岩石弹塑性本构关系

合集下载

岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。

关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。

即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。

尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。

第一章岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。

岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。

岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。

正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。

归纳起来,岩土材料有3点基本特性:1.摩擦特性。

2.多相特性。

3.双强度特性。

另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。

4.土体的塑性变形依赖于应力路径。

对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。

固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。

岩石本构关系

岩石本构关系


x x

yx y

zx z

fx

0

xy x

y y

zy zfy源自0
xz
x

yz y

z z

fz

0
3.2.2 几何方程 1、平面问题的几何方程

x


u x

y


v y

xy


v x

u y
2、空间问题的几何方程(柯西方程)
x

u x
y

v y

z

w z

xy

v x

u y

yz

w y

v z

zx

w x

u z
3.2.3 物理方程(弹性本构关系)
1、研究背景:
(1)各种岩土工程,无一不和时间因素有关;
(2)是岩石力学的重要研究内容之一;
(3)存在的问题尚多,理论与实验研究仍有 待进一步加强。
3.3 岩石的流变特性
弹性(可恢复)
岩 与时间无关的变形
塑性(不恢复)


蠕变

与时间有关的—流变 松弛
岩石的时间效应
弹性后效
流变的概念
矿山岩体力学
华北科技学院 安全工程学院
2019/12/11
1
上次课内容
岩石的变形性质
岩石的变形有弹性变形、塑性变形和粘性变形三种.

岩土工程中的弹塑性理论与分析技术

岩土工程中的弹塑性理论与分析技术

岩土工程中的弹塑性理论与分析技术岩土工程中的弹塑性理论与分析技术是研究岩土材料在受力作用下的弹性和塑性变形特性的理论和方法。

这些理论和技术在岩土工程设计、施工和监测中具有重要的应用价值。

本文将从弹塑性理论的基本概念、应用范围以及分析技术的具体方法等方面进行阐述。

弹塑性理论是研究岩土材料在受力作用下的弹性和塑性变形特性的理论。

弹性是指岩土材料在受力作用下能够恢复原状的能力,而塑性是指岩土材料在受力作用下会发生不可逆的变形。

弹塑性理论的基本假设是岩土材料在受力作用下是具有弹塑性的,并且可以通过一定的数学模型来描述其力学行为。

岩土工程中的弹塑性理论主要包括弹性理论、弹塑性理论和塑性理论。

弹性理论是最基本的弹塑性理论,它假设岩土材料在受力作用下只发生弹性变形,而不发生塑性变形。

弹塑性理论则是在弹性理论的基础上引入了塑性变形的概念,它假设岩土材料在受力作用下既可以发生弹性变形,也可以发生塑性变形。

塑性理论则是假设岩土材料在受力作用下只发生塑性变形,而不发生弹性变形。

在岩土工程中,弹塑性理论的应用范围非常广泛。

首先,弹塑性理论可以用于岩土工程设计中的荷载和变形计算。

通过建立合适的弹塑性模型,可以对岩土体在受力作用下的变形和破坏进行合理预测,从而指导工程设计和施工。

其次,弹塑性理论可以用于岩土体力学性质的试验研究。

通过对岩土体在不同应力状态下的弹塑性行为进行试验研究,可以获取岩土材料的力学参数,为岩土工程的设计和施工提供可靠的依据。

此外,弹塑性理论还可以用于岩土体的动力响应分析、岩土体的稳定性分析等方面。

在岩土工程中,弹塑性分析技术是基于弹塑性理论的具体计算方法。

弹塑性分析技术主要包括弹塑性有限元分析、弹塑性强度折减法、弹塑性反分析等方法。

弹塑性有限元分析是一种基于有限元法的弹塑性分析方法,通过建立合适的有限元模型和弹塑性本构关系,可以对岩土体在受力作用下的变形和破坏进行数值模拟。

弹塑性强度折减法是一种基于强度折减原理的弹塑性分析方法,通过将岩土体的强度参数按照一定的折减系数进行计算,可以对岩土体在受力作用下的变形和破坏进行估计。

岩石本构模型.

