上无效。
2.答选择题时使用2B铅笔,把答题卡上对应题号的选项字母涂满、涂黑。
如需修改,要用绘图橡皮轻擦干净再选涂其他选项。
在答题卡上对应题号的答题区域书写答案。
注意不3.答非选择题使用黑色签字笔,要答错位置,也不要超界。
一、选择题:....1.下列计算正确的是32623A.a?a?a B.(a2)3?a6 C.2a?3a?5a D.3a?2a?333a 282.某市2008年第一季度财政收入为亿元,用科学记数法表示为A.41?10元B.?10元C.?10元D.?10元3.有一实物如图,那么它的主视图是A实物图BC 4.下列事件是确定事件的是A.2008年8月8日北京会下雨B.任意翻到一本书的某页,这页的页码是奇数C.2008年2月有29天D.经过某一有交通信号灯的路口,遇到红灯5.下列图形中既是轴对称图形又是中心对称图形的是A.正六边形B.正五边形C.平行四边形D.等腰三角形6.已知?为锐角,且sin(??10?)?899D3,则?等于23(x?1)2的图象大致是2A.50? B.60? C.70? D.80? 7.在平面直角坐标系中,函数y??x?1与y?? yyyy OOOO xxx ABCD 8.用边长为1的正方形覆盖3?3的正方形网格,最多覆盖边长为1的正方形网格(覆盖一部分就算覆盖)的个数是A.2 B.4 C.5D.6 1 x学习改变命运,思考成就未来二、填空题(本大题共10小题,每小题4分,共40分,请把答案直接填写在答题卡相应位置上):9.20?4?_______▲ .10.“两直线平行,内错角相等”的逆命题是__________.▲ 11.因式分解x3?9x?_______.▲ 12.等腰三角形的两边长分别是3和7,则其周长为______▲ .13.若2x?1有意义,则x 的取值范围是_________▲ .14.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______▲ .15.已知直角三角形两条直角边的长是3和4,则其内切圆的半径是______▲ .16.已知一元二次方程x2?px?3?0的一个根为?3,则p?_____▲ .17.用圆心角为120?,半径为6cm的扇形做成一个无底的圆锥侧面,则此圆锥的底面半径为____cm.▲ 18.对于任意的两个实数对(a,b)和(c,d),规定:当a?c,b?d 时,有(a,b)?(c,d);运算“?”为:(a,b)?(c,d)?(ac,bd);运算“?”为:(a,b)?(c,d)?(a?c,b?d).设p、q都是实数,若(1,2)?(p,q)?(2,?4),则(1,2)?(p,q)?_______.▲ 三、解答题:19.解方程组:??2x?3y??5 ?3x?2y?12 20.a2?3aa?32??先化简,再求值:2,其中a?2?2.a?4a?4a?2a?2 21.如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC 的延长线于点F.(1)求证:AB?CF;D(2)当BC与AF满足什么数量关系时,AABFC四边形是矩形,并说明理. C EB F 第21题2 学习改变命运,思考成就未来22.红星中学团委为汶川地震灾区组织献爱心捐献活动,小明对本班同学的捐款情况进行了统计,其中捐10元的人数占全班总人数的40%.小明还绘制了频数分布直方图.(1)请求出小明所在班级同学的人数;(2)本次捐款的中位数是____元;人数(3)请补齐频数分布直方图.20 15 10 5 10元20元50元100元捐款金额第22题23.如图,⊙O的直径AB是4,过B点的直线MN是⊙O的切线,D、C是⊙O上的两点,连接AD、BD、CD和BC.(1)求证:?CBN??CDB;M(2)若DC是?ADB的平分线,且?DAB?15?,求DC的长. D OAB N C 第23题24.如图,已知反比例函数y?k1的图象与一次函数y?k2x?b的图象交于A、B两点,A(2,n),B(?1,?2).x(1)求反比例函数和一次函数的关系式;(2)在直线AB上是否存在一点P,使?APO ∽?AOB,若存在,求P点坐标;若不存在,请说明理.y A O x B第24题25. 3 学习改变命运,思考成就未来不透明的口袋里装有红、黄、蓝三种颜色的小球,其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为1.2(1)求袋中黄球的个数;(2)第一次摸出一个球,第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概...率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球得20分,问小明有哪几种摸法?..26.某宾馆有客房90间,当每间客房的定价为每天140元时,客房会全部住满.当每间客房每天的定价每涨10元时,就会有5间客房空闲.如果旅客居住客房,宾馆需对每间客房每天支出60元的各种费用.(1)请写出该宾馆每天的利润y与每间客房涨价x之间的函数关系式;(2)设某天的利润为8000元,8000元的利润是否为该天的最大利润?如果是,请说明理;如果不是,请求出最大利润,并指出此时客房定价应为多少元?(3)请回答客房定价在什么范围内宾馆就可获得利润?27.如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动.(1)当点D运动到与点A、O在同一条直线上时,试证明直线CD 与⊙O相切;(2)当直线CD与⊙O相切时,求CD所在直线对应的函数关系式;(3)设点D的横坐标为x,正方形ABCD的面积为S,求S与x之间的函数关系式,并求出S的最大值与最小值.yC D B O5x14 A第27题学习改变命运,思考成就未来2008年江苏省宿迁市中考数学试题参考答案一、选择题: 1.B2.C3.A4.C5.A6.C7.D8.D二、填空题:9.?1 10.内错角相等,两直线平行(x?3)(x?3)?18.(3,0) 三、解答题: 19.解: ?1 2?2x?3y??5(1)?3x?2y?12(2)((1)?2?(2)?3得13x?26,x?2并代入(2)得y?3 ∴原方程组的解是?20.解:当a?原式??x?2. ?y?32?2时, a(a?3)a?22a?2????2a?3a?2a?2(a?2)2?2?22 ?2?2?2?42?1?22.21.(1)证明:∵四边形ABCD是平行四边形∴AB//CD,AB?CD∴?BAE??CFE,?ABE??FCE ∵E为BC 的中点∴EB?EC ∴?ABE??FCE ∴AB?CF. (2)解:当BC?AF时,四边形ABFC是矩形.理如下: ∵AB//CF,AB?CF ∴四边形ABFC是平行四边形∵BC?AF ∴四边形ABFC是矩形. 22.解:(1)∵20?40%?50 ∴小明所在班级同学有50人;(2)∵人数201510510元5 20元50元捐款金额20?50?35 2∴本次捐款的中位数是35元;(3) 如右图.100元学习改变命运,思考成就未来23.(1)证明: ∵AB是⊙O的直径∴?ADB??ADC??CDB?90? ∵MN切⊙O于点B ∴?ABN??ABC??CBN?90? ∴?ADC??CDB??ABC??CBN ∵?ADC??ABC ∴?CBN??CDB. (2) 如右图,连接OD,OC,过点O作OE?CD于点E. ∵CD平分?ADB ∴?ADC??BDC ∴弧AC?弧BC ∵AB是⊙O的直径∴?BOC?90? 又∵?DAB?15?∴?DOB?30? ∵OD?OC,OE?CD∴?ODE?30? ∵OD?2 ∴OE?1,DE?3 ∴CD?2DE?23. 24.解:(1) ∵双曲线y?∴k1??1?(?2)?2 ∵双曲线y?∴n?1 直线y?k2x?b过点A,B得?∴反比例函数关系式为y? MDAOEBCNk1过点(?1,?2) x2过点(2,n) x?2k2?b?1?k2?1,解得? b??1?k?b??2??2y2,一次函数关系式为y?x?1. x71(2)存在符合条件的点P,P(,).理如下: 66∵?APO∽?AOB APAOAO2552?∴∴AP?,如右图,设直线??AOABAB326 6 AOCEDPxB学习改变命运,思考成就未来AB与x轴、y 轴分别相交于点C、D,过P点作PE?x轴于点E,连接OP,则AC?CD?DB?2, 故PC?AC?AP?2?522221,再?ACE?45?得CE?PE?,从而???66626771,因此,点P的坐标为P(,). 66621?,解得m?1,故袋中有黄球1个;25.解:(1)设袋中有黄球m个,题意得2?1?m2OE?OC?CE?(2) ∵第一次摸球第二次摸球红1红2黄蓝黄红2黄蓝红1黄蓝红1红2蓝红1红2∴P(两次都摸到红球)?21?.126(3)设小明摸到红球有x次,摸到黄球有y次,则摸到蓝球有(6?x?y)次,题意得5x?3y?(6?x?y)?20,即2x?y?7∴y?7?2x ∵x、y、6?x?y均为自然数∴当x?1时,y?5,6?x?y?0;当x?2时,y?3,6?x?y?1;当x?3时,y?1,6?x?y?2.综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为1次、5次、0次或2次、3次、1次或3次、1次、2次.26.解:(1)题意得y?(140?60?x)(90?(2) 8000元的利润不是为该天的最大利润.∵y??x1?5)即y??x2?50x?7200. 102121(x?100x?2500)?1250?7200??(x?50 )2?8450 22∴当x?50即每间客房定价为190元时,宾馆当天的最大利润为8450元.(3)?12x?50x?7200?0得x2?100x?14400?0,即(x?180)(x?80)?0 2解得?80?x?180,题意可知当客房的定价为:大于60元而小于320元时,宾馆就可获得利润.7 学习改变命运,思考成就未来27.解:(1) ∵四边形ABCD为正方形∴AD?CD ∵A、O、D在同一条直线上∴?ODC?90?∴直线CD与⊙O相切;(2)直线CD与⊙O相切分两种情况: ①如图1, 设D1点在第二象限时,过D1作yCD1E1?x轴于点E1,设此时的正方形的边长为a,则D1E1O1B5x(a?1)2?a2?52,解得a?4或a??3(舍去).OE1D1E1OD1?? OABAOBRt?BOA∽Rt?D1OE1 得Ay第27题图1 3434∴OE1?,D1E1? ∴D1(?,),故直线55554OD的函数关系式为y??x; 3 ②如图2, 设D2点在第四象限时,过D2作COD2E2?x 轴于点E2,设此时的正方形的边长为b,则(b?1)2?b2?52,解得b?3或b??4(舍去).E21D2AB5xRt?BOA∽Rt?D2OE2 得第27题图 2 OE2D2E2OD2?? OABAOB∴OE2?43433,D2E2? ∴D2(,?),故直线OD 的函数关系式为y??x.55554(5?x)2?(1?x2)?26?10x 2(3)设D(x,y0),则y0??1?x,B(5,0)得DB?∴S?11BD2?(26?10x)?13?5x 22∵?1?x?1 ∴S最大值?13?5?18,S 最小值?13?5?8. 8。
2020年江苏省淮安市中考数学试卷(含答案)

