基坑稳定性验算

合集下载

基坑稳定性验算

基坑稳定性验算

概述在基坑开挖时,由于坑内土体挖出后,使地基的应力场和变形场发生变化,可能导致地基的失稳,例如地基的滑坡、坑底隆起及涌砂等。

所以在进行支护设计时,需要验算基坑稳定性,必要时应采取适当的加强防范措施,使地基的稳定性具有一定的安全度。

验算内容对有支护的基坑全面地进行基坑稳定性分析和验算,是基坑工程设计的重要环节之一。

目前,对基坑稳定性验算主要有如下内容:①基坑整体稳定性验算②基坑的抗隆起稳定验算③基坑底抗渗流稳定性验算验算方法及计算过程基坑的整体抗滑稳定性验算根据《简明深基坑工程设计施工手册》采用圆弧滑动面验算板式支护结构和地基的整体稳定抗滑动稳定性时,应注意支护结构一般有内支撑或外拉锚杆结构、墙面垂直的特点。

不同于边坡稳定验算的圆弧滑动,滑动面的圆心一般在挡墙上方,基坑内侧附近。

通过试算确定最危险的滑动面和最小安全系数。

考虑内支撑或者锚拉力的作用时,通常不会发生整体稳定破坏,因此,对支护结构,当设置外拉锚杆时可不做基坑的整体抗滑移稳定性验算。

基坑抗隆起稳定性验算图 基坑抗隆起稳定性验算计算简图采用同时考虑c 、φ的计算方法验算抗隆起稳定性。

()qD H cN DN K c q s +++=12γγ 式中D —— 墙体插入深度;H —— 基坑开挖深度;q —— 地面超载;1γ—— 坑外地表至墙底,各土层天然重度的加强平均值;2γ—— 坑内开挖面以下至墙底,各土层天然重度的加强平均值; q N 、c N —— 地基极限承载力的计算系数;c 、ϕ—— 为墙体底端的土体参数值;用普郎特尔公式,q N 、c N 分别为:ϕπϕtan 2245tan e N q ⎪⎭⎫ ⎝⎛+=︒ ()ϕtan 11-=q c N N 其中 D= q=10kpa H=7m ϕ= 244.1879.29.1821.181.2181=⨯+⨯+⨯=γ 5.1817.03.183.09.182=⨯+⨯=γ 6.9)22445(tan 24tan 14.302=+=⨯e Nq 32.1924tan 1)16.9(tan 1)1(0=-=-=ϕNq Nc 则 Ks=××+10×/(7++10=> 符合要求抗渗流(或管涌)稳定性验算(1)概述根据《建筑基坑工程设计计算与施工》 在地下水丰富、渗流系数较大(渗透系数s cm /106-≥)的地区进行支护开挖时,通常需要在基坑内降水。

基坑稳定分析

基坑稳定分析

基坑稳定分析对有支护的基坑进行土体稳定分析,是基坑工程设计的重要环节之一。

基坑稳定分析的目的是为了确定基坑侧壁支护结构在给定条件下的合理嵌固深度,或验算拟定支护结构设计的稳定性。

基坑稳定分析参见《建筑基坑支护规范》(JGJ—2012)的规定。

目前,基坑稳定分析主要包括下面几个方面:1、整体稳定性分析采用圆弧滑动法验算支护结构和地基的整体抗滑动稳定性时,应注意支护结构一般有内支撑或外锚拉结构且墙面垂直的特点,不同于边坡稳定性验算的圆弧滑动。