岩石本构模型.

岩石本构模型.岩石材料本构模型建立方法一、岩石本构模型的定义岩石本构关系是指岩石在外力作用下应力或应力速率与其应变或应变速率的关系。

岩石变形性质为弹塑性或粘弹塑性变形,变形性质主要通过本构关系来反映,本构关系,即研究弹塑性或粘弹塑性本构关系。

岩石是一种非均匀的各向异性的材料,内含微裂纹,有时还有宏观的缺陷如裂纹、空穴、甚至节理等。

对这些缺陷存在且材料对缺陷敏感时往往容易发生事故。

脆性材料不同于韧性材料,对缺陷十分敏感。

由于岩石结构非均质和非连续的复杂性,到目前为止,还没有一个统一成熟的岩石力学本构关系。

研究岩石本构关系的方法,概括起来主要有以下两种:(1)唯象学方法①用实验或断裂理论研究岩石的破坏准则。

其基本点是假设在强度极限以前岩石本构关系可以近似用线性关系描述;②塑性力学,流变力学及损伤力学方法。

塑性力学有经典和广义塑性力学两部分。

经典塑性力学理论主要适用于金属材料,广义塑性理论适用于岩石材料。

内时理论和流变力学在描述岩石时效方面的特性中发挥重要作用。

损伤力学是以微观裂纹为出发点来深入研究介质的力学形态,及基础是内变量理论。

(2)物理力学机理方面岩石在初始状态下呈现微观缺陷,在本构理论中必须考虑其影响。

依据一定的细观或微观力学机理,建立细观或微观力学模型,并借助于一定的宏观力学方法以建立宏观本构关系。

建立岩石本构关系一般通过两个途径:①利用岩石单轴或三轴试验获得的应力应变曲线,通过数理统计的回归方法建立本构方程;②在实验观察的基础上,提出某种基本假设,从而建立一个力学模型,并推导出相应的本构方程。

二、岩石的本构关系分类本构关系分类以下三类:①弹性本构关系:线性弹性、非线性弹性本构关系。

②弹塑性本构关系:各向同性、各向异性本构关系。

③流变本构关系:岩石产生流变时的本构关系。

流变性是指如果外界条件不变,应变或应力随时间而变化的性质。

2.1 岩石弹性本构关系1. 平面弹性本构关系2. 空间问题弹性本构关系2.2 岩石塑性本构关系塑性状态时,应力-应变关系是多值的,取决于材料性质和加-卸载历史。

