航空发动机轴承总结知识分享

合集下载

轴承常识知识点总结

轴承常识知识点总结

轴承常识知识点总结第一部分:轴承的基本概念一、轴承的定义及作用轴承是一种用于支撑和转动轴的机械元件,可以减小摩擦力和支撑轴的负载,使得轴的转动更加顺畅。

它们被广泛应用于各种设备和机械中,包括汽车、火车、船舶、风力发电机、工业机械等。

轴承分为滚动轴承和滑动轴承两种类型。

滚动轴承利用滚动体(如球体、柱形体等)在内、外圈之间滚动,减小了摩擦力;而滑动轴承则是通过表面之间的滑动来支撑轴和减小摩擦力。

二、轴承的结构和组成轴承基本由内圈、外圈、滚动体和保持架组成。

内圈和外圈是由高强度的钢材或铸铁制成,滚动体可以是滚珠、滚柱、针形、圆锥形等各种形状,保持架则是用于保持滚动体的位置。

不同类型的轴承结构有所不同,但基本都遵循这个组成原理。

第二部分:轴承的使用和维护一、轴承的选择在选择轴承时,需要考虑轴承的负载能力、转速、工作环境、使用寿命、准确度等因素。

根据具体的使用要求选择适合的轴承类型和规格,以保证设备的正常运转和长期稳定工作。

二、轴承的安装和拆卸轴承的安装和拆卸需要特殊的工具和技术,以免损坏轴承和设备。

在安装时需要保证轴承和座孔的配合良好,不得有偏差和变形;在拆卸时需要注意避免撞击和扭转。

三、轴承的润滑轴承需要定期添加润滑脂或润滑油以减小摩擦力和保持滚动体的良好状态。

不同的使用条件和工作环境需要选择不同种类的润滑脂或润滑油,并且需要定期更换和补充。

四、轴承的维护和保养定期检查轴承的磨损情况、润滑状态、轴承座的磨损情况等,及时更换磨损严重的轴承和座孔,保持轴承和设备的正常运转及延长使用寿命。

第三部分:轴承的故障检测与处理一、轴承的故障类型轴承常见的故障类型包括磨损、脱脂、锈蚀、过热、噪音等。

这些故障会导致轴承的失效和设备的停机,所以需要及时检测并进行处理。

二、轴承的故障检测轴承的故障检测包括通过观察、听声、测温、振动等方式进行。

运用这些方法可以帮助我们确定轴承是否存在故障,并确定故障的具体类型和位置。

三、轴承的故障处理根据轴承的故障类型和原因,选择合适的处理方法进行处理。

航空发动机的推力轴承工作原理精选文档

航空发动机的推力轴承工作原理精选文档

航空发动机的推力轴承工作原理精选文档一、引言航空发动机的推力轴承是确保发动机推力传递和工作平稳的重要部件之一。

本文档将介绍航空发动机的推力轴承的工作原理,并为读者提供一些精选的文献资料,以便更深入地了解和研究。

二、推力轴承的工作原理推力轴承主要用于承受发动机的推力,并使推力传递到发动机支架和机身上。

它承受的载荷非常大,同时需要保证发动机的运转平稳。

推力轴承通常采用滚动摩擦的原理工作,以减小摩擦损失和提高轴承的寿命。

推力轴承的工作原理可以简单概括为以下几个方面:1. 主轴承载荷传递:推力轴承通过外环和内环的滚动体,将发动机的推力传递到机身上,实现推力的平稳传递。

2. 摩擦减小:推力轴承采用滚动摩擦的原理,相比于滑动摩擦,可以减小摩擦力和能量损失,提高轴承的效率。

3. 轴向稳定性:推力轴承通过设计合理的结构和使用高质量的材料,保证轴向的稳定性,防止发动机的振动和杂音。

三、精选文献资料推荐1. "Aircraft Engine Thrust Bearings: Design, Development and Performance Evaluation" - 本文献详细介绍了航空发动机推力轴承的设计、开发和性能评估,对航空发动机领域的研究者和工程师具有重要参考价值。