有支护的滑动面的圆心一般靠近基坑内侧附近,应通过试算确定最危险的滑动面和最小安全系数。

2、支护结构踢脚稳定性分析验算最下道支撑以下的主、被动土压力区的压力绕最下道支撑梁点的转动力矩是否平衡。

在基坑内墙前极限被动土压力计算中,考虑墙体与坑内土体间的摩擦角的影响,同时也考虑到地基土的黏聚力。

3、基坑底部土体的抗隆起稳定性分析基坑底部土体的抗隆起稳定性分析具有保证基坑稳定和控制基坑变形的重要意义。

对适用不同地质条件的现有不同抗隆起稳定性计算公式,应按工程经验规定保证基坑稳定的最低安全系数。

4、基坑的渗流稳定性分析在饱和软粘土中开挖基坑,都需要进行支护,支护结构通常采用排桩、地下连续墙、搅拌桩或有止水措施的冲孔灌注桩等。

由于地下室水位很高,因此很容易造成基坑底部的渗流破坏,所以设计支护结构嵌固深度时,必须考虑抵抗渗流破坏的能力,具有足够的渗流稳定安全度。

5、基坑底土突涌的基坑稳定性分析如果在基底下的不透水层较薄,而且在不透水层下面具有较大水压的滞水层或承压水层时,当上覆土重不足以抵挡下部的水压时,基底就会隆起破坏,墙体就会失稳,所以在设计、施工前必须要查明地层情况以及滞水层和承压水层水头的情况。

新建秦淮湾小区项目部张德奎。

基坑放坡稳定性验算

基坑放坡稳定性验算

基坑放坡稳定性验算根据施工组织安排,10-03地块各楼栋基坑采用分块开挖,临时放坡的施工方案,我司对基坑临时放坡后的坑边坡顶堆载及车载道路进行边坡稳定性验算,验算过程如下:参数信息:条分方法:瑞典条分法;考虑地下水位影响;基坑外侧水位到坑顶的距离(m):1.50;基坑内侧水位到坑顶的距离(m):8.00;放坡参数:序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数1 2.50 3.80 2.00 0.002 3.00 4.50 2.00 0.00计算原理:根据土坡极限平衡稳定进行计算。

自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。

将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着:1、土条自重2、作用于土条弧面上的法向反力3、作用于土条圆弧面上的切向阻力将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。

将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。

计算公式:式子中:--土坡稳定安全系数;Fsc --土层的粘聚力;--第i条土条的圆弧长度;liγ --土层的计算重度;--第i条土到滑动圆弧圆心与竖直方向的夹角;θiφ --土层的内摩擦角;--第i条土的宽度;bi--第i条土的平均高度;hi――第i条土水位以上的高度;h1i――第i条土水位以下的高度;h2iγ' ――第i条土的平均重度的浮重度;q ――第i条土条土上的均布荷载;其中,根据几何关系,求得hi为:式子中:r --土坡滑动圆弧的半径;l--坡角距圆心垂线与坡角地坪线交点长度;α ---土坡与水平面的夹角;h1i的计算公式当h1i ≥ hi时,取h1i= hi;当h1i ≤0时,取h1i= 0;h2i的计算公式:h2i = hi-h1i;hw――土坡外地下水位深度;li的几何关系为:计算安全系数:将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数Fs:计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第1步 1.391 45.259 -0.038 8.449 8.449示意图如下:计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第2步 1.321 52.516 -0.028 18.947 18.947示意图如下:计算结论如下:第 1 步开挖内部整体稳定性安全系数 Fs= 1.391>1.30 满足要求! [标高 -3.60 m]第 2 步开挖内部整体稳定性安全系数 Fs= 1.321>1.30 满足要求! [标高 -6.60 m]宝山新城顾村A单元10-03、10-05地块项目部2018年3月8日。

建筑基坑稳定性验算

建筑基坑稳定性验算

建筑基坑稳定性验算1 一般规定1.1 本章适用于桩、墙式围护结构的基坑,稳定性验算应包括如下内容:1 支护桩稳定入土深度;2 基坑底隆起稳定性;3 坑底渗流稳定性;4 基坑边坡整体稳定性。

1.2 土的抗剪强度指标应根据土质条件和工程实际情况确定,并与稳定性分析时所选用的抗力分项系数取值配套。

本章所规定的各项稳定性验算,土的强度指标均应按固结快剪强度指标选用,并应考虑如下因素对土强度指标影响:1 软土地区基坑稳定性分析时应考虑因基坑暴露时间对土体强度的影响。

