梁弯曲正应力实验中遇到的问题和解决方法
单一材料梁的弯曲正应力实验指导

单一材料梁的弯曲正应力实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。
2.初步掌握电测法原理和静态电阻应变仪的使用方法。
二、预习思考要点1.本实验装置是如何实现使梁的某一区段处于纯弯曲状态的?2.梁处于纯弯曲状态时其内力分布有何特征?3.梁处于纯弯曲状态时,若要测取其上某一点的线应变为何只需在该点布设一枚应变计,且平行于梁的轴线方向?三、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图1-26(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。
由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。
图1-26 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺四、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD 段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图1-26(b )所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。
当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。
通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。
由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。
弯曲件常见质量问题改善对策

弯曲件常见质量问题改善对策1、弯曲尺寸不合格在弯曲过程中,弯曲件尺寸不合适的质量问题除了弯曲回弹的影响外,主要是从以下方面进行查找应并相应地采取措施。
(1)检查毛坯定位是否可靠。
模具结构中采用的压料装置和定位装置的可靠性,对弯曲件的形状与尺寸精度有较大的影响。
一般弯曲模采用气垫、橡胶或弹簧产生压紧力,但应在弯曲开始前就把板料压紧。
为达到此目的,压料板或压料杆的顶出高度应做得比凹模平面稍高一些,一般高出一个板料厚度,毛坯的定位形式主要以外形为基准和以孔为基准两种。
外形定位操作方便,但定位准确性较差。
孔定位操作不仅大方便,使用范围较窄,但定位可靠。
在特定条件下,有时先用外形初定位,大致使毛坯控制在一定范围内,最好以孔作最后定位,吸收两者的优点,使之定位既准确又方便操作。
(2)检查弯曲工艺顺序是否正确。
当弯曲工件的工序较多,而工序前后安排顺序不对时,也会对精度有很大影响。
例如,对于有孔的弯曲件,当孔的形状和位置精度要求较高时,就应采用先弯曲后冲孔的加工工艺。
(3)检查所用弯曲材料的厚度是否均匀。
在弯曲工程中,若所使用的材料厚度不均,则由于受挤压变形不均影响,很容易使弯曲的材料移动,产生弯曲件的高度尺寸不定。
解决措施是:将凹模修整成可换式镶块结构,通过调整弯曲模间隙的办法来解决;或更换材料,采用料厚均匀稳定的板料。
(4)检查模具两端的弯曲凹模圆角是否均匀一致。
弯曲模在长期使用过程中,常会使凹模圆角半径发生变化,且左右凹模圆角半径不对称一致,从而在弯曲过程中使弯曲件发生移动造成弯曲尺寸发生变化。
解决措施是:修磨凹模圆角半径合格,且使其左右堆成、大小一致。
(5)检查压力机的吨位、气垫压力是否合乎要求。
压力机的吨位及气垫压力会直接影响到弯曲件的尺寸精度,一般应选用吨位大些且精度较高的压力机,通常取加工力是压力机吨位70%-80%比较合适。
(6)检查并重新校核弯曲展开料是否正确。
弯曲件展开料是否正确直接影响到弯曲件尺寸是否合格。
提高梁弯曲强度的主要措施

提高梁弯曲强度的主要措施弯曲正应力是控制抗弯强度的主要因素。
因此,讨论提高梁抗弯强度的措施,应以弯曲正应力强度条件为主要依据。
由]σ[σmax max ≤=zW M 可以看出,为了提高梁的强度,可以从以下三方面考虑。
(1) 合理安排梁的支座和载荷从正应力强度条件可以看出,在抗弯截面模量z W 不变的情况下,M max 越小,梁的承载能力越高。
因此,应合理地安排梁的支承及加载方式,以降低最大弯矩值。
例如图1(a)所示简支梁,受均布载荷q 作用,梁的最大弯矩为281ql M max =。
图1 简支梁如果将梁两端的铰支座各向内移动0.2l ,如图1(b)所示,则最大弯矩变为2401ql M max =,仅为前者的1/5。
由此可见,在可能的条件下,适当地调整梁的支座位置,可以降低最大弯矩值,提高梁的承载能力。
例如,门式起重机的大梁图2(a),锅炉筒体图2(b)等,就是采用上述措施,以达到提高强度,节省材料的目的。
图2 合理安排梁的支座和载荷(2) 采用合理的截面形状由正应力强度条件可知,梁的抗弯能力还取决于抗弯截面系数W Z 。
为提高梁的抗弯强度,应找到一个合理的截面以达到既提高强度,又节省材料的目的。
比值A W z 可作为衡量截面是否合理的尺度,AW z 值越大,截面越趋于合理。
例如图3中所示的尺寸及材料完全相同的两个矩形截面悬臂梁,由于安放位置不同,抗弯能力也不同。
竖放时662h bh bh A W z == 平放时 662b bh hb A W z == 当h>b 时,竖放时的A W z 大于平放时的AW z ,因此,矩形截面梁竖放比平放更为合理。
在房屋建筑中,矩形截面梁几乎都是竖放的,道理就在于此。
图3矩形梁的不同放置在讨论截面的合理形状时,还应考虑材料的特性。
对于抗拉和抗压强度相等的材料,如各种钢材,宜采用对称于中性轴的截面,如圆形、矩形和工字形等。
这种横截面上、下边缘最大拉应力和最大压应力数值相同,可同时达到许用应力值。
实验三 直梁弯曲正应力测定实验指导书