江苏省淮安市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.(3分)2016年某市用于资助贫困学生的助学金总额是9680000元,将9680000用科学记数法表示为()A.96.8×105B.9.68×106C.9.68×107D.0.968×1083.(3分)计算a2•a3的结果是()A.5a B.6a C.a6D.a54.(3分)点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)5.(3分)下列式子为最简二次根式的是()A.B. C. D.6.(3分)九年级(1)班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下:引体向上数/个012345678人数112133211这15名男同学引体向上数的中位数是()A.2 B.3 C.4 D.57.(3分)若一个三角形的两边长分别为5和8,则第三边长可能是()A.14 B.10 C.3 D.28.(3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.B.6 C.4 D.5二、填空题(每题3分,满分30分,将答案填在答题纸上)9.(3分)分解因式:ab﹣b2=.10.(3分)计算:2(x﹣y)+3y=.11.(3分)若反比例函数y=﹣的图象经过点A(m,3),则m的值是.12.(3分)方程=1的解是.13.(3分)一枚质地均匀的骰子的6个面上分别刻有1〜6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是.14.(3分)若关于x的一元二次方程x2﹣x+k+1=0有两个不相等的实数根,则k 的取值范围是.15.(3分)如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=°.16.(3分)如图,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4:3:5,则∠D的度数是°.17.(3分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=.18.(3分)将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行1111213141516第5行25242322212191817…则2017在第行.三、解答题(本大题共10小题,共70分.解答应写出文字说明、证明过程或演算步骤.)19.(12分)(1)|﹣3|﹣(+1)0+(﹣2)2;(2)(1﹣)÷.20.(8分)解不等式组:并写出它的整数解.21.(8分)已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.22.(8分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求两次摸到的球的颜色不同的概率.23.(8分)某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.社团名称人数文学社团18科技社团a书画社团45体育社团72其他b请解答下列问题:(1)a=,b=;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为;(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.24.(8分)A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯通,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km,参考数据:≈1.414,≈1.732)25.(8分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.(1)试判断直线EF与⊙O的位置关系,并说明理由;(2)若OA=2,∠A=30°,求图中阴影部分的面积.26.(10分)某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?27.(12分)【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.…请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),求BD的长(用含k的式子表示).28.(14分)如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=,c=;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;(4)如图②,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.江苏省淮安市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.(3分)2016年某市用于资助贫困学生的助学金总额是9680000元,将9680000用科学记数法表示为()A.96.8×105B.9.68×106C.9.68×107D.0.968×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将9680000用科学记数法表示为:9.68×106.故选B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)计算a2•a3的结果是()A.5a B.6a C.a6D.a5【分析】根据同底数幂的乘法,可得答案.【解答】解:原式=a2+3=a5,故选:D.【点评】本题考查了同底数幂的乘法,熟记法则并根据法则计算是解题关键.4.(3分)点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选:C.【点评】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.(3分)下列式子为最简二次根式的是()A.B. C. D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数含分母,故D不符合题意;故选:A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.6.(3分)九年级(1)班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下:引体向上数/个012345678人数112133211这15名男同学引体向上数的中位数是()A.2 B.3 C.4 D.5【分析】根据中位数的定义,将15个数据从小到大排列后,中位数是第8个数.【解答】解:根据表格可知,15个数据按从小到大的顺序排列后,第8个数是4,所以中位数为4;故选C.【点评】本题主要考查中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.(3分)若一个三角形的两边长分别为5和8,则第三边长可能是()A.14 B.10 C.3 D.2【分析】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边即可判断.【解答】解:设第三边为x,则8﹣5<x<5+8,即3<x<13,所以符合条件的整数为10,故选B.【点评】本题考查三角形三边关系定理,记住两边之和大于第三边,两边之差小于第三边,属于基础题,中考常考题型.8.(3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.B.6 C.4 D.5【分析】根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三角形的性质得到AF=CF,于是得到结论.【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选B.【点评】本题考查了翻折变换的性质,矩形的性质,熟练掌握折叠的性质是解题的关键.二、填空题(每题3分,满分30分,将答案填在答题纸上)9.(3分)分解因式:ab﹣b2=b(a﹣b).【分析】根据提公因式法,可得答案.【解答】解:原式=b(a﹣b),故答案为:b(a﹣b).【点评】本题考查了因式分解,利用提公因式法是解题关键.10.(3分)计算:2(x﹣y)+3y=2x+y.【分析】原式去括号合并即可得到结果.【解答】解:原式=2x﹣2y+3y=2x+y,故答案为:2x+y【点评】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.11.(3分)若反比例函数y=﹣的图象经过点A(m,3),则m的值是﹣2.【分析】直接把A(m,3)代入反比例函数y=﹣,求出m的值即可.【解答】解:∵反比例函数y=﹣的图象经过点A(m,3),∴3=﹣,解得m=﹣2.故答案为:﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.(3分)方程=1的解是x=3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣1=2,解得:x=3,经检验x=3是分式方程的解,故答案为:x=3【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.(3分)一枚质地均匀的骰子的6个面上分别刻有1〜6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是.【分析】弄清骰子六个面上分别刻的点数,再根据概率公式解答就可求出向上一面的点数是4的概率.【解答】解:由概率公式P(向上一面的点数是6)=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.14.(3分)若关于x的一元二次方程x2﹣x+k+1=0有两个不相等的实数根,则k 的取值范围是k<﹣.【分析】根据判别式的意义得到△=(﹣1)2﹣4(k+1)>0,然后解不等式即可.【解答】解:根据题意得△=(﹣1)2﹣4(k+1)>0,解得k<﹣.故答案为k<﹣.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.15.(3分)如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=46°.【分析】根据平行线的性质和平角的定义即可得到结论.【解答】解:∵直线a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°﹣34°﹣100°=46°,故答案为:46.【点评】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.16.(3分)如图,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4:3:5,则∠D的度数是120°.【分析】设∠A=4x,∠B=3x,∠C=5x,根据圆内接四边形的性质求出x的值,进而可得出结论.【解答】解:∵∠A,∠B,∠C的度数之比为4:3:5,∴设∠A=4x,则∠B=3x,∠C=5x.∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,即4x+5x=180°,解得x=20°,∴∠B=3x=60°,∴∠D=180°﹣60°=120°.故答案为:120.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.17.(3分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=2.【分析】利用直角三角形斜边中线定理以及三角形的中位线定理即可解决问题.【解答】解:在Rt△ABC中,∵AD=BD=4,∴CD=AB=4,∵AF=DF,AE=EC,∴EF=CD=2.故答案为2【点评】本题考查三角形的中位线定理、直角三角形斜边上的中线的性质等知识,解题的关键是熟练掌握三角形的中位线定理以及直角三角形斜边上的中线的性质解决问题,属于中考常考题型.18.