matlab数值微积分与方程数值求解

合集下载

Matlab中常用的数值计算方法

Matlab中常用的数值计算方法

Matlab中常用的数值计算方法数值计算是现代科学和工程领域中的一个重要问题。

Matlab是一种用于数值计算和科学计算的高级编程语言和环境,具有强大的数值计算功能。

本文将介绍Matlab中常用的数值计算方法,包括数值积分、数值解微分方程、非线性方程求解和线性方程组求解等。

一、数值积分数值积分是通过数值方法来近似计算函数的定积分。

在Matlab中,常用的数值积分函数是'quad'和'quadl'。

'quad'函数可以用于计算定积分,而'quadl'函数可以用于计算无穷积分。

下面是一个使用'quad'函数计算定积分的例子。

假设我们想计算函数f(x) = x^2在区间[0, 1]上的定积分。

我们可以使用如下的Matlab代码:```f = @(x) x^2;integral = quad(f, 0, 1);disp(integral);```运行这段代码后,我们可以得到定积分的近似值,即1/3。

二、数值解微分方程微分方程是描述自然界各种变化规律的数学方程。

在科学研究和工程应用中,常常需要求解微分方程的数值解。

在Matlab中,可以使用'ode45'函数来求解常微分方程的数值解。

'ode45'函数是采用基于Runge-Kutta方法的一种数值解法。

下面是一个使用'ode45'函数求解常微分方程的例子。

假设我们想求解一阶常微分方程dy/dx = 2*x,初始条件为y(0) = 1。

我们可以使用如下的Matlab代码:```fun = @(x, y) 2*x;[x, y] = ode45(fun, [0, 1], 1);plot(x, y);```运行这段代码后,我们可以得到微分方程的数值解,并绘制其图像。

三、非线性方程求解非线性方程是指方程中包含非线性项的方程。

在很多实际问题中,我们需要求解非线性方程的根。

Matlab中常用的积分和微分算法解析

Matlab中常用的积分和微分算法解析

Matlab中常用的积分和微分算法解析积分和微分是数学中重要的概念和工具,广泛应用于科学、工程和计算领域。

在Matlab中,提供了丰富的积分和微分算法,可以方便地进行数值计算和符号计算。

在本文中,我们将解析Matlab中常用的积分和微分算法,并探讨其应用。

一、数值积分算法数值积分是通过将求和转化为积分的方式,对函数在一定区间内的近似计算。

在Matlab中,有许多数值积分算法可供选择,包括梯形法则、辛普森法则和高斯求积法等。

1. 梯形法则梯形法则是一种基本的数值积分算法。

它将区间分成多个小梯形,并将每个小梯形的面积近似表示为梯形的面积,然后将这些面积相加得到最终的近似积分值。

在Matlab中,可以使用trapz函数来实现梯形法则的计算。

例如,对函数f(x)在区间[a, b]上进行积分,可以使用如下代码:```matlaba = 0;b = 1;x = linspace(a, b, 100);y = f(x);integral_value = trapz(x, y);```其中,linspace函数用于生成均匀分布的点,f(x)是待积分的函数。

trapz函数可以自动计算积分值。

2. 辛普森法则辛普森法则是一种更精确的数值积分算法。

它将区间分成多个小三角形,并将每个小三角形的面积近似表示为一个带有二次多项式的面积,然后将这些面积相加得到最终的近似积分值。

在Matlab中,可以使用quad函数来实现辛普森法则的计算。

例如,对函数f(x)在区间[a, b]上进行积分,可以使用如下代码:```matlaba = 0;b = 1;integral_value = quad(@f, a, b);```其中,@f表示函数句柄,quad函数可以自动计算积分值。