实验三 直梁弯曲正应力测定实验指导书一、实验目的1、用电测法测定直梁纯弯曲时的正应力分布,并与理论计算结果进行比较,以验证弯曲正应力公式。
2、了解电阻应变测量的原理,初步掌握静态电阻应变仪的使用方法。
二、实验设备和器材 1、万能试验机或弯曲试验台 2、加力装置3、电阻应变仪4、预调平衡箱5、游标卡尺6、钢制矩形截面直梁(已贴好电阻应变片)试件(梁)付梁蝶形螺母杠杆砝码砝码托三、实验原理1、试样的制备:用矩形截面钢梁,在其横截面高度上等距离地沿梁的轴线方向粘贴5—7枚电阻应变片。
2、弯曲正应力的测量原理:梁纯弯曲时,横截面上的正应力σ在理论上沿梁的高度成线性分布,其计算公式为z I y M ⋅=σ式中,σ的单位为MPa ;M 为梁横截面上的弯矩,单位为N ·mm ;y 为应力σ所在的点到中性轴的距离,单位为mm ;I z 为横截面对中性轴z 的面积二次矩,单位为mm 4。
面积二次矩对于矩形截面按下式计算123bh I z =式中,b 为梁横截面的宽度,单位为mm ;h 为梁横截面的高度,单位为mm 。
令使载荷P 对称地加在矩形截面直梁上(如图所示)。
这时,梁的中段将产生纯弯曲。
若载荷每增加一级p ∆(用增量法),则可由电阻应变仪测出梁中段所贴应变片各点的纵向应变增量ε∆,根据虎克定律求出各点实测正应力增量σ实为σ实=E ε∆此值与理论公式计算出的各点正应力的增量即σ理=ZI My∆ 进行比较,就可验证弯曲正应力公式。
这里,弯矩增量2paM ∆=∆。
梁上各点的应变测量,采用半桥接线,各工作应变片共用一个温度补偿块。
四、实验步骤1.准备试样。
如图所示,测量试样的高度h 、宽度b ,以及试样各测量点的坐标y ;。
将试样放在试验机活动台的支座上,布置成纯弯曲梁,测量梁的跨度l 及加载梁的支点到支座的距离a 。
2.准备应变仪。
把梁上各测量点的应变片(工作应变片)按编号逐点接到预调平衡箱A 、B 接线柱上,将温度补偿片接到预调平衡箱上任一工作应变片所在列的B 、C 接线柱上作公共补偿,此时C 排接线柱应用金属连接片或导线连接起来。
工程力学教学实验梁的弯曲正应力实验

梁的弯曲正应力实验一、实验目的1.测定梁承受纯弯曲时横截面上的正应力的大小及分布规律,并与理论计算结果进行比较,以验证梁的弯曲正应力公式。
2.了解电测法,练习电阻应变仪的使用。
二、实验设备和仪器1.万能材料试验机或梁弯曲实验台2.电阻应变仪,预调平衡箱3.游标卡尺,直尺4.矩形截面钢梁(已贴好电阻应变片)三、实验原理图3--16(a)梁弯曲实验台加载及测量图3—16(b) 万能试验机加载及测量试件选用矩形截面梁,加载方法及测量点的布置如图3—16(a)、(b)所示。
图3--16(a)为弯曲实验台装置示意图。
试件选用矩形截面梁,加载方法测量点的布置如图3-16(a)、(b)所示。
图3—16(b)为将梁放在万能试验机上加载实验情况。
梁受集中载荷P作用后使梁的中段为纯弯曲区域,两端为剪切弯曲区域。
载荷作用于纵向对称平面内,而且在弹性极限内进行实验。
故为弹性范围内的平面弯曲问题。
梁纯弯曲时横截面上的正应力计算公式为上式说明在梁的横截面上的正应力是按直线规律分布的。
以此为依据,在梁的纯弯曲区段内某一横截面处按等分高度布置5~7个测点。
各测点将沿着梁的轴向贴上电阻应变片(一般事先贴好)。
当梁承受变形时,各测点将发生伸长或缩短的线应变。
通过应变仪可依次测出各测点懂得线应变值。
从而确定横截面上应变的分布规律。
由于截面上各点处于单向应力状态下,可由虎克定律求出实验应力为式中,E为梁所用材料的拉压弹性模量。
本实验采用“等间隔分级增量法”加载,每增加等量的载荷△P,测定各测点相应的应变增量一次,取各次应变增量的平均值△,求出各测点的应力增量△为把△与理论公式计算出的应力增量△=△M·y /I Z进行比较,从而验证弯曲正应力公式的正确性。
四、实验方法和步骤1.测量梁的横截面尺寸及各测点距中性轴的距离。
2.正确安装已贴好应变片的钢梁,保证平面弯曲,检查两边力到作用点到支点的距离(即图3—16中的a值)是否相等。
实验七 纯弯曲梁的正应力实验(doc)