(3分)将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行1111213141516第5行25242322212191817…则2017在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2017所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2017在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.三、解答题(本大题共10小题,共70分.解答应写出文字说明、证明过程或演算步骤.)19.(12分)(1)|﹣3|﹣(+1)0+(﹣2)2;(2)(1﹣)÷.【分析】(1)根据绝对值的意义,零指数幂的意义即可求出答案;(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=3﹣1+4=6(2)原式=×=a【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(8分)解不等式组:并写出它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣1<x+5,得:x<3,解不等式<x﹣1,得:x>﹣1,则不等式组的解集为﹣1<x<3,∴不等式组的整数解为0、1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.【分析】证出∠ADE=∠CBF,AD=CB,由AAS证△ADE≌△CBF即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS).【点评】此题考查了平行四边形的性质、全等三角形的判定.熟练掌握平行四边形的性质是解决问题的关键.22.(8分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求两次摸到的球的颜色不同的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.【解答】解:(1)如图:;(2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.社团名称人数文学社团18科技社团a书画社团45体育社团72其他b请解答下列问题:(1)a=36,b=9;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为90°;(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.【分析】(1)根据体育社团的人数是72人,所占的百分比是40%即可求得调查的总人数,然后利用百分比的意义求得a和b的值;(2)利用360°乘以对应的百分比求解;(3)利用总人数乘以对应的百分比求解.【解答】解:(1)调查的总人数是72÷40%=180(人),则a=180×20%=36(人),则b=180﹣18﹣45﹣72﹣36=9.故答案是:36,9;(2)“书画社团”所对应的扇形圆心角度数是360×=90°;(3)估计该校学生中选择“文学社团”的人数是3000×=300(人).【点评】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.24.(8分)A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯通,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km,参考数据:≈1.414,≈1.732)【分析】过点C作CD⊥AB与D,根据AC=20km,∠CAB=30°,求出CD、AD,根据∠CBA=45°,求出BD、BC,最后根据AB=AD+BD列式计算即可.【解答】解:过点C作CD⊥AB与D,∵AC=20km,∠CAB=30°,∴CD=AC=×20=10km,AD=cos∠CAB•AC=cos∠30°×20=10km,∵∠CBA=45°,∴BD=CD=10km,BC=CD=10≈14.14km∴AB=AD+BD=10+10≈27.32km.则AC+BC﹣AB≈20+14.14﹣27.32≈6.8km.答:从A地到B地的路程将缩短6.8km.【点评】此题考查了解直角三角形的应用,用到的知识点是三角函数、特殊角的三角函数值,关键是作出辅助线,构造直角三角形,求出有关线段的长.25.(8分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.(1)试判断直线EF与⊙O的位置关系,并说明理由;(2)若OA=2,∠A=30°,求图中阴影部分的面积.【分析】(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到结论;(2)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.【解答】解:(1)连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切线;(2)∵AD是⊙O的直径,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵AO=2,∴OE=2,∴EG=2,∴阴影部分的面积=2×2﹣=2﹣π.【点评】本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.26.(10分)某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为240元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?【分析】(1)观察图象即可解决问题;(2)首先判断收费标准在BC段,求出直线BC的解析式,列出方程即可解决问题.【解答】解:(1)观察图象可知:当参加旅游的人数不超过10人时,人均收费为240元.故答案为240.(2)∵3600÷240=15,3600÷150=24,∴收费标准在BC段,设直线BC的解析式为y=kx+b,则有,解得,∴y=﹣6x+300,由题意(﹣6x+300)x=3600,解得x=20或30(舍弃)答:参加这次旅游的人数是20人.【点评】本题考查一次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,读懂图象信息,用数形结合的思想思考问题,属于中考常考题型.27.(12分)【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=45°.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.…请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),求BD的长(用含k的式子表示).【分析】【操作发现】(1)根据旋转角,旋转方向画出图形即可;(2)只要证明△ABB′是等腰直角三角形即可;【问题解决】如图②,将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,只要证明∠PP′C=90°,利用勾股定理即可解决问题;【灵活运用】如图③中,由AE⊥BC,BE=EC,推出AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,只要证明∠GDC=90°,可得CG=,由此即可解决问题.【解答】解:【操作发现】(1)如图所示,△AB′C′即为所求;(2)连接BB′,将△ABC绕点A按顺时针方向旋转90°,∴AB=AB′,∠B′AB=90°,∴∠AB′B=45°,故答案为:45°;【问题解决】如图②,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,∴△APP′是等边三角形,∠AP′C=∠APB=360°﹣90°﹣120°=150°,∴PP′=AP,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°,∴PP′=PC,即AP=PC,∵∠APC=90°,∴AP2+PC2=AC2,即(PC)2+PC2=72,∴PC=2,∴AP=,=AP•PC=7;∴S△APC【灵活运用】如图③中,∵AE⊥BC,BE=EC,∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=kAB,∴DG=kBC=4k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG==.∴BD=CG=.【点评】本题考查相似形综合题、等边三角形的判定和性质、等腰三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会用旋转法添加辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.28.(14分)如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=,c=4;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;(4)如图②,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.【分析】(1)设抛物线的解析式为y=a(x+3)(x﹣4).将a=﹣代入可得到抛物线的解析式,从而可确定出b、c的值;(2)连结QC.先求得点C的坐标,则PC=5﹣t,依据勾股定理可求得AC=5,CQ2=t2+16,接下来,依据CQ2﹣CP2=AQ2﹣AP2列方程求解即可;(3)过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,首先证明△PAG∽△ACO,依据相似三角形的性质可得到PG=t,AG=t,然后可求得PE、DF的长,然后再证明△MDP≌PEQ,从而得到PD=EQ=t,MD=PE=3+t,然后可求得FM和OF的长,从而可得到点M的坐标,然后将点M的坐标代入抛物线的解析式求解即可;(4)连结:OP,取OP的中点R,连结RH,NR,延长NR交线段BC与点Q′.首先依据三角形的中位线定理得到RH=QO=t,RH∥OQ,NR=AP=t,则RH=NR,接下来,依据等腰三角形的性质和平行线的性质证明NH是∠QNQ′的平分线,然后求得直线NR和BC的解析式,最后求得直线NR和BC的交点坐标即可.【解答】解:(1)设抛物线的解析式为y=a(x+3)(x﹣4).将a=﹣代入得:y=﹣x2+x+4,∴b=,c=4.(2)在点P、Q运动过程中,△APQ不可能是直角三角形.理由如下:连结QC.∵在点P、Q运动过程中,∠PAQ、∠PQA始终为锐角,∴当△APQ是直角三角形时,则∠APQ=90°.将x=0代入抛物线的解析式得:y=4,∴C(0,4).∵AP=OQ=t,∴PC=5﹣t,∵在Rt△AOC中,依据勾股定理得:AC=5,在Rt△COQ中,依据勾股定理可知:CQ2=t2+16,在Rt△CPQ中依据勾股定理可知:PQ2=CQ2﹣CP2,在Rt△APQ中,AQ2﹣AP2=PQ2,∴CQ2﹣CP2=AQ2﹣AP2,即(3+t)2﹣t2=t2+16﹣(5﹣t)2,解得:t=4.5.∵由题意可知:0≤t≤4,∴t=4.5不合题意,即△APQ不可能是直角三角形.(3)如图所示:过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,则PG∥y轴,∠E=∠D=90°.∵PG∥y轴,∴△PAG∽△ACO,∴==,即==,∴PG=t,AG=t,∴PE=GQ=GO+OQ=AO﹣AG+OQ=3﹣t+t=3+t,DF=GP=t.∵∠MPQ=90°,∠D=90°,∴∠DMP+∠DPM=∠EPQ+∠DPM=90°,∴∠DMP=∠EPQ.又∵∠D=∠E,PM=PQ,∴△MDP≌PEQ,∴PD=EQ=t,MD=PE=3+t,∴FM=MD﹣DF=3+t﹣t=3﹣t,OF=FG+GO=PD+OA﹣AG=3+t﹣t=3+t,∴M(﹣3﹣t,﹣3+t).∵点M在x轴下方的抛物线上,∴﹣3+t=﹣×(﹣3﹣t)2+×(﹣3﹣t)+4,解得:t=.∵0≤t≤4,∴t=.(4)如图所示:连结OP,取OP的中点R,连结RH,NR,延长NR交线段BC 与点Q′.∵点H为PQ的中点,点R为OP的中点,∴RH=QO=t,RH∥OQ.∵A(﹣3,0),N(﹣,0),∴点N为OA的中点.又∵R为OP的中点,∴NR=AP=t,∴RH=NR,∴∠RNH=∠RHN.∵RH∥OQ,∴∠RHN=∠HNO,∴∠RNH=∠HNO,即NH是∠QNQ′的平分线.设直线AC的解析式为y=mx+n,把点A(﹣3,0)、C(0,4)代入得:,解得:m=,n=4,∴直线AC的表示为y=x+4.同理可得直线BC的表达式为y=﹣x+4.设直线NR的函数表达式为y=x+s,将点N的坐标代入得:×(﹣)+s=0,解得:s=2,∴直线NR的表述表达式为y=x+2.将直线NR和直线BC的表达式联立得:,解得:x=,y=,。