3. 高斯求积法高斯求积法是一种更高精度的数值积分算法。

它利用多个节点和权重,通过插值的方式来近似积分值。

在Matlab中,可以使用gaussquad函数来实现高斯求积法的计算。

使用Matlab进行微分方程求解的方法

使用Matlab进行微分方程求解的方法

使用Matlab进行微分方程求解的方法引言微分方程是数学中非常重要的一部分,广泛应用于物理、经济、工程等领域。

对于大部分微分方程的解析解往往难以求得,而数值解法则成为了一种常用的解决手段。

Matlab作为一种强大的科学计算软件,也提供了丰富的工具和函数用于求解微分方程,本文将介绍一些常见的使用Matlab进行微分方程求解的方法。

一、数值求解方法1. 欧拉方法欧拉方法是最简单的一种数值求解微分方程的方法,它将微分方程的微分项用差分的方式进行近似。

具体的公式为:y(n+1) = y(n) + hf(x(n), y(n))其中,y(n)表示近似解在第n个点的值,h为步长,f(x, y)为微分方程的右端项。

在Matlab中使用欧拉方法进行求解可以使用ode113函数,通过设定不同的步长,可以得到不同精度的数值解。

2. 中点法中点法是较为精确的一种数值求解微分方程的方法,它的计算公式为:k1 = hf(x(n), y(n))k2 = hf(x(n) + h/2, y(n) + k1/2)y(n+1) = y(n) + k2中点法通过计算两个斜率的平均值来得到下一个点的值,相较于欧拉方法,中点法能提供更精确的数值解。

3. 4阶龙格库塔法龙格库塔法是一类高阶数值求解微分方程的方法,其中4阶龙格库塔法是最常用的一种。

它的计算公式为:k1 = hf(x(n), y(n))k2 = hf(x(n) + h/2, y(n) + k1/2)k3 = hf(x(n) + h/2, y(n) + k2/2)k4 = hf(x(n) + h, y(n) + k3)y(n+1) = y(n) + (k1 + 2k2 + 2k3 + k4)/64阶龙格库塔法通过计算多个斜率的加权平均值来得到下一个点的值,相较于欧拉方法和中点法,它的精度更高。

二、Matlab函数和工具除了可以使用以上的数值方法进行微分方程求解之外,Matlab还提供了一些相关的函数和工具,方便用户进行微分方程的建模和求解。

利用MATLAB求解微分方程数值解的相关命令

利用MATLAB求解微分方程数值解的相关命令

利用MATLAB求解微分方程数值解的相关命令利用MATLAB求解微分方程数值解的相关命令1 指令函数及调用格式1.1 指令函数:dsolve注:此指令函数用于求解微分方程(组)的符号(解析)解。

1.2 单变量常微分方程的调用格式:f=dsolve(‘eq’, ‘cond’, ‘v’)注:此调用格式用于求符号微分方程的通解或特解,其中eq代表微分方程,cond代表微分方程的初始条件(若缺少,则求微分方程的通解),v为指定自变量(如未指定,系统默认t为自变量)。

1.3 常微分方程组的调用格式:f=dsolve(‘eq1’, ‘eq2’,…, ‘eqn’, ‘cond1’, ‘cond2’,…, ‘condn’, ‘v1’, ‘v2’, …, ‘vn’)注:此调用格式用于求解符号常微分方程组。

其中eq1,...,eqn 代表n个微分方程构成的微分方程组;cond1,...,condn代表微分方程组的初始条件(若缺少,则求微分方程组的通解),v1 , (v)为指定自变量(如未指定,系统默认t为自变量)。

1.4 记述规定:MATLAB中,用D(注意:一定是大写)记述微分方程中函数的导数。

当y是因变量时,用‘Dny’表示‘y的n阶导数’。

如,Dy表示y的一阶导数y ',Dny表示y的n阶导数。

Dy(0)=5表示y ' (0)=5。

D3y+D2y+Dy-x+5=0表示微分方程y'''+y''+y'-x+5=0。

2 实例演示例1、求微分方程2'22xy xy xe-+=的通解命令输入:>> y=dsolve('Dy+2*x*y=2*x*exp(-x^2)','x')得结果为:y =(x^2+C1)*exp(-x^2)若输入命令:>>y=dsolve('Dy+2*x*y=2*x*exp(-x^2)')则系统默认t为自变量,而把真正的自变量x当作常数处理,把y 当作t的函数,得到错误的结果:y =exp(-2*x*t-x*(x-2*t))+exp(-2*x*t)*C1例2、求微分方程22420250d x dxxdt dt-+=的通解命令输入:>> x=dsolve('4*D2x-20*Dx+25*x=0')得结果为:x =C1*exp(5/2*t)+C2*exp(5/2*t)*t%系统默认t 为自变量例3、求微分方程'''54100y y y +-+=在条件'006,4x x y y ====下的特解。

