PNP三极管和NPN三极管的区别
三极管npn和pnp的知识

三极管npn和pnp的知识三极管是一种重要的电子器件,常用于电子电路中的放大、开关等功能。
它分为npn型和pnp型两种基本类型。
我们来了解一下npn型三极管。
npn型三极管由两个n型材料夹持一个p型材料组成,其中n型材料称为发射极,另一个n型材料称为集电极,p型材料则称为基极。
npn型三极管的工作原理是:当发射极与基极之间施加正向电压时,使得基极处于正向偏置状态,此时发射极与基极之间的结电容会发生反向偏置,从而导致电流通过发射极流入基极。
当发射极与集电极之间施加正向电压时,形成一个电子注,电流从发射极注入到基极,再从基极注入到集电极,实现了电流的放大。
因此,npn型三极管可以用作放大器、开关等电路中的关键元件。
接下来,我们来了解一下pnp型三极管。
pnp型三极管由两个p 型材料夹持一个n型材料组成,其中p型材料称为发射极,另一个p型材料称为集电极,n型材料则称为基极。
pnp型三极管的工作原理与npn型三极管相反。
当发射极与基极之间施加负向电压时,使得基极处于负向偏置状态,此时发射极与基极之间的结电容会发生正向偏置,从而导致电流通过发射极流入基极。
当发射极与集电极之间施加负向电压时,形成一个电子注,电流从集电极注入到基极,再从基极注入到发射极,实现了电流的放大。
因此,pnp型三极管也可以用作放大器、开关等电路中的关键元件。
虽然npn型和pnp型三极管的工作原理相反,但它们的基本结构和特性相似。
三极管的放大功能主要依靠其特殊的结构和工作原理来实现。
在放大器电路中,三极管可以将输入信号的能量放大到输出端,实现信号的放大。
在开关电路中,三极管可以控制电流的开关状态,实现电路的开关功能。
除了放大和开关功能外,三极管还具有其他一些特点。
例如,三极管的输出电流与输入电流之间存在一定的比例关系,这个比例关系称为电流放大倍数。
电流放大倍数越大,三极管的放大效果越好。
此外,三极管还具有输入电阻和输出电阻的特性,输入电阻决定了输入信号对三极管的影响程度,输出电阻决定了三极管输出信号的稳定性。
如何判断pnp还是npn

如何判断pnp还是npn
可以通过以下几种方法来判断pnp还是npn:
1.外观区分法:首先PNP型贴片三极管的外壳要比NPN(D882)型外壳高得多,另外NPN型贴片三极管外壳有一个突出的标记,其次PNP型贴片三极管的2号和3号引脚是P极接高电位,NPN型贴片三极管的2号和3号引脚是N极,接低电位,也就是两者的引脚是刚好相反的。
2.万能电表区分法:将电表的红表笔连接贴片三极管的某一个引脚,黑表笔先后分别连接另外两个引脚便可以检测出两个电阻值,若两个电阻值都小于几百欧,进行第二步测试,将红黑表笔对调,重复测试一次,若测出电阻值很大,则说明这是PNP型贴片三极管,如果不满足上述情况,那说明这是NPN型贴片三极管。
3.箭头朝内PNP:导通电压顺箭头过,电压导通,电流控制。
三级管的用法特点:对于PNP而言,e极电压只要高于b级0.7V以上,这个三极管e级和c级之间就可以顺利导通。
也就是说,控制端在b 和e之间,被控端是e和c之间。
同理,NPN型三极管的导通电压是b极比e极高0.7V,总之是箭头的始端比末端高0.7V就可以导通三极管的e极和c极。
4.箭头是指EB小控制电流的方向:当小电流从B(基极)流至E(发射极)时(B为+,E为-),大电流开始从C至E流动。
流动时只能是单方向(C为+,E为-),有像二极管的整流作用。
对于NPN:当小电流从B(基极)流至E(发射极)时(B为+,E为-),
大电流开始从C至E流动。
流动时只能是单方向(C为+,E为-),有像二极管的整流作用。
通过以上方法可以判断出pnp还是npn。
NPN型三极管和PNP型的区别

1.PNP型晶体管PNP晶体管是另一种类型晶体管。
它的工作原理和NPN晶体管相似,只是在基区运动并放大信号的多数载流子是空穴而不是电子。