2008年中考数学试题及答案解析

2008年中等学校招生统一考试数学试卷*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( ) A .525.310⨯亩B .62.5310⨯亩C .425310⨯亩D .72.5310⨯亩2)3.下列各点中,在反比例函数2y x=-图象上的是()A .(21),B .233⎛⎫⎪⎝⎭,C .(21)--,D .(12)-,4.下列事件中必然发生的是( )A .抛两枚均匀的硬币,硬币落地后,都是正面朝上B .掷一枚质地均匀的骰子,朝上一面的点数是3C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5.一次函数y kx b =+的图象如图所示,当0y <时,x 的取 值范围是( ) A .0x > B .0x <C .2x >D .2x <6.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( ) A .50B .80C .65或50D .50或807.二次函数22(1)3y x =-+的图象的顶点坐标是( )A .(13),B .(13)-,C .(13)-,D .(13)--, 8.如图所示,正方形ABCD 中,点E 是CD 边上一点,连接AE , 交对角线BD 于点F ,连接CF ,则图中全等三角形共有( )正面第2题图A .B .C .D .第5题图xADCEFB第8题图A .1对B .2对C .3对D .4对二、填空题(每小题3分,共24分)9.已知A ∠与B ∠互余,若70A ∠=,则B ∠的度数为 . 10.分解因式:328m m -= .11.已知ABC △中,60A ∠=,ABC ∠,ACB ∠的平分线交于点O ,则BOC ∠的度数为 .12.如图所示,菱形ABCD 中,对角线AC BD ,相交于点O ,若再补 充一个条件能使菱形ABCD 成为正方形,则这个条件是 (只填一个条件即可). 13.不等式26x x -<-的解集为 .14.如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长13米,且12tan 5BAE ∠=,则河堤的高BE 为 米.15.观察下列图形的构成规律,根据此规律,第8第15题图16.在平面直角坐标系中,点A 的坐标为(11),,点B 的坐标为(111),,点C 到直线AB 的距离为4,且ABC △是直角三角形,则满足条件的点C 有 个.三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.计算:101(1)52-⎛⎫π-+-+- ⎪⎝⎭18.解分式方程:1233xx x=+--.19.先化简,再求值:222()()2y x y x y x y ++---,其中13x =-,3y =.第1个 ……第2个 第3个 第4个ADC BO 第12题图 B C DA 第14题图20.如图所示,在66⨯的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形,如图①中的三角形是格点三角形. (1)请你在图①中画一条直线将格点三角形分割成两部分,将这两部分重新拼成两个不同的格点四边形,并将这两个格点四边形分别画在图②,图③中; (2)直接写出这两个格点四边形的周长.四、(每小题10分,共20分)21.如图所示,AB 是O 的一条弦,OD AB ⊥,垂足为C ,交O 于点D ,点E 在O 上.(1)若52AOD ∠=,求DEB ∠的度数;(2)若3OC =,5OA =,求AB 的长.22.小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局. (1)一次出牌小刚出“象”牌的概率是多少?(2)如果用A B C ,,分别表示小刚的象、虎、鼠三张牌,用1A ,1B ,1C 分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树形图)法加以说明.图① 第20题图图②图③第21题图 小刚 小明A 1B 1C 1A B C 第22题图23.在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 ; (2)请你将表格补充完整:(3)请从下列不同角度对这次竞赛成绩的结果进行分析:①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩. 六、(本题12分)24.一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往与A 处相距636千米的B 地,下表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x (1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y 与x 之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)(2)按照(1)中的变化规律,货车从A 处出发行驶4.2小时到达C 处,求此时油箱内余油多少升?(3)在(2)的前提下,C 处前方18千米的D 处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D处至少加多少升油,才能使货车到达B 地.(货车在D 处加油过程中的时间和路程忽略不计)第23题图 一班竞赛成绩统计图 二班竞赛成绩统计图25.已知:如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AMN △是等腰三角形.(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:PBD AMN △∽△.八、(本题14分) 26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.2008年沈阳市中等学校招生统一考试C E ND A BM图① C A EM B D N图② 第25题图第26题图数学试题参考答案及评分标准一、选择题(每小题3分,共24分) 1.B 2.A 3.D 4.C 5.C 6.D7.A8.C二、填空题(每小题3分,共24分) 9.2010.2(2)(2)m m m +-11.12012.90BAD ∠=(或AD AB ⊥,AC BD =等)13.4x >14.1215.65 16.8 三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.解:原式1(2)5=+-+- ···························································· 4分125=-+- ··················································································· 5分6= ······································································································ 6分18.解:12(3)x x =-- ·················································································· 2分126x x =--7x = ··········································································································· 5分 检验:将7x =代入原方程,左边14==右边 ························································ 7分所以7x =是原方程的根 ·················································································· 8分 (将7x =代入最简公分母检验同样给分)19.解:原式2222222xy y x xy y x y =++-+-- ················································ 4分 xy =- ········································································································· 6分 当13x =-,3y =时,原式1313⎛⎫=--⨯= ⎪⎝⎭······················································································ 8分 20.解:(1)答案不唯一,如分割线为三角形的三条中位线中任意一条所在的直线等.································· 2分拼接的图形不唯一,例如下面给出的三种情况:图① 图② 图③ 图④图①~图④,图⑤~图⑦,图⑧~图⑨,画出其中一组图中的两个图形. ······················ 6分 (2)对应(1)中所给图①~图④的周长分别为4+8,4+4+ 图⑤~图⑦的周长分别为10,8+8+图⑧~图⑨的周长分别为2+4+ ···································· 10分 四、(每小题10分,共20分) 21.解:(1)OD AB ⊥,AD DB ∴= ··························································· 3分 11522622DEB AOD ∴∠=∠=⨯= ································································· 5分 (2)OD AB ⊥,AC BC ∴=,AOC △为直角三角形, 3OC =,5OA =,由勾股定理可得4AC == ·············································· 8分 28AB AC ∴== ························································································· 10分 22.