2 开挖面积很大、或基坑长度很大的基坑,应考虑土的强度指标沿基坑周边分布的差异。

3灵敏度较高的土,基坑临近有交通频繁的道路或其他振动源时,对6m深度范围内的饱和粘性土,计算采用土的强度指标宜适当进行折减,强度折减系数可取0.6~1.0,当振动荷载大、土灵敏度高、振动荷载频率1Hz~2Hz时,折减系数取低值。

4 应考虑打桩、地基处理的挤土效应等施工扰动原因对土强度指标造成降低的不利影响。

5对欠固结土,宜通过现场实测土体的不排水强度进行稳定分析。

6 验算基坑稳定时,对于开挖区,有条件时宜采用卸荷条件下进行试验的抗剪强度指标。

1.3 对基坑面积较大、基坑影响范围内土层分布不均匀的基坑,应根据基坑各边的土层分布条件进行稳定计算,1.4 对于基坑的整体稳定计算,按平面问题考虑,并采用圆弧滑动面计算。

有软土夹层、倾斜基岩面等情况时,宜用非圆弧滑动面计算。

按总应力法计算。

1.5 对不同情况(如不同设计状况,不同验算方法及不同土性指标)2 支护结构稳定入土深度的验算支护结构的稳定入土深度采用极限平衡法计算确定。

作用在支护结构上的土压力分布为:基坑外侧一般可采用主动土压力,基坑开挖侧以下取被动土压力。

当入土深度较大时,在反弯点至支护结构底端段可考虑反弯点下土的约束作用。

3 基坑底抗隆起稳定性验算3.1 基坑坑底抗隆起稳定性验算应按如下方法计算:1 当基坑底为均质软土时且提供其十字板强度时,应按以下两种条件验算坑底土涌起稳定性。

地铁车站基坑抗突涌稳定性验算

地铁车站基坑抗突涌稳定性验算

地铁车站基坑抗突涌稳定性验算一、工程概况(略)二、工程地质与水文地质条件2.1工程地质条件(略)2.2水文地质条件本场区的地下水,主要有浅层潜水和深层承压水。

浅层潜水主要赋存于上部填土层及粉土、砂土层中,补给来源主要为大气降水和地表水,其静止水位一般在深1~4m。

潜水含水层的渗透系数在10-3~10-6之间。

深层承压水含水层主要分布于深部的(12)4(14)1圆砾层中,隔水顶班为其上部的粘性土层。

水头埋深约在地表下6.4m,相当于高程+1.10m。

三、降水方案的设计根据水文地质条件和围护结构型式,本次降水设计主要包含两方面:基底稳定性验算和基坑内疏干井的设计。

3.1基底稳定性分析基坑底板的稳定条件:基坑底板至承压含水层顶板间的土压力应大于承压水的顶托力。

即:H·γs ≥Fs·γw·h式中:H —基坑底至承压含水层顶板间距离(m);γs —基坑底至承压含水层顶板间的土的平均重度(kN/m3);h —承压水头高度至承压含水层顶板的距离(m);γw —水的重度(KN/m3),取10kN/m3;Fs —安全系数,一般为1.0~1.2,取1.05;2、计算情况:以开挖深度最大的换乘节点附近的资料为计算依据,验算基底的抗涌稳定性。

有关参数如下:地面标高+5.906m,承压水水位标高+1.10m,承压含水层顶板标高-35.17m,换乘节点最大开挖深度处的标高-18.754m。

A.计算承压含水层的顶托力Fs·γw·hFs·γw·h= Fs ×10×(1.10-(-18.754))=198.754 Fs kPa;B.根据基坑开挖深度计算基坑底至承压含水层顶板间的土压力H·γs。