PNP晶体管的发射结要正偏,基区的电压要比发射区的电压要高,而集电极要是多数载流子空穴通过,集电区的电压要比基区的要低。
这一点和NPN晶体管的极间电位正好相反。
在双极模拟集成电路中要应用NPN-PNP互补设计以及某些偏置电路极性的要求,需要引入PNP结构的晶体管。
如横向PNP管广泛应用于有源负载、电平位移等电路中。
它的制作可与普通的NPN管同时进行,不需附加工序。
在横向PNP管中,发射区注入的少子(空穴)在基区中流动的方向与衬底平行,故称为横向PNP 管。
纵向PNP管其结构以P型衬底作集电区,集电极从浓硼隔离槽引出。
N型外延层作基区,用硼扩散作发射区。
由于其集电极与衬底相通,在电路中总是接在最低电位处,这使它的使用场合受到了限制,在运放中通常只能作为输出级或输出缓冲级使用。
2.Plug and Play在PnP技术出现之前,中断和I/O端口的分配是由人手工进行的,您想要这块声卡占用中断5,就找一个小跳线在卡上标着中断5的针脚上一插。
这样的操作需要用户了解中断和I/O端口的知识,并且能够自己分配中断地址而不发生冲突,对普通用户提出这样的要求是不切实际的。
PnP技术就是用来解决这个问题的,PnP技术将自动找到一个不冲突的中断和I/O地址分配给外部设备,而完全不需要人工干预。
但是如果您读懂了上面关于中断冲突的那一部分,您就应该了解,在中断资源非常紧张的今天,即使是PnP技术,也不一定能找到一个合适的中断分配给您刚刚插入的设备,所以尽量释放那些没有必要的中断,对PnP正常工作也是很有帮助的。
有些PnP冲突来源于主板的设计。
许多主板上有一个AGP插槽、五个PCI插槽和两个ISA插槽,而其中的AGP插槽一般是和一个PCI插槽共用一个中断的,也就是这两个槽的中断可以是合理的任何值,但必须是相同的,当您在AGP槽上插了显示卡,如果您还在同中断的PCI槽上插了一块声卡的话,就一定会产生中断冲突。
NPN和PNP的使用总结

NPN和PNP的使用总结首先,NPN和PNP晶体管都是三极管,它们都由三个控制接线(基极,发射极和集电极)组成。
它们的主要区别在于掺杂类型和电流方向。
NPN晶体管的基区是由p型半导体材料构成的,发射极是由n型半导体材料构成的,而集电极是由p型半导体材料构成的。
NPN晶体管的电流方向是从发射极流向基极,再流向集电极。
PNP晶体管的基区是由n型半导体材料构成的,发射极是由p型半导体材料构成的,而集电极是由n型半导体材料构成的。
PNP晶体管的电流方向是从基极流向发射极,再流向集电极。
1.放大器:NPN和PNP晶体管都可以用作放大器,用于增强电信号的强度。
通过在基极上施加小的输入信号,可以控制从发射极到集电极的较大输出电流。
这使得晶体管可以放大输入信号。
2.开关:晶体管可以用作开关,可以控制电路中的电流流动。
通过在基极上施加适当的电压,可以打开或关闭电路。
这种开关功能在许多电子设备中广泛使用。
3.指示器:晶体管可以用作指示器,用于显示电流或电压的值。
通过在基极上施加电压,可以控制发射极和集电极之间的电流流动。
可以通过适当的电流来显示所需的数值。
1.极性:NPN和PNP晶体管具有不同的极性。
在使用之前,请确保正确连接和极性。
2.电压和电流:根据晶体管的规格,检查电压和电流的限制。
确保输入和输出电流不超过晶体管的额定值。
3.温度:晶体管的工作温度也是一个重要因素。
过高的温度可能会导致晶体管的损坏或失效。
确保适当的散热和温度管理。
总的来说,NPN和PNP晶体管是电子设备中常见的元件。
它们在放大器、开关和指示器中起着重要的作用。
在使用NPN和PNP晶体管时,必须注意正确的极性、电压和电流限制以及适当的温度管理。
希望上述总结对您有所帮助。
PNP与NPN三极管的区别

2个PN结的方向不一致。
PNP是共阴极,即两个PN结的N结相连做为基极,另两个P结分别做集电极和发射极;电路图里标示为箭头朝内的三极管。