matlab解微积分方程

matlab解微积分方程

matlab解微积分方程Matlab是一种功能强大的数值计算软件,可以用于解决各种数学问题,包括微积分方程。

微积分方程是描述自然界中许多现象的数学模型,它们在物理、化学、生物等领域有着广泛的应用。

本文将介绍如何使用Matlab解微积分方程。

我们需要明确什么是微积分方程。

微积分方程是包含未知函数及其导数的方程,通常可以写成形如y''(x) + p(x)y'(x) + q(x)y(x) = f(x)的形式。

其中y(x)是未知函数,p(x)、q(x)和f(x)是已知函数。

解微积分方程的过程可以分为两步:建立方程和求解方程。

建立方程是将实际问题转化为数学模型,而求解方程则是找到满足方程的函数。

在Matlab中,可以使用dsolve函数来求解微积分方程。

dsolve 函数可以根据方程的类型自动选择合适的求解方法,并给出满足方程的函数表达式。

例如,对于一阶线性微分方程dy/dx + p(x)y = q(x),可以使用以下代码求解:syms x y(x)p = input('请输入p(x)的表达式:'); % 输入p(x)的表达式q = input('请输入q(x)的表达式:'); % 输入q(x)的表达式eqn = diff(y,x) + p*y - q == 0; % 建立微分方程sol = dsolve(eqn); % 求解微分方程disp('方程的解为:');disp(sol);在以上代码中,首先使用syms命令定义符号变量x和y(x),然后使用input命令分别输入p(x)和q(x)的表达式。

