常用电子元器件检测方法模板
常用电子元器件的检验方法

常用电子元器件的检验方法
一、外观检查:
对电子元器件的外观进行检查,包括观察元器件是否有明显的外观缺陷,如裂纹、变形、氧化等。
还需要检查元器件的标识、标志、焊接等是否符合要求,是否有明显的灰尘、污渍等。
二、尺寸检查:
对电子元器件的尺寸进行检查,包括检查元器件的外观尺寸、引脚距离、引脚长度等是否符合规定。
还需要检查元器件的焊盘、焊接孔、孔径等是否符合要求,并且与其他组件的配合是否良好。
三、电性能检查:
对电子元器件的电性能进行检查,包括使用电阻表、电流表、电压表等仪器检测元器件的电阻、电流、电压等参数是否符合规定。
还可以使用示波器、频谱分析仪等仪器检测元器件的频率、波形、谐波等特性。
四、功能性能检查:
对电子元器件的功能性能进行检查,即检测元器件在实际使用条件下的工作情况是否正常。
可以通过将元器件连接到相应的电路中,进行电路的调试和测试,观察元器件的工作状态和效果是否符合要求。
五、可靠性测试:
对电子元器件的可靠性进行测试,包括温度试验、湿度试验、振动试验、冲击试验等。
通过在不同的环境条件下对元器件进行长时间的测试,观察元器件在不同环境下的工作情况,评估其可靠性和适应性。
以上是常用电子元器件的检验方法的一些基本内容,不同的元器件可能有不同的检验方法和要求,需要根据具体情况进行选择和应用。
在进行元器件检验时,需要使用合适的检测仪器和设备,正确操作并记录检测结果,以确保电子元器件的质量和性能符合要求。
常用电子元器件检测方法与技巧

常用电子元器件检测方法与技巧电子元器件是电子产品中不可或缺的重要组成部分,质量的好坏直接影响着电子产品的可靠性和性能。
因此,进行电子元器件的检测和筛选是非常重要的。
以下是一些常用的电子元器件检测方法与技巧。
电阻是电子元器件中最基本的元器件之一,常用的检测方法有以下几种:(1)万用表:使用万用表可以直接测量电阻值。
(2)曼昆电桥:曼昆电桥是一种精确测量电阻值的仪器。
在使用前需要进行校准,可以得到更加准确的测量结果。
(3)电子数码电阻:电子数码电阻可以通过按键设定电阻值,并且可以直接显示测得的电阻值,非常方便。
电容是常见的一种电子元器件,电容的检测方法与技巧如下所示:(1)万用表:万用表可以通过测量电容的充电和放电时间来测量电容值。
(2)LCR电表:LCR电表专门用于测量电容值,可以得到较为准确的测量结果。
(3)示波器:示波器可以通过测量电容在电路中的响应和充放电过程图像来判断电容的工作状态。
电感是储存电能并产生磁场的元器件,电感的检测方法与技巧如下所示:(1)万用表:万用表可以通过测量电感的自感电压和自感电流来测量电感值。
(2)示波器:示波器可以通过测量电感在电路中的响应和振荡频率来判断电感的工作状态。
(3)自制共振电路:可以利用自制共振电路来测量电感与频率之间的相关性,得到电感的近似值。
二极管和晶体管是常见的半导体元件,检测方法与技巧如下所示:(1)万用表:万用表可以通过在二极管或晶体管的两个引脚之间测量伏安值来判断其导通与否。
(2)示波器:示波器可以通过测量二极管或晶体管在电路中的响应和波形来判断其工作状态。
(3)特殊测试仪器:有专门的测试仪器可用于检测和测量二极管和晶体管的特性参数,如硅谷试验仪、光电替代样机等。
集成电路是现代电子产品中常用的元器件之一,检测方法和技巧如下所示:(1)观察外观:通过观察集成电路的外观,检查是否有损坏、锡垒或过热现象。
(2)测试电极:使用万用表测试集成电路的引脚之间的电阻或导通情况,以判断其工作状态。
常用电子元件检测方法

常用電子元件檢測方法電子元件檢測是一個重要的步驟,這有助於確定元件的可靠性和正確性。