岩土工程中的弹塑性理论与分析技术

岩土工程中的弹塑性理论与分析技术

岩土工程中的弹塑性理论与分析技术岩土工程是研究土体和岩石力学行为以及相关工程问题的学科。

在岩土工程中,土体和岩石常常会受到外力的作用,从而产生弹性变形和塑性变形。

弹性变形是指在加载或卸载外力后,土体和岩石能够恢复到原始形状的能力。

而塑性变形是指土体和岩石在加载或卸载外力后,无法完全恢复原始形状的能力。

为了研究土体和岩石在弹性和塑性阶段的力学特性,人们提出了弹塑性理论与分析技术。

弹塑性理论与分析技术是将弹性理论与塑性理论相结合,用于描述土体和岩石在受力过程中的力学行为。

弹塑性理论首先研究土体和岩石的弹性行为。

弹性是指土体和岩石在外力作用下,能够恢复到原始形状的能力。

弹性理论利用应力和应变的关系来描述土体和岩石的弹性行为。

常见的弹性理论有胡克定律、泊松比理论等。

这些理论可以用来计算土体和岩石的弹性应力、应变和变形。

然而,在实际的工程中,土体和岩石常常会出现塑性变形。

塑性变形是指土体和岩石在加载或卸载外力后,无法完全恢复原始形状的能力。

塑性行为涉及到土体和岩石内部颗粒的移动和变形,因此塑性变形的研究要比弹性变形复杂得多。

弹塑性理论与分析技术的目的就是要研究土体和岩石的弹塑性行为,并提供相应的分析方法。

弹塑性理论与分析技术的主要内容包括:1. 弹性塑性模型:弹塑性模型是描述土体和岩石在加载或卸载过程中的应力和应变关系的数学模型。

常见的模型有Cam-Clay模型、Mohr-Coulomb模型、Drucker-Prager模型等。

这些模型可以用来计算土体和岩石的应力应变状态,从而得到土体和岩石的强度参数和变形特性。

2.弹塑性本构关系:弹塑性本构关系是描述土体和岩石在受力过程中力学行为的数学方程。

本构关系可以用来计算土体和岩石的应力、应变和变形。

常见的本构关系有弹性本构关系、弹塑性本构关系等。

这些本构关系可以用来计算土体和岩石的弹性和塑性变形。

3.弹塑性分析方法:弹塑性分析方法可以用来计算土体和岩石的应力、应变和变形。

岩石弹塑性本构模型

岩石弹塑性本构模型

常温常压下岩石的典型应力-应变曲线
如图所示为一般岩石在普通室温和大气压条件下进行 的单轴压缩试验典型应力-应变曲线,曲线大致分为四 个区域:
第I阶段(OA段):应力-应变曲线上弯,即随着 变形的增加,产生同样大小的应变所需增加的应 力越来越大; 第II阶段(AB段):应力-应变曲线接近与直线, 它的斜率即为岩石的弹性模量E,B点对应的应力 称为弹性极限或屈服应力;
从弹性状态开始第一次屈服的屈服条件称初始屈服条 件,他可以表示为:
Hale Waihona Puke f ij 0当产生了塑性变形,屈服条件的形式发生变化,此时 的屈服条件称后继屈服条件,他可以表示为:
f
ij
,
p ij
,
0
其中,
p ij
D p ijkl kl
p
ij
d
p ij
=
p
ij
d
p ij
p
p ij
第IV阶段(CD段):出现应力降低、应变增加的现象, 称为应变软化。
岩石单轴压缩试验表明:
(1)在塑性状态,弹塑性材料具有历史相关性或路径 相关性,这使得本构方程的表述要比非线性弹性复杂;
(2)岩石体积应变和平均压力之间不是线性的,岩石 体积应变既有静水压力作用下的压缩体积应变,又有 受剪引起的塑性体积应变。在硬化阶段,压缩体积应 变是主要的,表现为岩石的体积压缩。而在软化阶段, 岩石的塑性体积应变不断增大,岩石体积膨胀,称为 剪胀现象;
ij
=
1+vs Es
ij
vs Es
kkij
和 ij
K
s
2 3
Gs
kk ij
2Gs sij
式中:Es是材料的割线杨氏模量;vs是割线泊松比;

第7章岩体本构关系与强度理论

第7章岩体本构关系与强度理论

σ σc
σ
利用图7-10中的关系,有:
σ3
1 2
(1 3)
1 2
(1


3)


ctg 2
sin 2

1.双向压7 缩应4力2圆,2.双向拉压应力圆,
3..双向拉伸应力圆 图7-10 二次抛物型强度包络线
其中:


n( t )


1 3 2
sin 2
(
1 3 )2 2


2

(
1


3
)
2
规定:
1、σ1为最大主应力 、σ2 为中间主应力、 σ3 为最小主应力 ;
2、压应力为正,拉应力为负,剪应力以逆时 针为正。位移与应变的规定也一样。
二、 岩石弹性本构关系 1.平面弹性本构关系
据广义虎克定理有:
成E/(1- μ 2) ,μ换成μ/(1- μ)。
2. 空间问题弹性本构方程
x

1 E
x

( y
z )

y

1 E
y

( z
x )

z

1 E
z

( x

y )


yz

2(1 E
) yz , zx
1
1 f f2
2
f

f
)
σ1
1 tan2 c
1 3tg 2 (45 / 2) 2ctg(45 / 2)
σc
arc( tan2 θ)