"Aircraft Engine Thrust Bearings: Design, Development and Performance Evaluation" - 本文献详细介绍了航空发动机推力轴承的设计、开发和性能评估,对航空发动机领域的研究者和工程师具有重要参考价值。

2. "Thrust Bearing Design for Aero Engines" - 该文献对航空发动机的推力轴承设计方案进行了深入研究,涵盖了材料选择、结构设计和工艺要点等关键内容。

"Thrust Bearing Design for Aero Engines" - 该文献对航空发动机的推力轴承设计方案进行了深入研究,涵盖了材料选择、结构设计和工艺要点等关键内容。

某型航空发动机止推轴承故障分析与处理

某型航空发动机止推轴承故障分析与处理

某型航空发动机止推轴承故障分析与处理引言航空发动机由于其特殊的工作环境和复杂的工作过程,容易出现各种故障。

本文将针对某型航空发动机的止推轴承故障进行分析与处理,以期对类似问题的解决提供一定的参考。

一、故障现象某型航空发动机在运行过程中出现了止推轴承故障的现象,具体表现为轴承温度和振动值超过正常工作范围,同时发动机噪音也明显增大。

这些异常信号都可以通过发动机的传感器进行监测和记录。

二、故障原因止推轴承故障的主要原因是由于轴承润滑不良和磨损引起的。

在航空发动机工作时,轴承承受着巨大的载荷和高速旋转的惯性力,如果轴承润滑不良,会导致摩擦增加,从而使轴承温度升高,并且会在摩擦面产生金属磨粒,进一步加剧轴承磨损。