電子元件可能會因為不斷的使用而變得老化,或者可能因為製造過程中產生了一些不完美的地方而出現故障。
在這種情況下,進行檢測可以幫助我們確定是哪種元件出現了問題,並且採取必要的措施來修復或更換它。
以下是一些常用的電子元件檢測方法。
1. 電感檢測:測試電感時需要使用一個簡單的LCR計或者是自制的LCR橋,這種計算機可以通過測量電感器的電感大小進行檢測。
將測試電源的一端連接到電感,另一端連接到LCR計或是自制的LCR橋,然後檢查讀數。
如果讀數顯示為0,那麼電感有可能损坏或過程中出現了問題。
2. 電阻檢測:電阻檢測通常可以使用標準的測試電表,首先將測試電源的一端連接到電阻,另一端連接到測試電表,然後觀察讀數。
如果本來期望的電阻值與實際讀數不符合,那麼可能是因為電阻器本身出現了故障。
3. 電容檢測:電容檢測通常使用簡單的LCR計或自制的LCR橋,電容的讀數可以進行檢測。
通過觀察讀數,可以確定電容是否確實工作。
4. 二極管檢測:二極管檢測需要使用導通測試儀。
將測試電源的一端連接到二極管的陰極,另一端連接到測試電表或導通測試儀,觀察LED的亮度或者聽取導通測試儀的提示聲。
如果LED不亮或者導通測試儀發出的提示聲不響,那麼二極管可能已經出現了故障。
5. 三極管檢測:三極管檢測使用同樣的方法,但是需要更複雜的儀器。
一般需要使用分壓電路和振盪器來進行檢測以評估三極管裝置的正確性。
總結起來,電子元件的檢測方法通常是基於對不同元件的瞭解進行的,並且需要使用各種不同的儀器和工具。
通過這些檢測方法,可以確定電子元件是否可靠和可用。
电子元器件检测方法

电子元器件检测方法一、外观检测外观检测是对电子元器件进行外观质量检查的过程。
主要针对元器件的包装、引脚、焊盘、引线等部分,检查是否有划痕、变形、断裂等物理损伤。
外观检测的方法包括裸眼检查、显微镜检查、红外线检查等。
1.裸眼检查:通过肉眼观察,检查元器件的外观是否完整,是否有明显损伤。
2.显微镜检查:利用显微镜放大镜头观察元器件的微观细节,检查元器件引脚的焊接质量,是否有焊接不良、翘曲等问题。
3.红外线检查:利用红外线照射元器件,观察红外线探测器是否能够发现元器件内部的热点,判断器件是否存在结构缺陷。
二、电性能测试电性能测试是对电子元器件的电学参数和特性进行测试和验证的过程。
主要包括直流电参数测试、交流电参数测试、参数拟合等。
1.直流电参数测试:测量电子元器件的直流电阻、电容、电感、导通电压等参数,常用的测试仪器包括示波器、万用表等。
2.交流电参数测试:测量电子元器件在交流电路中的参数,包括交流电阻、频率响应、相位差等参数,常用的测试仪器包括频谱仪、网络分析仪等。
3.参数拟合:通过实验测试得到的电性能数据,进行曲线拟合和参数提取,对元器件的电特性进行分析和评估。
三、可靠性测试可靠性测试是对电子元器件在长期使用和极端环境下的可靠性进行评估的过程。
主要包括温度循环测试、湿度试验、高温老化试验等。
1.温度循环测试:将电子元器件放置在不同温度条件下进行循环加热和冷却,观察其工作状态和性能变化,评估元器件在温度变化环境下的可靠性。
2.湿度试验:将电子元器件放置在高温高湿环境中,观察其工作状态和性能变化,评估元器件在潮湿环境下的可靠性。
3.高温老化试验:将电子元器件放置在高温环境中长时间工作,观察其工作状态和性能变化,评估元器件在高温长时间工作环境下的可靠性。
总结:。
常用电子元器件检测方法与经验

常用电子元器件检测方法与经验一、外观检测1.查看元器件外观是否有明显的磨损、损坏、锈蚀等情况。
2.检查元器件的引脚、焊盘等接触面是否平整、无异常。
3.视察印刷电路板(PCB)上的电子元器件是否有松动、倒装等情况。
二、尺寸检测1.使用卡尺等测量工具,测量元器件的长度、宽度、高度等尺寸是否符合规格要求。