岩石本构关系

岩石本构关系
按应力求解时,变换基本方程和边界条件 为应力分量的函数,求出应力分量后,代 入弹性本构关系,求出应变分量,再代入 几何方程求出位移分量。
3.2.5 平面问题的求解
按位移求解时,变换基本方程和边界条件 为位移分量函数,求出位移分量后,代入 几何方程求出变形分量,再代入本构方程 求出应力分量。

v y

xy


v x

u y
2、空间问题的几何方程(柯西方程)
x

u x
y

v y

z

w z

xy

v x

u y

yz

w y

v z

zx

w x

u z
3.2.3 物理方程(弹性本构关系)
混合求解时,变换部分基本方程和边界条 件为只包含部分未知函数,先求出这部分 未知函数以后,再应用适当方程求出其他 的未知函数。
以上这些方法我们已在弹性力学中学习了 这里不再熬述。
3.3 岩石流变理论
岩石的变形不仅表现出弹性和塑性,而且也具有流 变性质,岩石的流变包括蠕变、松弛和弹性后效。
平衡微分方程

几何方程

物理方程或本构方程

结合边界条件

应力场解 位移场解
求解岩石力学问题的基本步骤图解
3.2.1 平衡微分方程 1、平面问题的平衡微分方程:

x
x

yx
y

fx

0


xy
x

y
y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环中是可逆的,因而
(ij i0j )diej 0
i0j
于是有:
W DW D p ( ij i0j)dip j 0 i0j
(3) 德鲁克塑性公设的重要推论
W DW D p ( ij i0j)dip j 0 i0j
W D(ij a diji0 j)dip j 0
1 a 1 2
当i0j ij时,略去无穷小量 (ij i0j)dijp 0
不再是从原点开始的射线,如图所示。
(1) 理想弹塑性材料的加载和卸载准则
理想弹塑性材料在应力空间中的屈服面位置和形状是不 变的,当应力点保持在屈服面上时称之为加载,这时塑性变 形可任意增长(后面将证明,各塑性应变分量之间的比例不 是任意的,需要满足一定的关系);当应力点从屈服面上改 变屈服面之内时称之为卸载。如果以F(σij)=0表示屈服面, 则可以把上述加载和卸载准则用数学形式表示如下:
岩石弹塑性本构关系
3.1 塑性位势理论流动法则
模型三要素
屈服条件 流动法则
硬化规律
判断何时 达到屈服
屈服后塑性应变 增量的方向,也 即各分量的比值
决定给定的应力 增量引起的塑性 应变增量大小
本节内容
3.1.1 加载与卸载准则
1 加载曲面(后继屈服面)
由单向拉伸试验知道,对理想塑性材料,一旦屈服以后,其 应力保持常值(屈服应力),卸载后再重新加载时其屈服应力的大 小也不改变(没有强化现象)。对于强化材料则不同,在开始屈服 之后,随着塑性变形的发展其应力值继续增加。卸载后再重新加 载至开始屈服的应力时材料并不屈服,要加到原来卸载开始时的 应力,材料才再次屈服,因此重新加载时的屈服应力要高于原始 加载时的屈服应力,这就是强化现象。
与简单应力状态相同,当材料在复杂应力状态下进入塑性后 卸载,然后再次加载时,屈服函数也会随着发生过的塑性变形历 史而有所改变。当应力分量满足某种关系时,材料将重新进入塑 性状态而产生新的塑性变形。这种现象称为强化。材料在初始屈 服后再次进入塑性状态时,应力分量间所必须满足的函数关系称 为后继屈服条件或加载条件。该条件在应力空间中的图形称为后 继屈服曲面或加载曲面。
2 简单加载和复杂加载
初始屈服曲面 x tx 0 ,y ty 0 ,z tz 0 ,x y tx 0 ,y z ty 0 ,z z x tz 0x
其中xo,y 0,z0,x0y,y 0z,z0x分别为某一定
σij0
dσij
值,t为由零开始的单调增函数。此时显 Σ' Σ 然Lode应力参数 保持不变,从而使应力
在应力循环中,外载所作的 功为:
W
d 0 i0j ij
ij
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
W 0 ij
iji0 j dij 0
由于弹性应变εije在应力循
化时,称之为卸载过程,如果用φ (σij,Hα)=0表示后继屈服
条件,则:
卸载:ddH
0 0
ij
dij
0
d
n
0
中性变载:ddH
0 0
ij
dij