实验七纯弯曲梁的正应力实验
(doc)
实验七纯弯曲梁的正应力实验:
目的: 1、利用纯弯曲梁的正应力实验,测量出梁材的断面系数和位移系数。
2、通过观察变形情况,了解梁材的本构关系。
原理:纯弯曲梁的正应力实验是一种测定梁材的断面系数和位移系数的实验方法。
在梁材处于纯弯曲状态时,其纵向挠度受支承限制,梁材只能在竖直方向变形,而水平方向处于不变形状态,因此,该实验就是利用纯弯曲梁的竖直变形进行测量。
实验步骤: 1、将梁材设置在实验装置上,并确定梁材的长度和断面尺寸; 2、将梁材中部悬空,并用负载支撑梁材的两端; 3、将负载按照实验要求的步进单位,逐步增加; 4、在每种负载状态下,记录梁材竖直变形的量值; 5、用记录的数据,计算梁材的断面系数和位移系数。
单一材料梁的弯曲正应力实验技术文件.doc

单一材料梁的弯曲正应力实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。2.初步掌握电测法原理和静态电阻应变仪的使用方法。二、预习思考要点1.本实验装置是如何实现使梁的某一区段处于纯弯曲状态的?2.梁处于纯弯曲状态时其内力分布有何特征?3.梁处于纯弯曲状态时,若要测取其上某一点的线应变为何只需在该点布设一枚应变计,且平行于梁的轴线方向?三、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图1-26(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。图1-26 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺四、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD 段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图1-26(b)所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。实验采用“等增量法”加载,即每增加等量的载荷ΔF ,测定一次各点相应的应变增量Δε实,并观察各点应变增量的线性程度。载荷分为3—5级,最终载荷的选取,应依据梁上的最大应力σmax <(0.7-0.8)σs (σs 为材料的屈服极限)。当加载至最后一级,测完各应变值后即卸载,最后算出各测点应变增量的算术平均值实ε∆,依次求出各点的应力增量Δσ实。Δσ实=E·实ε∆ (1-43)把Δσ实与理论公式计算的应力增量Δσ理=zI yM ⋅∆ (1-44) 进行比较,算出截面上各测点的应力增量实验值与理论值的相对误差,即%100⨯∆∆-∆=理理实σσση(1-45)从而验证梁的弯曲正应力公式的正确性。 五、实验步骤1.用游标卡尺和钢直尺测量梁的矩形截面的宽度b 和高度h,载荷作用点到梁支点的距离a 。2.根据梁的截面尺寸和支承条件,材料的σs 值,确定分级加载的载荷增量和级次,(每级加载应使梁上各点的应变有较明显的变化),最终载荷值。3.本实验采用多点半桥公共补偿测量法,将5枚应变测量计和公共温度补偿计分别接入静态电阻应变仪的相邻桥臂上,根据电阻应变计所给出的灵敏系数k 值调好电阻应变仪的灵敏系数。4.依照静态电阻应变仪的操作规程对应变仪进行检验并调平衡,然后再对各测点预调平衡,反复几次以确保各测点的电桥处于初始平衡状态。5.按照所拟定的加载方案逐级加载,每加一级载荷,相应测读一次各点的应变值εi,并随时算出各点的应变增量Δεi,观察其线性程度,直至加到预计的最终载荷为止。然后全部卸载,应变仪回到初始平衡状态,对于应变增量线性程度不好的测点可分析其原因,重复上述测试步骤几次取其实测值的应变增量的算术平均值。6.实验结束,卸载。关闭应变仪,清理现场。六、实验数据处理1.将梁材料的弹性模量,梁的尺寸及测点位置,应变计的灵敏系数,实验荷载及其相应测点的应变值填入表1-15中并将计算的应变增量的平均值,应力的实验值和理论值,相对误差等也列入该表中表1-15梁的弯曲正应力实验测量记录表2.将各点的σ实和σ理描绘在同一个σ-y坐标系中,并运用数理统计的知识分别作出σ实-y和σ理-y分布曲线,以便进行比较,从而检验梁的弯曲正应力理论公式的正确性。七、思考与分析1.实验为何采用“等增量法”加载?为何取各测点应变增量的算术平均值作为实验值?2.电阻应变计是布设在梁的表面上,为什么把测得的表面上的应变看作是梁横截面上的应变?其依据是什么?3.如果梁采用的是拉压不等强度材料(E拉≠E压),其弯曲正应力在整个横截面上的分布曲线较之拉压等强度材料梁将会有何变化?。
工程力学中的弯曲应力和弯曲变形问题的探究与解决方案