2.检查元器件的引脚间距、焊盘间距是否符合设计标准。
3.测量交流电容元件的等效串联电阻ESR值,判断其合理性。
三、电性能检测1.使用万用表等测试仪器,检测电阻元件的电阻值是否符合标称值,并判断元件的精度。
2.测量电容元件的电容值、电阻值等参数,以及工作频率下的损耗因子D,来评估元件的性能。
3.使用示波器等测试仪器,检测电感元件的电感值和Q值,以及频率特性和损耗情况。
4.对于集成电路(IC)等复杂元件,可以使用特定测试设备,进行全面的功能性测试和质量评估。
四、环境适应性检测1.在不同的环境条件下,如温度、湿度、振动等,测试元器件的稳定性和可靠性。
2. 对于耐热元件,如电解电容、大功率电阻等,进行高温Aging测试,以评估其寿命和可靠性。
3.对于防护等级要求较高的元件,如开关、插座等,可以进行防水、防尘等的测试。
五、使用经验1.选择合适的元器件供应商,购买正规品牌和有品质保证的产品。
2.遵循元器件的使用说明书、技术规格书等,合理布局、焊接和安装元器件。
3.定期进行设备的维护与检修,预防元器件老化、损坏等问题的发生。
4.在使用过程中及时记录元器件故障和更换情况,以便后续的问题分析和改进。
总结起来,电子元器件的检测方法和经验需要结合具体的元器件种类和应用环境来进行,通过合理的检测手段和保养方式,来实现元器件的正确运行和延长其寿命。
常用电子元器件检测方法与经验下

常用电子元器件检测方法与经验下
一、热滑熔检测
热滑熔检测是传统的电子元器件检测方法,它的检测原理是利用多种
功能检测仪和锡丝热熔焊的方法,使用检测仪的元器件焊接到PCB主板上,使用特殊的焊锡球活动焊锡,以及其他特殊的射频应用,使用热滑熔检测
可以识别的电子元器件有芯片、电容、电阻、射频元件、存储器等。
热滑
熔检测是一种经过测试的单点检测方法,即用热滑熔检测仪对检测仪的元
器件进行测试,以确定元器件是否损坏。
二、测量检测
测量检测是检测电子元件最常用的方法之一,也是电子元器件最安全
的检测方法之一、测量检测基本上可以通过一台测量仪分析电子部件的特
性和数据,它可以检测出元件的位置、封装类型、频率,以及是否出现了
电性错误等。
测量检测也可以采用手工的方式,用万用表测量元件的电性
参数,以检验元件的正确性。
三、无损检测
无损检测是一种利用无损检测仪器快速、准确检测电子元件的方法,
例如利用超声波无损检测仪来检测元件,它可以快速检测出部件是否有损坏、有多少缺陷以及缺陷的位置等,可以大大提高电子元件的检测质量,
保证检测后的部件质量。
四、X-光检测。
电子元器件检验标准-范本模板

一、适用范围及检验方案
1、适用范围
本检验标准中所指电子元器件仅为PCBA上的贴片件或接插件,具体下表清单所示:
2、检验方案
2.1每批来料的抽检量(n)为5只,接收质量限(AQL)为:CR与MA=0,MI=(1,2),当来料少于5只时则
全检,且接收质量限CR、 MA与 MI=0。
2。
2来料检验项目=通用检验项目+差异检验项目,差异检验项目清单中未列出部件,按通用检验项目执行。
标示准确、清楚、无误
根据产品规格,用万用表分别测试BCE极,数据正常,且极性正确。
序号
物料类别
物料图示标准要求
检验方法
判定
水准24 光耦类
标识
产品应明确标示规格型号,且与BOM
表中内容一致;极性方向标示正确。
目视MI
性能
根据产品规格,用万用表R×1K档测
量发射管的正﹑反向电阻,接收管两
端的电阻值,以及接收管的集电极与
发射结正.反向电阻,均应符合技术规
格要求。
万用表CR 25 MOS管类
标识
产品应明确标示规格型号,且与BOM
表中内容一致。
目视MI
性能
根据产品规格,用万用表分别测试
GDS极,数据正常,且极性正确.