接下来,使用diff 命令计算y'(x),然后将其代入微分方程中得到eqn。

最后,使用dsolve命令求解方程,并将结果存储在sol中,最后将结果打印出来。

对于更高阶的微积分方程,可以使用符号变量来表示未知函数及其导数的各阶,并按照相应的形式建立方程。

matlab求微分方程数值解

matlab求微分方程数值解

matlab求微分方程数值解利用matlab求微分方程数值解是一种常用的数学计算方法。

在实际工程和科学研究中,许多问题都可以用微分方程来描述,但是解析解往往难以求得,因此需要用数值方法求解微分方程。

求解微分方程的数值方法有很多种,其中比较常用的是欧拉法和龙格-库塔法。

欧拉法是一种基本的数值方法,它采用离散化的方法将微分方程转化为差分方程,然后通过迭代来求出数值解。

欧拉法的具体步骤是:首先将自变量和因变量离散化,然后利用微分方程的定义式将微分方程转化为差分方程,最后通过迭代求出数值解。

欧拉法的优点是简单易懂,但是精度较低,容易产生误差。

龙格-库塔法是一种高阶数值方法,它将微分方程转化为一系列的差分方程,并采用递推的方法求解数值解。

龙格-库塔法的优点是精度高,收敛速度快,适用于求解复杂的微分方程。

但是龙格-库塔法的计算量较大,需要进行多次计算,计算时间较长。

在使用matlab求解微分方程时,可以直接调用matlab中的ode 函数来求解微分方程。

ode函数是matlab中内置的求解微分方程的函数,它支持多种数值方法,包括欧拉法和龙格-库塔法等。

使用ode函数可以简化求解微分方程的过程,提高计算效率。

在使用ode函数求解微分方程时,需要先定义微分方程的函数表达式,然后将函数表达式作为参数传入ode函数中。

ode函数会自动选择合适的数值方法来求解微分方程,并返回数值解。

通过调整ode函数的参数,可以进一步提高求解微分方程的精度和计算效率。

除了ode函数外,matlab中还有很多其他的数值计算函数,如dsolve函数、pdepe函数等,它们可以用来求解不同类型的微分方程。

在实际应用中,需要根据具体问题选择合适的数值方法和函数来求解微分方程。

利用matlab求解微分方程数值解是一种常用的数学计算方法,可以通过调用matlab中的内置函数来实现。

在选择数值方法和函数时需要考虑精度和计算效率等因素,以便更好地解决实际问题。

用MATLAB求解微分方程

用MATLAB求解微分方程
用MATLAB求解微分方程
1. 微分方程的解析解
求微分方程(组)的解析解命令:
dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自变量’)
结 果:u = tan(t-c)
解 输入命令:dsolve('Du=1+u^2','t')
STEP2
STEP1
解 输入命令: y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x')
导弹追踪问题
设位于坐标原点的甲舰向位于x轴上点A(1, 0)处的乙舰发射导弹,导弹头始终对准乙舰.如果乙舰以最大的速度v0(是常数)沿平行于y轴的直线行驶,导弹的速度是5v0,求导弹运行的曲线方程.又乙舰行驶多远时,导弹将它击中? 解法一(解析法)
由(1),(2)消去t整理得模型:
解法二(数值解)
结 果 为:x = (c1-c2+c3+c2e -3t-c3e-3t)e2t y = -c1e-4t+c2e-4t+c2e-3t-c3e-3t+c1-c2+c3)e2t z = (-c1e-4t+c2e-4t+c1-c2+c3)e2t
2、取t0=0,tf=12,输入命令: [T,Y]=ode45('rigid',[0 12],[0 1 1]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')
3、结果如图
图中,y1的图形为实线,y2的图形为“*”线,y3的图形为“+”线.

如何在Matlab中进行数值积分和数值解

如何在Matlab中进行数值积分和数值解

如何在Matlab中进行数值积分和数值解在数学和工程领域,数值积分和数值解是常见的技术手段,可以帮助我们求解复杂的数学问题和实际工程中的模型。

本文将介绍如何使用Matlab进行数值积分和数值解,以及一些注意事项和常用的方法。

一、数值积分数值积分是计算定积分的近似值的方法,可以通过数值逼近或数值插值来实现。

在Matlab中,有几种常用的函数可以用于数值积分,比如trapz、quad等。

1. trapz函数trapz函数是用梯形法则计算积分的函数。

它的使用方法是将要积分的函数作为输入的第一个参数,x轴上的点作为输入的第二个参数。

例如,要计算函数f(x)在区间[a, b]上的积分,可以使用以下代码:result = trapz(x, f(x));2. quad函数quad函数是使用自适应数值积分算法计算积分的函数。

它的使用方法是将要积分的函数作为输入的第一个参数,积分区间的下限和上限作为输入的第二个和第三个参数。

例如,要计算函数f(x)在区间[a, b]上的积分,可以使用以下代码:result = quad(@(x) f(x), a, b);二、数值解数值解是使用数值方法求解复杂的数学问题或实际工程中的模型的近似解。

在Matlab中,有几种常用的函数可以用于数值解,比如fsolve、ode45等。

1. fsolve函数fsolve函数是用于求解非线性方程组的函数。

它的使用方法是将非线性方程组表示为一个函数,然后将该函数作为输入的第一个参数。

例如,要求解方程组f(x) = 0,可以使用以下代码:x = fsolve(@(x) f(x), x0);其中x0是方程的初始猜测值。

2. ode45函数ode45函数是求解常微分方程初值问题的函数。

它的使用方法是将微分方程表示为一个函数,然后将该函数作为输入的第一个参数。

例如,要求解常微分方程dy/dx = f(x, y),可以使用以下代码:[t, y] = ode45(@(t, y) f(t, y), tspan, y0);其中tspan是时间区间,y0是初始条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子一班王申江
实验九数值微积分与方程数值求解
一、实验目的
1、掌握求数值导数和数值积分的方法
2、掌握代数方程数值求解的方法
3、掌握常微分方程数值求解的方法
二、实验内容
1、求函数在指定点的数值导数。