解:(1)1()3P =一次出牌小刚出象牌“” ··················································· 4分(2)树状图(树形图):·············································································· 8分图⑤ 图⑥图⑦图⑧ 图⑨A 1B 1C 1 AA 1B 1C 1 BA 1B 1C 1C开始小刚 小明或列表···························································· 8分 由树状图(树形图)或列表可知,可能出现的结果有9种,而且每种结果出现的可能性相同,其中小刚胜小明的结果有3种. ········································································ 9分1()3P ∴=一次出牌小刚胜小明. ····································································· 10分 五、(本题12分) 23.解:(1)21······························································································ 2分 (2)一班众数为90,二班中位数为80 ······························································· 6分 (3)①从平均数的角度看两班成绩一样,从中位数的角度看一班比二班的成绩好,所以一班成绩好; ···································································································· 8分 ②从平均数的角度看两班成绩一样,从众数的角度看二班比一班的成绩好,所以二班成绩好; ················································································································· 10分 ③从B 级以上(包括B 级)的人数的角度看,一班人数是18人,二班人数是12人,所以一班成绩好. ······························································································· 12分 六、(本题12分) 24.解:(1)设y 与x 之间的关系为一次函数,其函数表达式为y kx b =+ ················ 1分将(0100),,(180),代入上式得, 10080b k b =⎧⎨+=⎩ 解得20100k b =-⎧⎨=⎩20100y x ∴=-+ ·························································································· 4分验证:当2x =时,20210060y =-⨯+=,符合一次函数; 当 2.5x =时,20 2.510050y =-⨯+=,也符合一次函数.∴可用一次函数20100y x =-+表示其变化规律,而不用反比例函数、二次函数表示其变化规律. ··················································· 5分 y ∴与x 之间的关系是一次函数,其函数表达式为20100y x =-+ ··························· 6分 (2)当 4.2x =时,由20100y x =-+可得16y =即货车行驶到C 处时油箱内余油16升. ····························································· 8分 (3)方法不唯一,如:方法一:由(1)得,货车行驶中每小时耗油20升, ············································· 9分 设在D 处至少加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯+=+, ··················································· 11分 解得,69a =(升) ····················································································· 12分方法二:由(1)得,货车行驶中每小时耗油20升, ············································· 9分 汽车行驶18千米的耗油量:1820 4.580⨯=(升) D B ,之间路程为:63680 4.218282-⨯-=(千米)汽车行驶282千米的耗油量:2822070.580⨯=(升) ················································································· 11分 70.510(16 4.5)69+--=(升) ···································································· 12分 方法三:由(1)得,货车行驶中每小时耗油20升, ············································· 9分设在D 处加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯++≤,解得,69a ≥ ····························································································· 11分 ∴在D 处至少加油69升,货车才能到达B 地. ················································· 12分七、(本题12分) 25.证明:(1)①BAC DAE ∠=∠ BAE CAD ∴∠=∠AB AC =,AD AE = ABE ACD ∴△≌△BE CD ∴= ·································································································· 3分 ②由ABE ACD △≌△得ABE ACD ∠=∠,BE CD =M N ,分别是BE CD ,的中点,BM CN ∴= ················································· 4分 又AB AC = ABM ACN ∴△≌△AM AN ∴=,即AMN △为等腰三角形 ···························································· 6分 (2)(1)中的两个结论仍然成立. ···································································· 8分 (3)在图②中正确画出线段PD由(1)同理可证ABM ACN △≌△ CAN BAM ∴∠=∠ BAC MAN ∴∠=∠ 又BAC DAE ∠=∠MAN DAE BAC ∴∠=∠=∠AMN ∴△,ADE △和ABC △都是顶角相等的等腰三角形 ································· 10分 PBD AMN ∴∠=∠,PDB ADE ANM ∠=∠=∠PBD AMN ∴△∽△ ···················································································· 12分 八、(本题14分)26.解:(1)点E 在y 轴上 ·············································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ································································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM =点D 在第一象限,∴点D 的坐标为12⎫⎪⎪⎝⎭, ················································································ 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ·················································································· 6分抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A ,12D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧+=⎪⎨+=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:2829y x x =--+ ·················································· 9分(3)存在符合条件的点P ,点Q . ································································· 10分。
2017年江苏省淮安市中考数学试卷(含答案解析)