而轴承润滑不良的原因主要有以下几个方面:1. 润滑油质量不合格。

航空发动机的润滑油具有一定的规格要求,如果使用的润滑油质量不合格,会导致润滑效果不佳。

3. 润滑系统故障。

润滑系统是航空发动机正常工作的关键部件之一,如果润滑系统出现故障,例如润滑油泵失效或管道堵塞等,都会导致轴承润滑不良。

除了润滑不良外,轴承的磨损也是导致止推轴承故障的原因之一。

磨损的主要原因包括:1. 轴承装配不当。

轴承在装配时,需要按照一定的工艺要求进行操作,如果装配不当,例如过紧或者过松,都会导致轴承磨损。

2. 砂粒进入轴承。

航空发动机在使用过程中,由于工作环境复杂,有时会导致砂粒进入轴承内部,破坏润滑体系,引起轴承磨损。

三、故障处理对于止推轴承故障,需要通过以下几个步骤进行处理:1. 检查润滑系统。

首先要检查润滑系统是否正常工作,包括润滑油泵是否正常运转,油管是否畅通,油品是否符合规定要求等。

3. 检查轴承装配。

检查轴承的装配是否合理,包括轴承的间隙是否适当,是否有过紧或过松的现象,如果发现问题,需要进行调整或更换。

4. 清洗轴承。

如果发现轴承内有砂粒或金属磨粒,需要及时进行清洗,以保证轴承的正常工作。

5. 监测和记录。

在处理完止推轴承故障后,需要对发动机进行监测和记录,观察轴承温度、振动和噪音等数据,以确保发动机的正常运行。

某型航空发动机止推轴承故障分析与处理

某型航空发动机止推轴承故障分析与处理

某型航空发动机止推轴承故障分析与处理随着航空工业的不断发展,航空发动机在现代飞机上的作用越来越重要,其运行状态直接关系到航空飞行的安全和稳定性。

航空发动机止推轴承作为发动机的重要部件之一,其工作状态的稳定性和可靠性至关重要。

本文旨在探究某型航空发动机止推轴承故障的原因及其处理方法。

1.故障现象某型航空发动机的止推轴承在使用中出现了严重的震动和噪声。

起火后检查发现,止推轴承的内外径之间的间隙有所增加,并且表面出现了磨损和烧伤的现象。

同时,止推轴承的滚针也有被磨损的情况。

2.故障原因(1)止推轴承的过度负荷止推轴承在工作时,承受的轴向负荷较大,一旦受到过大的轴向负荷,会导致轴承出现变形或者断裂,从而使其失去正常的运行能力。

随着使用时间的增长,止推轴承的表面会逐渐磨损,其间隙也会逐渐增大。

如果不及时更换,将会加剧轴承的磨损程度,最终导致轴承失效。

(3)止推轴承的润滑不良止推轴承在工作时需要充分的润滑才能保持正常的工作状态。

如果由于润滑不良导致轴承摩擦产生过多的热量,将会加剧轴承的磨损程度,从而影响航空发动机的运行稳定性。

(4)设计缺陷某型航空发动机止推轴承的设计存在一定程度的缺陷,如轴向负荷分布不均匀等。

这将导致轴承的磨损增加,最终影响其工作状态的稳定性。

3.故障处理(1)加强轴承润滑在轴承的工作中,充分的润滑是确保轴承工作稳定的关键。

因此,可以在轴承的表面涂上一层润滑油或者脂类物质,以减少摩擦和磨损。

(2)对轴承进行定期保养航空发动机止推轴承属于易损部件,因此在日常使用中一定要加强对其的检查和保养。

例如,需要定期检查轴承表面的平整度、孔径尺寸以及清洗轴承内部的灰尘和杂物,保持其干净和整洁.(3)改进轴承的设计通过改进轴承的设计,调整负荷平衡,使得轴承承受的负荷更为均衡,减少轴向负荷对轴承的损害,从而减少轴承的磨损和失效的可能性。

(4)进行故障预测可以利用振动信号采集设备对轴承进行实时监测,并通过振动分析算法预测轴承失效的可能性,及时采取维护措施,提高轴承的可靠性和可用性。

航空发动机轴承可靠性及动刚度研究

航空发动机轴承可靠性及动刚度研究
4.3喷管润滑
该润滑方式在轴承之间的润滑中较为常用。因轴承之间轴承的内圈和外圈同时进行旋转,不能设置喷嘴,所以上述润滑方式都是不适用的。虽然环下润滑也能适应这种情况,但如果实际条件不满足,则需将喷嘴对准和轴线保持平行的油管。该润滑方式的润滑油流动较为困难,且穿透力也有待提升。所以其润滑和冷却往往不够充分,导致表面变成黑色,降低轴承的硬度。对此,需要在设计上给予重视:首先,适当增加喷射量;其次,增加管径,使内壁保持光滑,提高油路的通畅性;最后,采用具有较高耐热性的合金材料。
(2)根据弹流润滑基本理论,对轴承油墨厚度及刚度与其特性进行分析,掌握各载荷参数造成的影响及其规律。对油膜刚度与接触刚度进行整合,通过推导得出轴承本身综合刚度,并提出等效刚度这一概念与相应的计算方法。
(3)充分考虑径向游隙以及滚珠等造成的影响,修正轴承疲劳寿命定量计算方法。通过研究可知,滚珠会对轴承的疲劳寿命造成影响,如果在计算过程中没有充分考虑滚珠这一因素,将对计算结果造成影响,产生很大的偏差[2]。
2轴承可靠性
(1)根据拟动力学理论与有限元方法,构建轴承的数学模型,对轴承载荷实际分布情况和特性进行研究,分析各结构参数及载荷参数造成的影响,包括轴承最大转速、接触刚度数值、接触角及变形情况。这两种方法得到的结果和通过实验得到的成果大体相同,但各具优势,对于有限元法,它具有较高的计算精度,而对于拟动力学法,则具有较高的计算效率。
1轴承结构与特点
在航空发动机中,主轴承一般选用以下几种结构:短圆柱滚子式与双半内圈角接触球式。其中,前者具有很高的精度,对延长轴承使用寿命有利;和外圈之间存在很大相对轴向位移,能有效补偿由于温度变化产生的膨胀差;后者可以承受很大载荷,同也能承受径向上的载荷。主要分三点与四点接触两种,三点接触的轴向游隙相对较大,在非载的轴向游隙则较小,同时轴向窜动可以达到最小,有较大的摩擦发热量,但高速性能相对较差[1]。