()
23
2
123,1,2,3 026
x x x
f x x x x
x
==
>>syms x
>>f=[x x^2 x^3;1 2*x 3*x^2;0 2 6*x]; >>F=det(f)
F=2*x^3
>>h=0.1
>>x=[0:h:4];
>>f=2*x^3;
>>[dy,dx]=diff_ctr(f,h,1);
>>y1=dy(dx==1)
y1=6.0000
>>y2=dy(dx==2)
y2=24.0000
>>y3=dy(dx==3) y3=54.0000
2、用数值方法求定积分。

(1)
210I π
=⎰的近似值 a=inline('sqrt(cos(t.^2)+4*sin((2*t).^2)+1)');
I=quadl(a,0,2*pi)
I =
6.7992 + 3.1526i
(2)()1
202ln 11x I dx x
+=+⎰ b=inline('log(1+x)./(1+x.^2)');
I=quadl(b,0,1)
I =
0.2722
3、分别用3种不同的数值方法解线性方程组。

6525494133422139211
x y z u x y z u x y z u x y u +-+=-⎧⎪-+-=⎪⎨++-=⎪⎪-+=⎩
A=[6,5,-2,5;9,-1,4,-1;3,4,2,-2;3,-9,0,2];
b=[-4,13,1,11]';
x=A\b
x =
0.6667
-1.0000
1.5000
-0.0000
4、求非齐次线性方程组的通解。

123412341
234273635224
9472x x x x x x x x x x x x +++=⎧⎪+++=⎨⎪+++=⎩
A=[2 7 3 1;3 5 2 2 ;9 4 1 7]
A =
2 7
3 1
3 5 2 2
9 4 1 7
>> b=[6 4 2]'
b =
6
4
2
>> rank(A)
ans = 2
>> rank([A,b])
ans =
2
>> x=pinv(A)*b
x =
-0.0571
0.7429
0.3429 -0.1143
5、求代数方程的数值解。

(1)03sin 0 1.5x x x e x +-==在附近的根
function f=fz(x)
f=3*x-sin(x*pi/180)-exp(x)
fzero('fz',-1.5)
ans =
0.6287
(2)在给定的初值0001,1,1x y z ===下,求方程组的数值解。

2sin ln 703231050y x y z x z x y z ⎧++-=⎪+-+=⎨⎪++-=⎩
function F=myfun (X) x=X(1);
y=X(2);
z=X(3);
F(1)=sin(x)+y^2+log(z)-7;
F(2)=3*x+2^y-3*z+1;
F(3)=x+y+z-5;
X=fsolve('myfun',[1,1,1],optimset('Display', 'off')) X = 0.2136 2.4359 2.3505
6、求函数在指定区间的极值。

(1)()3cos log x
x x x x f x e ++=在(0,1)内的最小值。

function f=f(x)
f=(x^3+cos(x)+x+x*log(x))/exp(x);
[x,fval]=fminbnd(f,0,1)
(2)()321,21121222410f x x x x x x x x =+-+在[0,
0]附近的最小值点和最小值。

function fxy(u)
x=u(1);
y=u(2);
f=2.*x.^2-6.*x.*y+y.^2;
[U,fmin]=fminsearch('fxy',[0,0])
7、求微分方程的数值解,并绘制解的曲线。

()()22'500000xd y dy y dx dx y y ⎧-+=⎪⎪⎪=⎨⎪=⎪⎪⎩
function dy=vdp5(x,y)
dy=zeros(2,1)
dy(1)=y(2)
dy(2)=5*y(2)/x-y(1)/x
[X,Y]=ode23('vdp5',[0,100],[0,0]);
plot(X,Y(:,1),'-')
8、求微分方程组的数值解,并绘制解的曲线。

()()()'1'213'3121230.5100,01,01y yy y y y y y y y y y ⎧=⎪=-⎪⎨=-⎪⎪===⎩
function dy=rigid(t,y)
dy=zeros(3,1);
dy(1)=y(2)*y(3);
dy(3)=-0.51*y(1)*y(2);
[T,Y]=ode45('rigid',[0,20],[0,1,1]);
plot(T,Y(:,1),'-',T,Y(:,2),'+',T,Y(:,3),'*')。

相关文档
最新文档