2017年江苏省淮安市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣2的相反数是()A.2 B.﹣2 2 C C.D.﹣2.(3分)2016年某市用于资助贫困学生的助学金总额是9680000元,将9680000用科学记数法表示为()A.96.8×105B.9.68×106C.9.68×107D.0.968×1083.(3分)计算a2•a3的结果是()A.5a B.6a C.a6D.a54.(3分)点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)5.(3分)下列式子为最简二次根式的是()A.B. C. D.6.(3分)九年级(1)班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下:引体向上数/个012345678人数112133211这15名男同学引体向上数的中位数是()A.2 B.3 C.4 D.57.(3分)若一个三角形的两边长分别为5和8,则第三边长可能是()A.14 B.10 C.3 D.28.(3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.B.6 C.4 D.5二、填空题(每题3分,满分30分,将答案填在答题纸上)9.(3分)分解因式:ab ﹣b 2= . 10.(3分)计算:2(x ﹣y )+3y= .11.(3分)若反比例函数y=﹣的图象经过点A (m ,3),则m 的值是的值是 . 12.(3分)方程=1的解是的解是 .13.(3分)一枚质地均匀的骰子的6个面上分别刻有1〜6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是的概率是 .14.(3分)若关于x 的一元二次方程x 2﹣x +k +1=0有两个不相等的实数根,则k 的取值范围是 .15.(3分)如图,直线a ∥b ,∠BAC 的顶点A 在直线a 上,且∠BAC=100°.若∠1=34°,则∠2= °.16.(3分)如图,在圆内接四边形ABCD 中,若∠A ,∠B ,∠C 的度数之比为4:3:5,则∠D 的度数是的度数是 °.17.(3分)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点.若AB=8,则EF= .18.(3分)将从1开始的连续自然数按一下规律排列: 第11行第2行234第3行98765第4行1111213141516第5行25242322212191817…则2017在第在第 行.三、解答题(本大题共10小题,共70分.解答应写出文字说明、证明过程或演算步骤.)19.(12分)(1)|﹣3|﹣(+1)0+(﹣2)2;(2)(1﹣)÷.20.(8分)解不等式组:并写出它的整数解.21.(8分)已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.22.(8分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求两次摸到的球的颜色不同的概率.23.(8分)某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.社团名称人数文学社团18科技社团a书画社团45体育社团72其他b请解答下列问题:(1)a=,b=;所对应的扇形圆心角度数为 ;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.24.(8分)A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯通,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km,参考数据:≈1.414,≈1.732)25.(8分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.(1)试判断直线EF与⊙O的位置关系,并说明理由;(2)若OA=2,∠A=30°,求图中阴影部分的面积.26.(10分)某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.人时,人均收费为 元;(1)当参加旅游的人数不超过10人时,人均收费为(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?27.(12分)【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为Bʹ,点C的对应点为Cʹ,连接BBʹ;(2)在(1)所画图形中,∠ABʹB=.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△APʹB,连接PPʹ,寻找P A,PB,PC 三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△APʹCʹ,连接PPʹ,寻找P A,PB,PC三条线段之间的数量关系.…请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB (k为常数),求BD的长(用含k的式子表示).28.(14分)如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=,c=;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;(4)如图②,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Qʹ恰好落在线段BC上时,请直接写出点Qʹ的坐标.2017年江苏省淮安市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•淮安)﹣2的相反数是(的相反数是( ) A .2 B .﹣2 2 C C . D .﹣【分析】根据相反数的意义,只有符号不同的数为相反数. 【解答】解:根据相反数的定义,﹣2的相反数是2. 故选:A .【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.(3分)(2017•淮安)2016年某市用于资助贫困学生的助学金总额是9680000元,将9680000用科学记数法表示为(用科学记数法表示为( )A .96.8×105B .9.68×106C .9.68×107D .0.968×108【分析】科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【解答】解:将9680000用科学记数法表示为:9.68×106.故选B .【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.(3分)(2017•淮安)计算a 2•a 3的结果是(的结果是( ) A .5a B .6a C .a 6 D .a 5【分析】根据同底数幂的乘法,可得答案. 【解答】解:原式=a 2+3=a 5, 故选:D .【点评】本题考查了同底数幂的乘法,熟记法则并根据法则计算是解题关键. 4.(3分)(2017•淮安)点P (1,﹣2)关于y 轴对称的点的坐标是(轴对称的点的坐标是( ) A .(1,2) B .(﹣1,2) C .(﹣1,﹣2)D .(﹣2,1)【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选:C.【点评】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.(3分)(2017•淮安)下列式子为最简二次根式的是(淮安)下列式子为最简二次根式的是( )A.B. C. D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数含分母,故D不符合题意;故选:A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.6.(3分)(2017•淮安)九年级(1)班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下:引体向上数/个012345678人数112133211这15名男同学引体向上数的中位数是(名男同学引体向上数的中位数是( )A.2 B.3 C.4 D.5【分析】根据中位数的定义,将15个数据从小到大排列后,中位数是第8个数.【解答】解:根据表格可知,15个数据按从小到大的顺序排列后,第8个数是4,所以中位数为4;故选C.【点评】本题主要考查中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.(3分)(2017•淮安)若一个三角形的两边长分别为5和8,则第三边长可能是(,则第三边长可能是( )A.14 B.10 C.3 D.2【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边为x,则8﹣5<x<5+8,即3<x<13,所以符合条件的整数为10,故选B.【点评】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.8.(3分)(2017•淮安)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直的长是( )线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是(A.B.6 C.4 D.5【分析】根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三角形的性质得到AF=CF,于是得到结论.【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选B.【点评】本题考查了翻折变换的性质,矩形的性质,熟练掌握折叠的性质是解题的关键.二、填空题(每题3分,满分30分,将答案填在答题纸上)9.(3分)(2017•淮安)分解因式:ab﹣b2=b(a﹣b).【分析】根据提公因式法,可得答案.【解答】解:原式=b(a﹣b),故答案为:b(a﹣b).【点评】本题考查了因式分解,利用提公因式法是解题关键.10.(3分)(2017•淮安)计算:2(x﹣y)+3y=2x+y.【分析】原式去括号合并即可得到结果.【解答】解:原式=2x﹣2y+3y=2x+y,故答案为:2x+y【点评】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.11.(3分)(2017•淮安)若反比例函数y=﹣的图象经过点A(m,3),则m的值是的值是 ﹣2.【分析】直接把A(m,3)代入反比例函数y=﹣,求出m的值即可.【解答】解:∵反比例函数y=﹣的图象经过点A(m,3),∴3=﹣,解得m=﹣2.故答案为:﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.(3分)(2017•淮安)方程=1的解是的解是 x=3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣1=2,解得:x=3,经检验x=3是分式方程的解,故答案为:x=3【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.(3分)(2017•淮安)一枚质地均匀的骰子的6个面上分别刻有1〜6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是的概率是 .【分析】弄清骰子六个面上分别刻的点数,再根据概率公式解答就可求出向上一面的点数是4的概率.【解答】解:由概率公式P(向上一面的点数是6)=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.14.(3分)(2017•淮安)若关于x 的一元二次方程x 2﹣x +k +1=0有两个不相等的实数根,则k 的取值范围是的取值范围是 k <﹣ .【分析】根据判别式的意义得到△=(﹣1)2﹣4(k +1)>0,然后解不等式即可. 【解答】解:根据题意得△=(﹣1)2﹣4(k +1)>0, 解得k <﹣. 故答案为k <﹣.【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c=0(a ≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.15.(3分)(2017•淮安)如图,直线a ∥b ,∠BAC 的顶点A 在直线a 上,且∠BAC=100°.若∠1=34°,则∠2= 46 °.【分析】根据平行线的性质和平角的定义即可得到结论. 【解答】解:∵直线a ∥b , ∴∠3=∠1=34°, ∵∠BAC=100°,∴∠2=180°﹣34°﹣100°100°=46°=46°, 故答案为:46.【点评】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键. 16.(3分)(2017•淮安)如图,在圆内接四边形ABCD 中,若∠A ,∠B ,∠C 的度数之比为4:3:5,则∠D 的度数是的度数是 120 °.【分析】设∠A=4x ,∠B=3x ,∠C=5x ,根据圆内接四边形的性质求出x 的值,进而可得出结论.