ij
dij
0
d
n
0
应力空间
(3) 加工软化材料的加载和卸载准则
软化材料,应力变化矢量指向屈服面内部,须在应变空 间中判断加卸载
加载条件 ( ij , H ) 0
卸载:F(ij )
0,dF
F
ij
dij
0dn0
加载:F(ij
)
0,dF
F
ij
dij
=0dn
0
弹性状态:F(ij) 0
(2) 加工硬化材料的加载和卸载准则
加工硬化材料的屈服面随着塑性变形的发展而不断地变 化,加工硬化材料的加载和卸载准则与理想弹塑性材料不同, 对加工硬化材料,当dσ指向屈服面之外时才算加载,而当dσ 正好沿着屈服面变化时,屈服面不会发生变化,这种变化过 程叫做中性变载。它对应于应力状态从一个塑性状态过渡到 另一个塑性状态,但不会引起新的塑性变形。对单向应力状 态或理想弹塑性材料没有这个过程,当dσ向着屈服面内部变
O
张量(应力偏张量)的主方向保持不变,
这种加载方式称为简单加载或比例加载。 后继屈服曲面
在简单加载过程中,一点的应力状态在
(加载曲面)
应力空间中将沿矢径 移动,如图所示。
在复杂加载时,一点的应力张量各
分量不按比例增加, 在改变,应力张量
和应力偏张量的主方向也随之改变。一
点应力状态在应力空间中的运动轨迹就
设材料单元体经历任意应力历史后, 在应力σij0下处于平衡,即开始应力σij0在加 载面内,然后在单元体上缓慢地施加一个附 加力,使σij0达到σij,刚好在屈服面上,再继
续应加 变d载ε到ijpσ,ij+最dσ后ij,应在力这又一卸阶回段到,σij将0。产若生整塑个性
应力循环过程中,附加应力dσij所作的塑性 功不小于零,即附加应力的塑性功不出现负 值,则这种材料就是稳定的,这就是德鲁克 公设。
当i0j ij时, dijdipj 0
屈服面的外凸性
塑性应变增量方向 与加载曲面正交
1 屈服曲面的外凸性
(iji0 ) jdip j |A 0 A |d | p|co 0 s
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向
卸载:
ij
d ij
0




: ij
d

ij
0
加载:
ij
d ij
0
d d
d
应变空间
3.1.2 德鲁克塑性公设
• 稳定材料与非稳定材料 • 德鲁克塑性公设的表述 • 德鲁克公设的重要推论 • 德鲁克塑性公设的评述 • 依留申塑性公设的表述
(1) 稳定材料与非稳定材料
德鲁克公设和依留申公设是传统塑性力学的基础,它把塑性势函 数与屈服函数紧密联系在一起。德鲁克公设只适用于稳定材料, 而依留申既适用于稳定材料,又适用于不稳定材料。
稳定材料
非稳定材料
附加应力对附加应变做功 附加应力对附加应变负做 为非负,即有 0 功,即 0
(应变硬化和理想塑性材料)
(应变软化材料)
(2) 德鲁克塑性公设的表述
德鲁克公设可陈述为:对于处在某一状态下的稳定材 料的质点(试件),借助于一个外部作用在其原有应力状态 之上,缓慢地施加并卸除一组附加压力,在附加应力的施 加和卸除循环内,外部作用所作之功是非负的。
相关文档
最新文档