NPN则相反。
接近开关NPN和PNP区别先要搞清楚PNP、NPN 表示的意思是什么。
P表示正、N表示负。
PNP表示平时为高电位,信号到来时信号为负。
NPN表示平时为低电位,信号到来时信号为高电位输出.接近开关和光电开关只是检测电路不同输出相同。
至于PLC接线,一般用NPN的较多。
但多数的日本的PLC有日本型、世界型、和通用型。
进入中国的多数为世界型和通用型。
可直接用NPN 型。
接近开关和光电开关的电源正端接电源正、负接公共端、输出接PLC的输入端。
PLC的输入类型是分漏式和源式的,前者指的是正信号输入(可直接用PNP),后者指的是负信号输入(可直接用NPN),否则必须用继电器转换后输入。
传感器的型式不一而足,不过一般用得最多的是两线跟三线的,两线的跟负载串联。
三线的多为开集极输出,三根线分别为正负电源和输出晶体管的集电极。
传感器的NPN和PNP 是根据输出晶体管的型号来的。
NPN的负载是接在正电源与集电极之间,而PNP是接在集电极与负电源之间的。
要用万用表来判断传感器的型号,需要先给它一个负载,再根据它的输出电压来判断。
PNP与NPN型传感器根本的区别在哪?PNP与NPN型传感器其实就是利用三极管的饱和和截止,输出两种状态,属于开关型传感器。
但输出信号是截然相反的,即高电平和低电平。
NPN输出是低电平0,PNP输出的是高电平1。
PNP与NPN型传感器(开关型)分为六类:1、NPN-NO(常开型)2、NPN-NC(常闭型)3、NPN-NC+NO(常开、常闭共有型)4、PNP-NO(常开型)5、PNP-NC(常闭型)6、PNP-NC+NO(常开、常闭共有型)PNP与NPN型传感器一般有三条引出线,即电源线VCC、0V线,out信号输出线。
1、PNP类PNP是指当有信号触发时,信号输出线out和电源线VCC连接,相当于输出高电平的电源线。
NPN与PNP的区别及工作原理

NPN和PNP作为开关管的设计技巧以及全系列三极管参数1.1 NPN与PNP的区别NPN和PNP主要是电流方向和电压正负不同。
NPN是用B—E的电流(IB)控制C—E的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC>VB>VE。
PNP是用E—B的电流(IB)控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC<VB<VE。
1.2 NPN和PNP作为开关的使用三极管做开关时,工作在截至和饱和两个状态。
一般是通过控制三极管的基极电压Ub来控制三极管的导通与断开。
NPN型 PNP型图1 NPN与PNP如上图1所示,对于NPN来说,使Ube<Uon,三极管断开,Ube>Uon,三极管导通,其中一般Ue接地,则只需控制Ub,使Ub>Uon即可使之导通。
对于PNP来说,使Ueb<Uon,三极管断开,Ueb>Uon,三极管导通,其中一般Uc 接地,所以要使三极管导通既要控制Ue又要控制Ub使Ueb>Uon才行。
所以一般是Ue为某个固定电压值,只通过控制Ub来就可以控制三极管的导通与断开。
对比NPN与PNP可知:NPN做开关时,适合放在电路的接地端使用,如图2里面Q6; PNP做开关时,适合放在电路的电源端使用,如图3。
我们一般使用芯片I/O口来控制LED灯,I/O口的逻辑电平一般为高电平3 V左右,低电平为0.3V左右。
因此可以直接控制NPN管开关,如图2里面的Q6;一般不直接控制PNP管,如图3。
我们前控板设计LED的控制电路采用如下图2的NPN三极管对地较为合适,并且双色灯最好是使用共阳双色灯。
以双色灯的控制为例,如下图2所示图2 双色灯的控制图2中Q6,Q4是放在发光二极管的接地端只需要Ub>0.7V即可导通。
图3 电源的控制图3中Q35就放在电源端,E为固定12V,只需控制B极来导通三极管。
以下是普遍用法:NPN基极高电压,集电极与发射极短路.低电压,集电极与发射极开路.也就是不工作。