【解答】解:∵∠A ,∠B ,∠C 的度数之比为4:3:5, ∴设∠A=4x ,则∠B=3x ,∠C=5x . ∵四边形ABCD 是圆内接四边形,∴∠A +∠C=180°,即4x +5x=180°,解得x=20°, ∴∠B=3x=60°,∴∠D=180°﹣60°60°=120°=120°. 故答案为:120.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.17.(3分)(2017•淮安)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点.若AB=8,则EF= 2 .【分析】利用直角三角形斜边中线定理以及三角形的中位线定理即可解决问题. 【解答】解:在Rt △ABC 中,∵AD=BD=4, ∴CD=AB=4, ∵AF=DF ,AE=EC , ∴EF=CD=2. 故答案为2【点评】本题考查三角形的中位线定理、直角三角形斜边上的中线的性质等知识,解题的关键是熟练掌握三角形的中位线定理以及直角三角形中线的性质解决问题,属于中考常考题型.18.(3分)(2017•淮安)将从1开始的连续自然数按一下规律排列:第1行1第2行234第3行98765第4行1111213141516第5行25242322212191817…则2017在第在第 45行.【分析】通过观察可得第n行最大一个数为n 2,由此估算2017所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2017在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.三、解答题(本大题共10小题,共70分.解答应写出文字说明、证明过程或演算步骤.)19.(12分)(2017•淮安)(1)|﹣3|﹣(+1)0+(﹣2)2;(2)(1﹣)÷.【分析】(1)根据绝对值的意义,零指数幂的意义即可求出答案;(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=3﹣1+4=6(2)原式=×=a【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(8分)(2017•淮安)解不等式组:并写出它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣1<x+5,得:x<3,解不等式<x﹣1,得:x>﹣1,则不等式组的解集为﹣1<x<3,∴不等式组的整数解为0、1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2017•淮安)已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.【分析】指出∠ADE=∠CBF,AD=CB,由AAS证△ADE≌△CBF即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS).【点评】此题考查了平行四边形的判定与性质、全等三角形的判定与性质.熟练掌握平行四边形的性质是解决问题的关键.22.(8分)(2017•淮安)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求两次摸到的球的颜色不同的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.【解答】解:(1)如图:;(2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)(2017•淮安)某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.社团名称人数文学社团18科技社团a书画社团45体育社团72其他b请解答下列问题:(1)a=36,b=9;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为所对应的扇形圆心角度数为 90°;(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.【分析】(1)根据体育社团的人数是72人,所占的百分比是40%即可求得调查的总人数,然后利用百分比的意义求得a和b的值;(2)利用360°乘以对应的百分比求解;(3)利用总人数乘以对应的百分比求解.【解答】解:(1)调查的总人数是72÷40%=180(人),则a=180×20%=36(人),则b=180﹣18﹣45﹣72﹣36=9.故答案是:36,9;(2)“书画社团”所对应的扇形圆心角度数是360×=90°;(3)估计该校学生中选择“文学社团”的人数是3000×=300(人).【点评】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.24.(8分)(2017•淮安)A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯通,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km,参考数据:≈1.414,≈1.732)【分析】过点C作CD⊥AB与D,根据AC=20km,∠CAB=30°,求出CD、AD,根据∠CBA=45°,求出BD、BC,最后根据AB=AD+BD列式计算即可.【解答】解:过点C作CD⊥AB与D,∵AC=10km,∠CAB=30°,∴CD=AC=×20=10km,AD=cos∠CAB•AC=cos∠30°×20=10km,∵∠CBA=45°,∴BD=CD=10km,BC=CD=10≈14.14km∴AB=AD+BD=10+10≈27.32km.则AC+BC﹣AB≈20+14.14﹣27.32≈6.8km.答:从A地到B地的路程将缩短6.8km.【点评】此题考查了解直角三角形的应用,用到的知识点是三角函数、特殊角的三角函数值,关键是作出辅助线,构造直角三角形,求出有关线段的长.25.(8分)(2017•淮安)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.(1)试判断直线EF与⊙O的位置关系,并说明理由;(2)若OA=2,∠A=30°,求图中阴影部分的面积.【分析】(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到结论;(2)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.【解答】解:(1)连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切线;(2)∵AD是⊙O的直径,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵AO=2,∴OE=2,∴EG=2,∴阴影部分的面积=2×2﹣=2﹣π.【点评】本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.26.(10分)(2017•淮安)某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.人时,人均收费为 24元;(1)当参加旅游的人数不超过10人时,人均收费为(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?【分析】(1)观察图象即可解决问题;(2)首先判断收费标准在BC段,求出直线BC的解析式,列出方程即可解决问题;【解答】解:(1)观察图象可知:当参加旅游的人数不超过10人时,人均收费为240元.故答案为240.(2)∵3600÷240=15,3600÷150=24,∴收费标准在BC段,设直线BC的解析式为y=kx+b,则有,解得,∴y=﹣6x+300,由题意(﹣6x+300)x=3600,解得x=20或30(舍弃)答:参加这次旅游的人数是20人.【点评】本题考查一次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,读懂图象信息,用数形结合的思想思考问题,属于中考常考题型.27.(12分)(2017•淮安)【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为Bʹ,点C的对应点为Cʹ,连接BBʹ;(2)在(1)所画图形中,∠ABʹB=45°.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△APʹB,连接PPʹ,寻找P A,PB,PC 三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△APʹCʹ,连接PPʹ,寻找P A,PB,PC 三条线段之间的数量关系.…请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB (k为常数),求BD的长(用含k的式子表示).【分析】【操作发现】(1)根据旋转角,旋转方向画出图形即可;(2)只要证明△ABBʹ是等腰直角三角形即可;【问题解决】如图②,将△APB绕点A按逆时针方向旋转60°,得到△APʹCʹ,只要证明∠PPʹC=90°,利用勾股定理即可解决问题;【灵活运用】如图③中,由AE⊥BC,BE=EC,推出AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,只要证明∠GDC=90°,可得CG=,由此即可解决问题;【解答】解:【操作发现】(1)如图所示,△ABʹCʹ即为所求;(2)连接BBʹ,将△ABC绕点A按顺时针方向旋转90°,∴AB=ABʹ,∠BʹAB=90°,∴∠ABʹB=45°,故答案为:45°;【问题解决】如图②,∵将△APB 绕点A 按逆时针方向旋转60°,得到△APʹCʹ,∴△APPʹ是等边三角形,∠APʹC=∠APB=360°﹣90°﹣120°120°=150°=150°, ∴PPʹ=AP ,∠APʹP=∠APPʹ=60°,∴∠PPʹC=90°,∠PʹPʹPC=30°PC=30°, ∴PPʹ=PC ,即AP=PC ,∵∠APC=90°,∴AP 2+PC 2=AC 2,即(PC )2+PC 2=72, ∴PC=2, ∴AP=,∴S △APC =AP•PC=7; 【灵活运用】如图③中,∵AE ⊥BC ,BE=EC ,∴AB=AC ,将△ABD 绕点A 逆时针旋转得到△ACG ,连接DG .则BD=CG ,∵∠BAD=∠CAG ,∴∠BAC=∠DAG ,∵AB=AC ,AD=AG ,∴∠ABC=∠ACB=∠ADG=∠AGD ,∴△ABC ∽△ADG ,∵AD=kAB,∴DG=kBC=4k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG==.∴BD=CG=.【点评】本题考查相似形综合题、等边三角形的判定和性质、等腰三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会用旋转法添加辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.28.(14分)(2017•淮安)如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=,c=4;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;(4)如图②,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Qʹ恰好落在线段BC上时,请直接写出点Qʹ的坐标.【分析】(1)设抛物线的解析式为y=a(x+3)(x﹣4).