轴承相关知识点总结大全

轴承相关知识点总结大全

轴承相关知识点总结大全一、轴承的分类1.按照受力方式的不同,轴承可以分为滑动轴承和滚动轴承。

滑动轴承依靠滑动摩擦起支撑作用,适用于低速高负荷场合。

主要包括轴套轴承、滑动滚动轴承和滑动叠加轴承。

滚动轴承则通过滚动摩擦实现旋转支撑,适用于高速轴转和精密传动装置。

主要包括深沟球轴承、圆锥滚子轴承、角接触球轴承等。

2.按照结构形式的不同,轴承可以分为分离式轴承和非分离式轴承。

分离式轴承的内外圈可分离,易于安装和维修,并且能够承受径向和轴向双向载荷。

包括圆锥滚子轴承、圆柱滚子轴承等。

非分离式轴承的内外圈一体,结构简单,适用于受力方向固定的场合。

包括深沟球轴承、角接触球轴承等。

3.按照用途的不同,轴承可分为汽车轴承、机械轴承、轨道车辆轴承、电气机械专用轴承等。

二、轴承的结构轴承一般由内圈、外圈、保持架和滚动体等组成。

其结构形式多种多样,适用于不同的机械转动部件。

1.内圈:内圈是轴承的内环,通常安装在主轴上,用于支撑和定位。

其外径与滚动体接触,内径与主轴配合。

2.外圈:外圈是轴承的外环,一般安装在机壳上。

其内径与滚动体接触,外径则与机壳配合。

3.滚动体:滚动体是轴承内外圈之间的滚动接触元件,包括滚珠、滚柱、滚子等。

其作用是减小摩擦力,传递旋转力。

4.保持架:保持架用于固定轴承内外圈和滚动体,保持合适的间隙。

其作用是分开滚动体,减小摩擦和损伤。

5.密封圈:密封圈用于封闭轴承内部空间,防止灰尘、水分和污染物的进入,延长轴承使用寿命。

三、轴承的工作原理轴承在机械设备中起着连接和支撑作用,能够减小机械转动时的摩擦力,并传递旋转力。

其工作原理主要包括摩擦、滚动和润滑。

1.摩擦:轴承内外圈和滚动体之间的接触面形成摩擦力。

在轴承使用过程中,摩擦力会引起能量损耗和热量产生。

2.滚动:轴承的滚动体能够通过滚动接触减小摩擦力,降低摩擦系数,并且分散力量,保证轴承的平稳运行。

3.润滑:轴承内部需要适量的润滑油或润滑脂来减小摩擦和磨损,降低能量损耗,延长轴承使用寿命。

轴承知识点总结大全

轴承知识点总结大全

轴承知识点总结大全一、轴承的概念和分类1. 轴承的概念轴承是一种用于支撑和减少机械部件之间摩擦的装置,通常由内、外圈和滚动体组成。

它能在旋转或直线运动过程中传递载荷和支撑旋转轴。

2. 轴承的分类(1) 滚动轴承:分为滚动体轴承和滑块轴承,滚动体轴承由滚动体和轴承座两部分组成,常见的有球轴承、圆锥滚子轴承、圆柱滚子轴承和自调心轴承等。

(2) 滑动轴承:滑动轴承依靠滑块在轴承座内滑动以支承载荷,常见的有滑动胶片轴承、滑动材料轴承等。

二、轴承的工作原理1. 滚动轴承的工作原理滚动轴承通过滚动体在内外圈之间滚动,将滚动摩擦转化为滑动摩擦,从而减小摩擦损失,降低能量损耗,使轴承运转更加平稳。

2. 滑动轴承的工作原理滑动轴承依靠滑块在轴承座内滑动,通过表面间的滑动摩擦来支撑和传递载荷,从而减小摩擦损失,使轴承的运转更加平稳。