pnp与npn两种三极管的使用方法

一、pnp与npn三极管的基本概念1.1 pnp三极管的结构与工作原理1.2 npn三极管的结构与工作原理二、pnp与npn三极管的区别与特点2.1 区别2.2 特点三、pnp与npn三极管的电路应用3.1 作为开关使用3.2 作为放大器使用四、pnp与npn三极管的选型与参数4.1 选型原则4.2 参数分析五、pnp与npn三极管的实际应用案例分析5.1 电子设备中的应用5.2 工业控制系统中的应用六、pnp与npn三极管的维护与保养6.1 清洁6.2 热管理七、结语一、pnp与npn三极管的基本概念1.1 pnp三极管的结构与工作原理pnp三极管是一种双曲线型的双极性器件,由两个n型半导体夹在一个p型半导体之间构成。
当基极电流为零时,集电极与发射极之间的电流也为零。
当基极电流为正值时,电子注入基极,使得基极变为p型区域内的少子载流子,从而增加电流。
1.2 npn三极管的结构与工作原理npn三极管由两个p型半导体夹在一个n型半导体之间构成。
当基极电流为零时,集电极与发射极之间的电流也为零。
当基极电流为正值时,空穴注入基极,使得基极变为n型区域内的少子载流子,从而增加电流。
二、pnp与npn三极管的区别与特点2.1 区别pnp三极管和npn三极管最大的区别在于它们的导电方向。
在pnp 三极管中,电流流动方向是从基极到发射极,而在npn三极管中,电流流动方向是从基极到集电极。
另外,pnp三极管的导通电流是由电子传导,而npn三极管的导通电流是由空穴传导。
这些区别决定了它们在电路中的应用方式也有所不同。
2.2 特点pnp三极管的电流增大时,电压下降,适合于低电压高电流的应用场景,而npn三极管则相反,适合于高电压低电流的应用场景。
这是由于它们的导通方式和电压极性有关。
三、pnp与npn三极管的电路应用3.1 作为开关使用pnp和npn三极管都可以用作电子开关。
在pnp三极管的开关电路中,当基极电压大于发射极时,pnp三极管导通;而在npn三极管的开关电路中,当基极电压大于集电极时,npn三极管导通。
NPN与PNP的区别

一.PNP与NPN 晶体管的检测方法NPN和PNP主要就是电流方向和电压正负不同,说得“专业”一点,就是“极性”问题。
方法一:鉴别基极B将数字万用表拨至二极管档,红表笔固定任接某个引脚,用黑表笔依次接触另外两个引脚,如果两次显示值均小于1V或都显示溢出符号“1”,则红表笔所接的引脚就是基极B。
如果在两次测试中,一次显示值小于1V,另一次显示溢出符号“1”,表明红表笔接的引脚不是基极B,此时应改换其他引脚重新测量,直到找出基极B为止。
区分NPN管与PNP管使用数字万用表的二极管档。
按上述操作确认基极B之后,将红表笔接基极B,用黑表笔先后接触其他两个引脚。
如果都显示0.500~0.800V,则被测管属于NPN型;若两次都显示溢出符号“1”,则表明被测管属于PNP管。
方法二:判定基极。
用万用表R×100或R×1k挡测量管子三个电极中每两个极之间的正、反向电阻值。
当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。
这时,要注意万用表表笔的极性,如果红表笔接的是基极b。
黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测管子为PNP型三极管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN型管如9013,9014,9018。
小注:使用数字万用表的二极管档测量二极管的正向压降,这时读数的单位是mV。
例如,用该档检测2AP3型二极管的正向压降,显示为“352”,即表示352mV或0.352V(此管为锗管)。
用该档检测IN4007型二极管时,正向显示为“509”,即表示正向压降为509mV或0.509V (此管为硅管)。