将a=﹣代入可得到抛物线的解析式,从而可确定出b、c的值;(2)连结QC .先求得点C 的坐标,则PC=5﹣t ,依据勾股定理可求得AC=5,CQ 2=t 2+16,接下来,依据CQ 2﹣CP 2=AQ 2﹣AP 2列方程求解即可;(3)过点P 作DE ∥x 轴,分别过点M 、Q 作MD ⊥DE 、QE ⊥DE ,垂足分别为D 、E ,MD 交x 轴与点F ,过点P 作PG ⊥x 轴,垂足为点G ,首先证明△PAG ∽△ACO ,依据相似三角形的性质可得到PG=t ,AG=t ,然后可求得PE 、DF 的长,然后再证明△MDP ≌PEQ ,从而得到PD=EQ=t ,MD=PE=3+t ,然后可求得FM 和OF 的长,从而可得到点M 的坐标,然后将点M 的坐标代入抛物线的解析式求解即可;(4)连结:OP ,取OP 的中点R ,连结RH ,NR ,延长NR 交线段BC 与点Qʹ.首先依据三角形的中位线定理得到EH=QO=t ,RH ∥OQ ,NR=AP=t ,则RH=NR ,接下来,依据等腰三角形的性质和平行线的性质证明NH 是∠QNQʹ的平分线,然后求得直线NR 和BC 的解析式,最后求得直线NR 和BC 的交点坐标即可.【解答】解:(1)设抛物线的解析式为y=a (x +3)(x ﹣4).将a=﹣代入得:y=﹣x 2+x +4, ∴b=,c=4.(2)在点P 、Q 运动过程中,△APQ 不可能是直角三角形.理由如下:连结QC .∵在点P 、Q 运动过程中,∠PAQ 、∠PQA 始终为锐角,∴当△APQ 是直角三角形时,则∠APQ=90°.将x=0代入抛物线的解析式得:y=4,∴C (0,4).∵AP=OQ=t ,∴PC=5﹣t ,∵在Rt △AOC 中,依据勾股定理得:AC=5,在Rt △COQ 中,依据勾股定理可知:CQ 2=t 2+16,在Rt △CPQ 中依据勾股定理可知:PQ 2=CQ 2﹣CP 2,在Rt △APQ 中,AQ 2﹣AP 2=PQ 2,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年江苏省淮安市中等学校招生文化统一考试数学试题迎你参加中考,祝你取得好成绩!请先阅读以下几点注意事项:1.本卷分第Ⅰ卷(机器阅卷)和第Ⅱ卷(人工阅卷)两部分.共150分.考试时间120分钟.2.做第Ⅰ卷时,请将每小题选出的答案用2B 铅笔填涂在答题卡对应题目的标号上,如需改动,用橡皮擦干净后,再选涂其他答案,答案写在试题卷上无效.3.做第Ⅱ卷时,请先将密封线内的项目填写清楚,然后用蓝色或黑色的钢笔、签字笔、圆珠笔直接在试卷上作答,写在试题卷外无效.4.考试结束后,将第Ⅰ卷,第Ⅱ卷和答题卡一并交回.第Ⅰ卷 (选择题 共30分)一、选择题(本大题共10小题.每小题3分,共30分.下列各题的四个选项中,只有一个是符合题意的) 1.-3的相反数是A .-3B .-13C .13D .32.第29届北京奥运会火炬接力活动历时130天,传递行程约为137000km .用科学记数法表示137000km 是 A .1.37×105km B .13.7×104km C .1.37×104km D .1.37×103km3.若分式23x -有意义.则x 应满足的条件是A .x ≠OB .x ≥3C .x ≠3D .x ≤34.如图,直线AB 、CD 相交于点O .OE 平分∠AOD ,若∠BOC =80°,则∠AOE 的度数是A .40°B .50°C .80°D . 100°5.下列各式中,准确的是A .215<3B .315 4C .415 5D . 141516 6.下列计算准确的是A .a 2+a 2=a 4B .a 5·a 2=a 7C .()325a a = D .2a 2-a 2=27.如图,在Rt △ABC 中,∠C =90°,AC =1,BC =2.以边BC 所在直线为轴,把△ABC 旋转一周,得到的几何体的侧面积是 A .π B .2π C .5π D .5π8.如图所示的几何体的俯视图是9.下列调查方式中.不合适的是A.了解2008年5月18日晚中央也视台“爱的奉献”抗震救灾文艺晚会的收视率,采用抽查的方式B.了解某渔场中青鱼的平均重量,采用抽查的方式C.了解某型号联想电脑的使用寿命,采用普查的方式D.了解一批汽车的刹车性能,采用普查的方式10.一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间t(h)之间的函数关系的是第Ⅱ卷(非选择题共120分)二、填空题(本大题共6小题.每小题3分,共18分.把准确答案直接填在题中的横线上)11.分解因式:a2-4=______________.12.已知⊙O1与⊙O2的半径分别为2cm和3cm,当⊙O1与⊙O2外切时,圆心距O1O2=______.13.如图,请填写一个适当的条件:___________,使得DE∥AB.14.小华在解一元二次方程x2-4x=0时.只得出一个根是x=4,则被他漏掉的一个根是x =____.15.小明上学期六门科目的期末考试成绩(单位:分)分别是:120,115,x,60,85,80.若平均分是93分,则x=_________.16.如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB 2B3C 1,……,依次下去.则点B 6的坐标是________________.三、解答题(本大题共12小题,共102分.解答应写出必要的计算过程、推演步骤或文字说明)17(本小题6分) 计算131212sin 458.2o-⎛⎫--++ ⎪⎝⎭18.(本小题6分)先化简,再求值:()()()2,x y x y x y x ⎡⎤-+-+÷⎣⎦其中x =-1,y =12.19.(本小题6分)解不等式3x -2<7,将解集在数轴上表示出来,并写出它的正整数解.20.(本小题8分)一只不透明的袋子中装有6个小球,分别标有l 、2、3;、4、5、6这6个号码,这些球除号码外都相同.(1)直接写出事件“从袋中任意摸出一个球,号码为3的整数倍”的概率P 1;(2)用画树状图或列表格等方法,求事件“从袋中同时摸出两个球,号码之和为6”的慨率P 2. 21.(本小题8分)某县教育部门对该县参加奥运知识竞赛的7500名初中学生的初试成绩(成绩均为整数)实行一次抽样调查,所得数据如下表:成绩分组 60.5~70.5 70.5~80.5 80.5~90.5 90.5~100.5 频数50150200100(1)抽取样本的容量为___________;(2)根据表中数据,补全图中频数分布直方图;(3)样本的中位数所在的分数段范围为________________;(4)若规定初试成绩在90分以上(不包括90分)的学生进入决赛,则全县进入决赛的学生约为____人.22.(本小题8分)某民营企业为支援四川地震灾区,特生产A、B两种型号的帐篷.若A型帐篷每顶需篷布60平方米,钢管48米;B型帐篷每顶需篷布125平方米,钢管80米.该企业在生产这批帐篷时恰好(不计损耗)用了篷布9900平方米,钢管6720米.问:该企业生产了A、B 两种型号的帐篷各多少顶?23.(本小题8分)如图所示的网格中有A、B、C三点.(1)请你以网格线所在直线为坐标轴建立平面直角坐标系,使A、B两点的坐标分别为A(2,-4)、B(4,-2),则C点的坐标是_____________;(2)连结AB、BC、CA,先以坐标原点O为位似中心,按比例尺1:2在y轴的左侧''',再写出点C对应点C'的坐标画出△ABC缩小后的△A B C24.(本小题9分)已知:如图.矩形ABCD的对角线AC与BD相交于点O,点O关于直线AD的对称点是E,连结AE、DE.(1)试判断四边形AODE的形状,不必说明理由;(2)请你连结EB、EC.并证明EB=EC.25.(本小题9分)某项工程需要沙石料2×106立方米,阳光公司承担了该工程运送沙石料的任务.(1)在这项任务中平均每天的工作量v(立方米/天)与完成任务所需要的时间t(天)之间具有怎样的函数关系?写出这个函数关系式.(2)阳光公司计划投入A型卡车200辆,每天一共能够运送沙石料2×104立方米,则完成全部运送任务需要多少天?如果工作了25天后,因为工程进度的需要,公司准备再投入A型卡车120辆,在保持每辆车每天工作量不变的前提下,问:是否能提前28天完成任务?26.(本小题10分)如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若BC=63,DE=3.求:(1)⊙O的半径;(2)弦AC的长;(3)阴影部分的面积.27.(本小题10分)我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只能够复制一次,复制过程能够一直实行下去.如图1是由△A复制出△A1,又由△A l 复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.(1)图l中标出的是一种可能的复制结果.它用到_____次平移._______次旋转.小明发现△B∽△A,其相似比为_________.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是________;(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;(4)图3是正五边形EFGHI.其中心是O.连结O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.28.(本小题14分)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的顶点为P,与x轴交点为A、B,与y轴交点为C.连结BP并延长交y轴于点D.(1)写出点P的坐标;(2)连结AP,如果△APB为等腰直角三角形,求a的值及点C、D的坐标;(3)在(2)的条件下,连结BC、AC、AD,点E(0,b)在线段CD(端点C、D除外)上,将△BCD绕点E逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S,根据不同情况,分别用含b的代数式表示S.选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b为何值时,重叠部分的面积最大?写出最大值.2008年淮安市中考数学试题参考解答一.选择题1.D 2.A 3.C 4.A 5.B 6.B 7.C 8.D 9.C 10.C 二、填空题11.(a-2)(a+2)12.5cm13.∠D=∠ABD(等等)14.015.9816.(-8,0)三、解17.解:原式=2-1-2×2 2+2+2=2-1-2+4=318.解:原式=(x2+y2-2xy+x2-y2)÷x=(2x2-2xy) ÷x=2x-2y∵x=-1,y=12∴原式=2×(-1)-2×12=-319.解:3x<9x<3将不等式的解集在数轴上表示如下:∴它的正整数解为1,2x4-120.解:⑴P 1= 26 = 13⑵分别用a,b,表示两个球的号码,c 表示两个球号码之和,用列表法表示如下:a123456b 2 3 4 5 6 1 3 4 5 6 1 2 4 5 6 1 2 3 561 2 3 461 2 345c 3 4 5 6 7 3 5 6 7 8 3 5 7 8 9 5 6 7 9 10 6 7 8 9 11 7 8 9 10 11P 2=430 = 215(也可用树状图表示) 21.解:⑴500; ⑵⑶80.5~90.5⑷抽取的500人中进入决赛的人数为100人所占的百分比为100500=20%,所以7500学生中能进入决赛的人数约为7500×20%=1500(人) 22.解:设该企业生产了A 、B 两种型号的帐篷分别为x 顶和y 顶,据题意,得⎩⎨⎧60x+125y=990048x+80y=6720解之得⎩⎨⎧x=40y=60答:设该企业生产了A 、B 两种型号的帐篷分别40顶和60顶。