H=-18.754–(-35.17)=16.417m,γs=17.70kN/m3则:H·γs=16.417×17.70=290.58 kPa;C.计算安全系数198.754 Fs =290.58Fs=1.462>1.10因此,本基坑可以不考虑承压水的突涌问题。

基坑放坡稳定性验算

基坑放坡稳定性验算
放坡参数:
序号
放坡高度(m)
放坡宽度(m)
平台宽度(m)
条分块数
1
2.50
3.80
2.00
0.00
2
3.00
4.50
2.00
0.00
计算原理:
根据土坡极限平衡稳定进行讣算。自然界匀质土坡失去稳定,滑动面呈曲面, 通常滑动面接近圆弧,可将滑裂面近似成圆弧讣算。将土坡的土体沿竖直方向分 成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条 上存在着:
1、土条自重
2、作用于土条弧面上的法向反力
3、作用于土条圆弧面上的切向阻力
将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全 储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。
将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全 储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。
基坑放坡稳定性验算
根据施工组织安排,10-03地块各楼栋基坑采用分块开挖,临时放坡的施工 方案,我司对基坑临时放坡后的坑边坡顶堆载及车载道路进行边坡稳定性验算, 验算过程如下:
参数信息:
条分方法:瑞典条分法;
考虑地下水位影响;
基坑外侧水位到坑顶的距离(m):1.50;
基坑内侧水位到坑顶的距离(m):8.00;
计算公式:
式子中:
F:一土坡稳定安全系数;
c一土层的粘聚力;
1厂-第i条土条的圆弧长度;
Y一土层的计算重度;
0i--第1>―土层的内摩擦角;
b,--第i条土的宽度;
hi--第i条土的平均高度;
hii第i条土水位以上的高度;
氐一一第i条土水位以下的高度;

10.5基坑稳定性分析

10.5基坑稳定性分析

上海万达广场工地基坑外侧土方滑移
发生坍塌的是宝 山万达广场工地 北面,近一二八 纪念路一侧的围 墙。
Байду номын сангаас
3. 基坑底隆起稳定性验算 对饱和软黏土,抗隆起稳定性的验算是基坑设计的一个主要 内容。基坑底土隆起,将会导致支护桩后地面下沉,影响环境 安全和正常使用。隆起稳定性验算的方法很多。可按地基规范 推荐的以下条件进行验算:
有支护结构的基坑整体稳定性验算
M P R cos i
2M c
h(i Kp
K

a
d d
(2-43)
式中:Mp——每延米中的桩产生的抗滑力矩(kN·m/m);
i
——桩与滑弧切点至圆心连线与垂线的夹角; Mc——每根桩身的抗弯弯矩(kN·m/单桩);
hi——切桩滑弧面至坡面的深度(m);
γ——hi范围内土的重度(kN/m3);

1.3
(2-46)
Ep
Ea ≥ 1.2 (2-47)
式中:Ep、bp——分别为被动侧土压力的合力及合力对支护结构
底端的力臂;
Ea、ba——分别为主动侧土压力的合力及合力对支护结构底
端的力臂。
杭州地铁1号线基坑内发生土体滑移
2009年1月26日18时20分左右,杭州地铁1 号线凤起路站基坑内发生土体纵向滑移事故, 没有造成人员伤亡。事故发生后,现场立即启 动了应急预案,采取了一系列应急抢险措施: 补设钢支撑,确保基坑安全;加强对基坑和周 边建筑物的监测;北面土体滑移面的顶部适当 进行卸载;调整公交延安路(凤起路-庆春路段) 交通;进一步优化凤起路站的支撑体系以加强 安全性等。
Kp、Ka——土的被动与主动土压力系数;
d——桩径(m);

基坑放坡稳定性验算

基坑放坡稳定性验算

基坑放坡稳定性验算根据施工组织安排, 10-03 地块各楼栋基坑采用分块开挖,临时放坡的施工 方案,我司对基坑临时放坡后的坑边坡顶堆载及车载道路进行边坡稳定性验算, 验算过程如下:参数信息 :条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.50 ; 基坑内侧水位到坑顶的距离 (m):8.00 ; 放坡参数:序号 放坡高度 (m)1 2.503.80 2.00 2 3.004.50 2.00 计算原理: 根据土坡极限平衡稳定进行计算。