工程力学中的弯曲应力和弯曲变形问题的探究与解决方案引言:工程力学是研究物体受力和变形规律的学科,其中弯曲应力和弯曲变形问题是工程力学中的重要内容。
本文将探讨弯曲应力和弯曲变形问题的原因、计算方法以及解决方案,旨在帮助读者更好地理解和应对这一问题。
一、弯曲应力的原因在工程实践中,当梁、梁柱等结构承受外力作用时,由于结构的几何形状和材料的力学性质不同,会导致结构发生弯曲变形。
弯曲应力的产生主要有以下几个原因:1. 外力作用:外力作用是导致结构弯曲的主要原因之一。
例如,悬臂梁受到集中力的作用,会导致梁的一侧拉伸,另一侧压缩,从而产生弯曲应力。
2. 结构几何形状:结构的几何形状对弯曲应力有直接影响。
例如,梁的截面形状不均匀或不对称,会导致弯曲应力的分布不均匀,从而引起结构的弯曲变形。
3. 材料力学性质:材料的力学性质也是导致弯曲应力的重要因素。
不同材料的弹性模量、屈服强度等参数不同,会导致结构在受力时产生不同的弯曲应力。
二、弯曲应力的计算方法为了准确计算弯曲应力,工程力学中提出了一系列的计算方法。
其中最常用的方法是梁的弯曲方程和梁的截面应力分析。
1. 梁的弯曲方程:梁的弯曲方程是描述梁在弯曲过程中受力和变形的重要方程。
根据梁的几何形状和受力情况,可以得到梁的弯曲方程,并通过求解该方程,计算出梁在不同位置的弯曲应力。
2. 梁的截面应力分析:梁的截面应力分析是通过分析梁截面上的应力分布情况,计算出梁在不同位置的弯曲应力。
该方法根据梁的几何形状和材料的力学性质,采用静力学平衡和弹性力学理论,计算出梁截面上的应力分布,并进一步得到梁的弯曲应力。
三、弯曲变形问题的解决方案针对弯曲变形问题,工程力学提出了一系列的解决方案,包括结构改进、材料选择和加固措施等。
1. 结构改进:对于存在弯曲变形问题的结构,可以通过改进结构的几何形状,增加结构的刚度,从而减小结构的弯曲变形。
例如,在梁的设计中,可以增加梁的截面尺寸或改变梁的截面形状,以增加梁的抗弯刚度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梁弯曲正应力实验中遇到的问题和解决方法
梁弯曲正应力实验是一种常见的力学实验,用于研究材料在受弯曲负载时的应力分布情况。
在进行这种实验时,有可能会遇到一些问题,下面是一些常见问题及其解决方法:
1. 梁的变形较大:当梁弯曲变形较大时,可能会导致实验结果不准确。
这可能是由于使用的材料强度不够或梁的截面形状不合适所引起的。
解决方法可以是使用更强度更高的材料或调整梁的截面形状以增加刚度。
2. 不均匀的载荷分布:在实验中,均匀的载荷分布对于获得准确的应力分布至关重要。
然而,由于实际操作中的误差或载荷施加不均匀,可能会导致载荷分布不均。
为了解决这个问题,可以使用适当的装置来均匀施加载荷,例如调整载荷点的位置或使用辅助支撑装置。
3. 测量误差:在实验测量过程中,可能会存在测量误差,例如测量长度或载荷的误差。
为了减小测量误差,可以使用更精确的测量仪器,例如数字测量仪或压力传感器,并进行多次重复测量以取得平均值。
4. 材料非线性行为:某些材料在受到较大应力时可能会出现非线性行为,例如弹性极限的超越或塑性变形。
这可能会影响到实验结果的准确性。
在这种情况下,可以选择更适合材料特性的实验方法,或者
进行更详细的材料力学性质测试。
5. 温度变化:温度的变化可能会导致材料的线膨胀或收缩,从而影响实验结果。
为了解决这个问题,可以进行温度补偿,即在实验过程中测量和控制温度变化,并根据材料的热膨胀系数进行修正。
总之,梁弯曲正应力实验是一种常见且有用的实验,但在实验过程中可能会遇到各种问题。
通过合适的措施和方法,可以克服这些问题,并获得准确可靠的实验结果。