万用表CR 26 防雷管性能
万用表选“Ω”档测防雷管两端的电
阻值应为开路(数字不变化)
万用表CR 27 IGBT
结构用PCB、散热片试装,应满足装配检测工装CR
性能
根据产品规格,用万用
表分别测试GDS极,数
据正常,且极性正确。
万用表CR。
常用电子元件检测方法

常用电子元件检测方法常用电子元器件检测方法与经验元器件的检测是家电维修的一项基本功如何准确有效地检测元器件的相关参数判断元器件的是否正常不是一件千篇一律的事必须根据不同的元器件采用不同的方法从而判断元器件的正常与否特别对初学者来说熟练掌握常用元器件的检测方法和经验很有必要以下对常用电子元器件的检测经验和方法进行介绍供对考一电阻器的检测方法与经验1固定电阻器的检测A将两表笔(不分正负)分别与电阻的两端引脚相接即可测出实际电阻值为了提高测量精度应根据被测电阻标称值的大小来选择量程由于欧姆挡刻度的非线性关系它的中间一段分度较为精细因此应使指针指示值尽可能落到刻度的中段位置即全刻度起始的2080弧度范围内以使测量更准确根据电阻误差等级不同读数与标称阻值之间分别允许有510或20的误差如不相符超出误差范围则说明该电阻值变值了B注意测试时特别是在测几十k以上阻值的电阻时手不要触及表笔和电阻的导电部分被检测的电阻从电路中焊下来至少要焊开一个头以免电路中的其他元件对测试产生影响造成测量误差色环电阻的阻值虽然能以色环标志来确定但在使用时最好还是用万用表测试一下其实际阻值2水泥电阻的检测检测水泥电阻的方法及注意事项与检测普通固定电阻完全相同3熔断电阻器的检测在电路中当熔断电阻器熔断开路后可根据经验作出判断若发现熔断电阻器表面发黑或烧焦可断定是其负荷过重通过它的电流超过额定值很多倍所致如果其表面无任何痕迹而开路则表明流过的电流刚好等于或稍大于其额定熔断值对于表面无任何痕迹的熔断电阻器好坏的判断可借助万用表R1挡来测量为保证测量准确应将熔断电阻器一端从电路上焊下若测得的阻值为无穷大则说明此熔断电阻器已失效开路若测得的阻值与标称值相差甚远表明电阻变值也不宜再使用在维修实践中发现也有少数熔断电阻器在电路中被击穿短路的现象检测时也应予以注意4电位器的检测检查电位器时首先要转动旋柄看看旋柄转动是否平滑开关是否灵活开关通断时喀哒声是否清脆并听一听电位器内部接触点和电检测时用万用表R1挡具体可分两步操作A常温检测(室内温度接近25)将两表笔接触PTC热敏电阻的两引脚测出其实际阻值并与标称阻值相对比二者相差在2内即为正常实际阻值若与标称阻值相差过大则说明其性能不良或已损坏B加温检测在常温测试正常的基础上即可进行第二步测试加温检测将一热源(例如电烙铁)靠近PTC热敏电阻对其加热同时用万用表监测其电阻值是否随温度的升高而增大如是说明热敏电阻正常若阻值无变化说明其性能变劣不能继续使用注意不要使热源与PTC 热敏电阻靠得过近或直接接触热敏电阻以防止将其烫坏6负温度系数热敏电阻(NTC)的检测(1)测量标称电阻值Rt用万用表测量NTC热敏电阻的方法与测量普通固定电阻的方法相同即根据 NTC 热敏电阻的标称阻值选择合适的电阻挡可直接测出Rt的实际值但因NTC热敏电阻对温度很敏感故测试时应注意以下几点ARt是生产厂家在环境温度为25时所测得的所以用万用表测量Rt时亦应在环境温度接近25时进行以保证测试的可信度B测量功率不得超过规定值以免电流热效应引起测量误差阻体摩擦的声音如有沙沙声说明质量不好用万用表测试时先根据被测电位器阻值的大小选择好万用表的合适电阻挡位然后可按下述方法进行检测 A用万用表的欧姆挡测12两端其读数应为电位器的标称阻值如万用表的指针不动或阻值相差很多则表明该电位器已损坏B检测电位器的活动臂与电阻片的接触是否良好用万用表的欧姆档测12(或23)两端将电位器的转轴按逆时针方向旋至接近关的位置这时电阻值越小越好再顺时针慢慢旋转轴柄电阻值应逐渐增大表头中的指针应平稳移动当轴柄旋至极端位置3时阻值应接近电位器的标称值如万用表的指针在电位器的轴柄转动过程中有跳动现象说明活动触点有接触不良的故障 5正温度系数热敏电阻(PTC)的检测C注意正确操作测试时不要用手捏住热敏电阻体以防止人体温度对测试产生影响(2)估测温度系数t先在室温t1下测得电阻值Rt1再用电烙铁作热源靠近热敏电阻Rt测出电阻值RT2同时用温度计测出此时热敏电阻RT表面的平均温度t2再进行计算 