通常滑动面接近圆弧, 可将滑裂面近似成圆弧计算。

将土坡的土体沿竖直方向分 成若干个土条, 从土条中任意取出第 i 条,不考虑其侧面上的作用力时, 该土条r F - /■- .、”/•■上存在着: 1、土条自重2、作用于土条弧面上的法向反力3、作用于土条圆弧面上的切向阻力 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数, 考虑安全 储备的大小,按照《规范》要求,安全系数要满足 >=1.3 的要求。

放坡宽度 (m) 平台宽度 (m) 条分块数 0.00 0.00自然界匀质土坡失去稳定, 滑动面呈曲面,式子中:F s -- 土坡稳定安全系数;c -- 土层的粘聚力;l i --第i 条土条的圆弧长度;丫 -- 土层的计算重度;9 i --第i 条土到滑动圆弧圆心与竖直方向的夹角;© -- 土层的内摩擦角;b i --第i 条土的宽度;h i --第i 条土的平均高度; h ii ――第i 条土水位以上的高度;h 2i ――第i 条土水位以下的高度;丫 ’一一第i 条土的平均重度的浮重度;将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,储备的大小,按照《规范》要求,安全系数要满足 >=1.3的要求。

计算公式:考虑安全 工*£ + f (?% + r 俎)勺tan (p第i条土条土上的均布荷载;其中,根据几何关系,求得h i为:______________ __________ 2&二一[(f-0・5)xg _厶]—r + 4 -(/-0.5)xZ?Jtana!式子中:r -- 土坡滑动圆弧的半径;丨0 --坡角距圆心垂线与坡角地坪线交点长度;a --- 土坡与水平面的夹角;h ii的计算公式\( h \cos Qi- \r sm(/7 + d)- H几二九一I COSM)当h ii > h i 时,取h ii = h i当h ii < 0 时,取h ii = 0 ;h2i的计算公式:h 2i = h i -h ii ;h w 土坡外地下水位深度;i i的几何关系为:h_ 1 )x ® / i 乂 bj — Iarccos ----- --- ——-一 arccos -- ——-x 2 x 旷 x 兀360二90-碎亦上四4k计算安全系数:将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数 Fs : 计算步数 安全系数 滑裂角(度)圆心X(m)圆心丫(m)半径R(m)第 1 步 1.39145.259-0.038 8.449 示意图如下:计算结论如下:8.449第 2 步 1.32152.516 -0.028 示意图如下: 圆心X 18.947圆心Y(m) 半径R(m) 18.947■1daagw •oooml计算步数安全系数 滑裂角(度)第 1 步开挖内部整体稳定性安全系数 Fs= 1.391>1.30 满足要求 ! [ 标 高-3.60 m]第 2 步开挖内部整体稳定性安全系数 Fs= 1.321>1.30 高 -6.60 m]2018年3月8日 满足要求 ! [ 标宝山新城顾村A 单元 10-03 10-05 地块项目部。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章基坑的稳定性验算
4.1概述
在基坑开挖时,由于坑内土体挖出后,使地基的应力场和变形场发生变化,可能导致地基的失稳,例如地基的滑坡、坑底隆起及涌砂等。

所以在进行支护设计时,需要验算基坑稳定性,必要时应采取适当的加强防范措施,使地基的稳定性具有一定的安全度。

4.2 验算内容
对有支护的基坑全面地进行基坑稳定性分析和验算,是基坑工程设计的重要环节之一。

目前,对基坑稳定性验算主要有如下内容:
①基坑整体稳定性验算
②基坑的抗隆起稳定验算
③基坑底抗渗流稳定性验算
4.3 验算方法及计算过程
4.3.1基坑的整体抗滑稳定性验算
根据《简明深基坑工程设计施工手册》采用圆弧滑动面验算板式支护结构和地基的整体稳定抗滑动稳定性时,应注意支护结构一般有内支撑或外拉锚杆结构、墙面垂直的特点。