三、轴承的安装与维护1. 轴承的安装(1) 在安装轴承之前,应用洁净油布或棉纱把轴承座内外净,特别是在输送系统上,要特别注意;还需擦净附在轴承的深沟球和滚子上的油或其他污物。

要特别注意收放两端盖板时切勿损坏密封件。

这样都可以使轴承的密封性更好。

(2) 在安装轴承时,倘若黏涂润滑脂或油脂在安装前有所情况,应丢掉这部分脂或油,因此它们可能含有有害或渍染杂质。

调合油污,否则将导致轴承渐渐处于不适当的情况,并失真。

轴承上会润滑剂断层、化学裂化,或引起金属赛铬现象。

这样会大大降低轴承的寿命。

(3) 在选配轴承之前,最好先参考厂方以及翻译轴承各方面扉页拼装指南并应对这部分指南分明,特定型号的测量、胎造、圈化以及安装是比较重要的。

在特定型号的轴承课的脂必须究其有关文件,用热气被量切勿过量,而且前,在装有脂条轴承上加油必需由翻译接洽,切勿偷换;在特定型号的轴承中的充油必须严格按照这种种中指定散装油脂的量加入(4) 加油条轴承加油最好就地加油。

这将大大减少在输送系统上可供数据的信息引起的人为装错机。

加油时必需十分小心,引导表可供数要比规定数据小的地方,多加的油将排不尽,引起泡沫2. 轴承的维护(1) 使用时应确保轴承是在适当的温度和润滑条件下工作,以及防止外界污染物进入轴承内部。

航空发动机传动的“关节”:轴承

航空发动机传动的“关节”:轴承

航空发动机传动的“关节”:轴承(来源:中国航空新闻网)顾名思义,轴承就是给各种轴类结构(如转轴、心轴、传动轴)起支承作用的部件的总称。

从原理上说,轴承是把具有相对转动,或者允许有相对转动的两个部件之间联系在一起,以高效、平稳地实现支承作用。

轴承就像实现肢体运动的关节一样不可或缺,人们形象地把它比作机械系统的“关节”。

现代工业中,较为常见的轴承类型有滚动轴承、油膜轴承、电磁轴承、气浮轴承等(如图1)。

图1 几种常见的轴承值得指出的是,轴承的雏形很早就已经形成了。

在没有大型动力设备的古代社会,人们为了移动大型石料,通常在其底部放置若干圆木,推动石料,利用圆木的滚动实现石料的前移。

这种朴素的思想所蕴含的基本道理与现代滚动轴承的设计初衷是一致的。

文艺复兴时期伟大的画家和科学家达·芬奇就在绘制的手稿中展示过他所构想的轴承(如图2)。

可以看出,这种设计与现代滚动轴承的结构非常接近。

图2 达·芬奇绘制的轴承手稿随着近代工业文明的到来,轴承迎来了发展历史上的春天。

巨大的需求推动着轴承技术高歌猛进,也成就了轴承工业的蓬勃发展。

单就滚动轴承而言,种类繁多,甚至可以用眼花缭乱来形容。

它的体量跨度很大,大者直径可达数米(如图3),小则只有借助放大镜才能完成装配过程;它的转速范围很宽,从静止到每分钟上百万转的转速都可以运转自如;它的应用范围很广,天上的飞机、火箭,地面的汽车、轮船,地下开掘隧道的盾构机等都离不开它,其踪迹可谓“上穷碧落下黄泉”。