数字万用表的二极管档,还可以用来检测电路是否短路。
二、常见三极管之——9013 、 90129013三极管9013是一种NPN型硅小功率的三极管它是非常常见的晶体三极管,在收音机以及各种放大电路中经常看到它,应用范围很广,它是NPN型小功率三极管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NPN和PNP主要就是电流方向和电压正负不同,说得“专业”一点,就是“极性”问题。
NPN 是用B→E 的电流(IB)控制C→E 的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即 VC > VB > VE
PNP 是用E→B 的电流(IB)控制E→C 的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即 VC < VB < VE
总之 VB 一般都是在中间,VC 和 VE 在两边,这跟通常的 BJT 符号中的位置是一致的,你可以利用这个帮助你的形象思维和记忆。
而且BJT的各极之间虽然不是纯电阻,但电压方向和电流方向同样是一致的,不会出现电流从低电位处流行高电位的情况。
如今流行的电路图画法,通常习惯“男上女下”,哦不对,“阳上阴下”,也就是“正电源在上负电源在下”。
那NPN电路中,E 最终都是接到地板(直接或间接),C 最终都是接到天花板(直接或间接)。
PNP电路则相反,C 最终都是接到地板(直接或间接),E 最终都是接到天花板(直接或间接)。
这也是为了满足上面的VC 和 VE的关系。
一般的电路中,有了NPN的,你就可以按“上下对称交换”的方法得到 PNP 的版本。
无论何时,只要满足上面的6个“极性”关系(4个电流方向和2个电压不等式),BJT电路就可能正常工作。
当然,要保证正常工作,还必须保证这些电压、电流满足一些进一步的定量条件,即所谓“工作点”条件。
对于NPN电路:
对于共射组态,可以粗略理解为把VE当作“固定”参考点,通过控制VB来控制VBE(VBE=VB-VE),从而控制IB,并进一步控制IC(从电位更高的地方流进C极,你也可以把C极看作朝上的进水的漏斗)。
对于共基组态,可以理解为把VB当作固定参考点,通过控制VE来控制VBE(VBE=VB-VE),从而控制IB,并进一步控制IC。
如果所需的输出信号不是电流形式,而是电压形式,这时就在 C 极加一个电阻 RC,把 IC 变成电压 IC*RC。
但为满足 VC>VE, RC 另一端不接地,而接正电源。
而且纯粹从BJT本身角度,而不考虑输入信号从哪里来,共射组态和共基组态其实很相似,反正都是控制VBE,只不过一个“固定” VE,改变VB,一个固定VB,改变VE。
对于共射组态,没有“固定参考点”了,可以理解为利用VBE随IC或
IE变化较小的特性,使得不论输出电流IE怎么变化(当然也有个限度),VE 基本上始终跟随VB变化(VE=VB-VBE),VB升高,VE也升高,VB降低,VE也降低,这就是电压跟随器的名称的由来。
PNP电路跟NPN是对称的,例如:
对于共射组态,可以粗略理解为把VE当作“固定”参考点,通过控制VB来控制VEB(VEB=VE-VB),从而控制IB,并进一步控制IC(从C极流向电位更低的地方,你也可以把C极看作朝下的出水管)。
对于共基组态,可以理解为把VB当作固定参考点,通过控制VE来控制VEB(VEB=VE-VB),从而控制IB,并进一步控制IC。
……
上面所有的VE的“固定”二字都加了引号。
因为E点有时是串联负反馈的引入点,这时VE也是变化的,但这个变化是反馈信号,即由VB变化这个因造成的果。
NPN管的共射放大电路
PNP管的放大电路,
PNP放大电路原理和NPN放大电路原理相同,只是电源极性、偏置电流方向与NPN电路相反而已
注意此处集电极接的是-6V的电源。