不同于边坡稳定验算的圆弧滑动,滑动面的圆心一般在挡墙上方,基坑内侧附近。

通过试算确定最危险的滑动面和最小安全系数。

考虑内支撑或者锚拉力的作用时,通常不会发生整体稳定破坏,因此,对支护结构,当设置外拉锚杆时可不做基坑的整体抗滑移稳定性验算。

4.3.3基坑抗隆起稳定性验算
图4.1 基坑抗隆起稳定性验算计算简图
采用同时考虑c 、φ的计算方法验算抗隆起稳定性。

()q
D H cN DN K c q s +++=
12γγ 式中 D —— 墙体插入深度;
H —— 基坑开挖深度;
q —— 地面超载;
1γ—— 坑外地表至墙底,各土层天然重度的加强平均值;
2γ—— 坑内开挖面以下至墙底,各土层天然重度的加强平均值; q N 、c N —— 地基极限承载力的计算系数;
c 、ϕ—— 为墙体底端的土体参数值;
用普郎特尔公式,q N 、c N 分别为:
ϕπϕtan 2245tan e N q ⎪⎭⎫ ⎝
⎛+=︒ ()ϕ
tan 11-=q c N N 其中 D=2.22m q=10kpa H=7m ϕ= 240 4.187
9.29.1821.181.2181=⨯+⨯+⨯=γ 5.181
7.03.183.09.182=⨯+⨯=γ 6.9)22445(tan 24tan 14.302=+
=⨯e Nq 32.1924
tan 1)16.9(tan 1)1(0=-=-=ϕNq Nc 则 Ks=(18.5×2.22×9.6+10×19.32)/18.4(7+2.22)+10=3.27>1.2 符合要求
4.3.4抗渗流(或管涌)稳定性验算
(1)概述
根据《建筑基坑工程设计计算与施工》 在地下水丰富、渗流系数较大(渗透系数
s cm /106-≥)的地区进行支护开挖时,
通常需要在基坑内降水。

如果围护短墙自身不透水,由于基坑内外水位差,导致基坑外的地下水绕过围护墙下端向基坑内外渗流,这种渗流产生的动水压力在墙背后向下作用,而在墙前则向上作用,当动水压力大于土的水下重度时,土颗粒就会随水流向上喷涌。

在软粘土地基中渗流力往往使地基产生突发性的泥流涌出,从而出现管涌现象。

以上现象发生后,使基坑内土体向上推移,基坑外地面产生下沉,墙前被动土压力减少甚至丧失,危及支护结构的稳定。

验算抗渗流稳定的基本原则是使基坑内土体的有效压力大于地下水的渗透力
(2)抗渗稳定性验算
如下图所示,
本设计采用一般方法避免基坑底部土体发生管涌破坏
需满足下式:
0.2'
≥=J
K γ
其中 K ——安全系数 一般去1.5~2.0 本设计去2.0
'γ——土体浮重度
J ——动水压力
w w h
t h i J γγ''
2+== 其中 i ——水力梯度
w γ——水的重度
'h ——水头差
'
2h t +——最短渗流路径 'h =7-2.1=4.9m w γ=10KN/m 3 t=9.22-7=2.22m 44.202
.13813.202.321281.20=⨯+⨯+⨯=sat γ w w h
t h i J γγ''
2+===〔4.9/(2×2.22+4.9)〕10=5.25 'γ=sat γ-w γ=20.44-10=10.44 99.125.5/44.10'
===J
K γ
为保证不发生管涌破坏插入深度要满足下式: ()m h h K t w 22.244.102/)9.444.10109.499.1(2/''''=⨯⨯-⨯⨯=⨯-⨯⨯≥γγγ 则管涌验算符合要求,插入深度满足要求。

相关文档
最新文档