图3 大型球面滚子轴承通常来说,滚动轴承由滚动体、保持架、内滚道和外滚道组成。

此外,为了防止润滑油的泄漏和污染,密封圈也是很多滚动轴承都会配装的零件。

根据滚动体、保持架、内滚道、外滚道的结构形状、材料、装配形式等的不同,滚动轴承可以进行不同的分类。

比如,以滚动体的结构形状进行分类,滚动轴承可以分为:深沟球轴承、角接触球轴承、圆柱滚子轴承、球面滚子轴承、圆锥滚子轴承和推力圆锥滚子轴承等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 在无环下润滑的情况下,也可将喷嘴直接对准与轴线平行 的油管喷入润滑油
喷管润滑的特点
• 种润滑方式, 油流动困难, 穿透力极差。因 此轴承润滑冷却一般不很充分, 表面常常出 现颜色变黑, 甚至硬度下降。
• 这种润滑方式在设计上要引起特别注意: 第一, 要适当加大喷嘴喷射流量;第二,输油 管直径加大, 内壁光滑, 保证油流通畅;第 三, 轴承材料要采用高温耐热合金。
航空发动机主轴轴承的结构分析
• 轴承的结构形式:
1双半内圈角接触球轴承 ---分为三点接触型和四点接触型
2短圆柱滚子轴承 3成对双联有预载荷角接触球轴承 4轴承套圈带安装边及设置油孔、油沟 • 航发主轴承所选用的结构型式主要有短圆柱滚子
轴承(承受径向载荷) 和双半内圈角接触球轴承 (承受两个方向的轴向载荷)
环下润滑
• 适应高DN值轴承润滑冷却 的需要。
• 所谓环下润滑就是滑油经 轴承内圈上的径向孔、槽 进入轴承,即从轴承内环 下部向轴承供油, 而不像喷 射润滑由轴承端面直接喷 入轴承。
• 环下润滑结构基本由两部 分组成, 即集油部和输油部 。
环下润滑的特点
• 突出优点是能使轴承温度普通降低, 特别是内圈工 作温度在各种工作条件下均比外圈低, 从而对轴承 内部间隙控制更为有利, 并能有效地防止高速轻载 下内圈打滑蹭伤故障。
轴承腔结构及汽油两相流
轴承腔内润滑油两相均匀流动的速度分布情况
• 润滑油在入口处出现漩涡现 象,其原因在于润滑油喷射 到轴承腔内时,由于轴承保 持架的阻碍作用,一部分油 流发生回流, 润滑油在轴承 腔内也产生回流,腔内回流 的润滑油如果在轴承腔内停 留的时间过长,将会导致轴 承腔过热;如果停留时间过 短,则可能造成润滑不够充 分,形成一定的油流缺损区, 导致“空转”现象发生,从 而加剧轴承磨损。
• 失效造成的直接结果是温度升高、振动加 大或振动状态发生轴承失效的监测
• 轴承温度的监测,一般把温度传感器贴近轴承外 圈。轴承温度变化是缓慢过程, 对轴承早期轻微的 失效不敏感, 只有轴承已发生较严重的失效时, 轴 承温升才会发生较急剧变化。
• 振动监测,分为对轴系的监测和对机体振动加速 度的监测。轴系振动信号是最直接反映轴承运转 状态及失效的信号, 轴承失效可以立即引起振动状 态变化。
航空发动机轴承总结
航空轴承失效
---通过统计分析,发动机主轴轴承的失效模式大致分15种类别
• 1划伤、擦伤;2磨损;3轻载打滑;4锈蚀;5偏磨、 载荷轨迹下移;6压坑、撞伤;7疲劳剥落;8电流 侵蚀;9保持架变形;10裂纹;11保持架银层脱落; 12两极磨损猫眼圈;13受热变色;14尺寸胀大或 缩小;15振纹。
• 系统功率消耗也是反映轴承运转状态及失效的重 要参数。当被试轴承发生故障或失效, 必然引起电 机输出功率的增大。
轴承的润滑与冷却方式
喷射润滑
• 喷射润滑的方法有 多种单喷嘴, 双向 单喷嘴, 多喷嘴等
• 研究表明, 当润滑 油对准保持架与内 环引导面之间时, 轴承温度最低。
• 喷射润滑对高DN 值工作的轴承,润滑 效果不好。
(2)基于弹流润滑理论,研究了滚动轴承的最小油膜厚度 和油膜刚度特性,分析了不同载荷参数对它们的影响规律。 将油膜刚度和接触刚度组合,推导了滚动轴承的综合刚度, 提出了滚动轴承等效刚度的概念和计算方法。
(3)考虑滚珠和径向游隙等因素的影响,对滚动轴承疲劳 寿命的计算公式进行了修正。研究表明:滚珠对轴承疲劳 寿命有一定影响,不考虑滚珠影响会使计算结果偏高。
差。
• 成对双联有预载荷角接触球轴承
能提高轴承部件刚性,提高轴承的运转精度,并能减少 噪声、振动,从而提高了轴承寿命。
• 轴承套圈带安装边及设置油孔、油沟
轴承套圈上油孔、油沟的设置,起到既润滑又冷却的
作用。
国外航发主轴承最主要的结构特点如下:
• ⑴采用外圈带各种形状法兰盘的异形结构, 内圈的相应部位上设有油孔或油槽;角接触 球轴承接触角较大,不选用成对双联角接触 球轴承。
轴承特点
• 双半内圈角接触球轴承
能承受较大的双向推力载荷,也可承受一定的径向载荷。
四点接触型:轴向游隙小, 轴向窜动最小,摩擦发热量大, 高速性能不好。三点接触型:轴向游隙较大,非载荷半内 圈上可能产生附加接触,高速性能较好。
• 短圆柱滚子轴承
提高轴承的旋转精度,有利于轴承寿命的提高;相对外 圈可有较大的轴向位移, 可以补偿温度变化引起的热膨胀
• ⑵为了克服旋滚比造成的不利影响,常取内 沟曲率系数f i 大于外沟曲率系数f o 。
• ⑶保持架突出套圈端面且带挡油边;内径上 开有油槽或油孔,利于润滑油的流通。
• ⑷滚子素线主要选用修正形和对数曲线形。
• ⑸轴承多为内引导,且间隙较小。
航空发动机高速滚动轴承的力学特性分析
(1)分别采用拟动力学法和有限元法,建立了滚动轴承力 学分析模型,研究了滚动轴承的载荷分布特性,分析了不 同结构参数和载荷参数对其接触角、变形、接触刚度和极 限转速的影响规律。两种算法所得结果与实验结果基本一 致,有限元法在计算精度方面具有优势,而拟动力学法在 计算效率方面具有优势。
• 其次, 由于滑油流路合理, 滑油利用率高。喷射润 滑只有70%滑油可被利用, 而环下润滑在结构设计 合理的情况下, 可达80%以上, 最高可达95%。
• 同时, 这种结构使搅拌损失大大降低, 减少功率损 耗, 并且降低了滑油中污物对轴承损坏的机率。
• 适应高DN值轴承润滑冷却的需要。
喷管润滑
• 这种润滑方式主要用于轴间轴承润滑。由于轴间轴承内、 外圈同时旋转, 无法安装喷嘴, 故不能实施喷射润滑或环下 润滑。
(4)在Hertz 接触理论和轴承运动学的基础 上,推导了滚动轴承非线性轴承力,建立 了滚动轴承非线性振动的分析模型,研究 了滚动轴承变刚度振动、表面波纹度对系 统动力特性的影响规律。研究表明:滚动 轴承的非线性轴承力会诱发变刚度振动; 通过适当地选取转速、阻尼、游隙和径向 力等参数,可以降低滚动轴承系统的非周 期振动;由几何缺陷引起的滚动轴承波纹 度,是导致轴承系统振动的主要因素之一。
相关文档
最新文档