7压敏电阻的检测用万用表的R1k挡测量压敏电阻两引脚之间的正反向绝缘电阻均为无穷大否则说明漏电流大若所测电阻很小说明压敏电阻已损坏不能使用8光敏电阻的检测A用一黑纸片将光敏电阻的透光窗口遮住此时万用表的指针基本保持不动阻值接近无穷大此值越大说明光敏电阻性能越好若此值很小或接近为零说明光敏电阻已烧穿损坏不能再继续使用B将一光源对准光敏电阻的透光窗口此时万用表的指针应有较大幅度的摆动阻值明显减小此值越小说明光敏电阻性能越好若此值很大甚至无穷大表明光敏电阻内部开路损坏也不能再继续使用C将光敏电阻透光窗口对准入射光线用小黑纸片在光敏电阻的遮光窗上部晃动使其间断受光此时万用表指针应随黑纸片的晃动而左右摆动如果万用表指针始终停在某一位置不随纸片晃动而摆动说明光敏电阻的光敏材料已经损坏二电容器的检测方法与经验1固定电容器的检测A检测10pF以下的小电容因10pF以下的固定电容器容量太小用万用表进行测量只能定性的检查其是否有漏电内部短路或击穿现象测量时可选用万用表R10k挡用两表笔分别任意接电容的两个引脚阻值应为无穷大若测出阻值(指针向右摆动)为零则说明电容漏电损坏或内部击穿B检测10PF0.01F固定电容器是否有充电现象进而判断其好坏万用表选用 R1k 挡两只三极管的值均为100以上且穿透电流要小可选用3DG6等型号硅三极管组成复合管万用表的红和黑表笔分别与复合管的发射极e和集电极c相接由于复合三极管的放大作用把被测电容的充放电过程予以放大使万用表指针摆幅度加大从而便于观察应注意的是在测试操作时特别是在测较小容量的电容时要反复调换被测电容引脚接触AB两点才能明显地看到万用表指针的摆动C 对于0.01F以上的固定电容可用万用表的R10k挡直接测试电容器有无充电过程以及有无内部短路或漏电并可根据指针向右摆动的幅度大小估计出电容器的容量2电解电容器的检测A因为电解电容的容量较一般固定电容大得多所以测量时应针对不同容量选用合适的量程根据经验一般情况下147F间的电容可用R1k挡测量大于47F的电容可用R100挡测量B将万用表红表笔接负极黑表笔接正极在刚接触的瞬间万用表指针即向右偏转较大偏度(对于同一电阻挡容量越大摆幅越大)接着逐渐向左回转直到左右等各个方向推动时转轴不应有松动的现象停在某一位置此时的阻值便是电解电容的正向漏电阻此值略大于反向漏电阻实际使用经验表明电解电容的漏电阻一般应在几百k以上否则将不能正常工作在测试中若正向反向均无充电的现象即表针不动则说明容量消失或内部测出各绕组的空载电压值(U21U22U23U24)应符合要求值允许误差范围一般为高压绕组10低压绕组5带中心抽头的两组对称绕组的电压差应 2G一般小功率电源变压器允许温升为4050如果所用绝缘材料质量较好允许温升还可提高H检测判别各绕组的同名端在使用电源变压器时有时为了得到所需的次级电压可将两个或多个次级绕组串联起来使用采用串联法使用电源变压器时参加串联的各绕组的同名端必须正确连接不能搞错否则变压器不能正常工作I.电源变压器短路性故障的综合检测判别电源变压器发生短路性故障后的主要症状是发热严重和次级绕组输出电压失常通常线圈内部匝间短路点越多短路电流就越大而变压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用电子元器件检测方法电子技术实用知识( .6.1由朱昌平在网上收集)常见电子元器件检测方法元器件的检测是家电维修的一项基本功, 如何准确有效地检测元器件的相关参数, 判断元器件的是否正常, 不是一件千篇一律的事, 必须根据不同的元器件采用不同的方法, 从而判断元器件的正常与否。
特别对初学者来说, 熟练掌握常见元器件的检测方法和经验很有必要, 以下对常见电子元器件的检测经验和方法进行介绍供对考。
一、电阻器的检测方法:1固定电阻器的检测。
A将两表笔(不分正负)分别与电阻的两端引脚相接即可测出实际电阻值。
为了提高测量精度, 应根据被测电阻标称值的大小来选择量程。
由于欧姆挡刻度的非线性关系, 它的中间一段分度较为精细, 因此应使指针指示值尽可能落到刻度的中段位置, 即全刻度起始的20%~80%弧度范围内, 以使测量更准确。
根据电阻误差等级不同。
读数与标称阻值之间分别允许有±5%、 ±10%或±20%的误差。
如不相符, 超出误差范围, 则说明该电阻值变值了。
B注意: 测试时, 特别是在测几十kΩ以上阻值的电阻时, 手不要触及表笔和电阻的导电部分; 被检测的电阻从电路中焊下来, 至少要焊开一个头, 以免电路中的其它元件对测试产生影响, 造成测量误差; 色环电阻的阻值虽然能以色环标志来确定, 但在使用时最好还是用万用表测试一下其实际阻值。
2水泥电阻的检测。
检测水泥电阻的方法及注意事项与检测普通固定电阻完全相同。
3熔断电阻器的检测。
在电路中, 当熔断电阻器熔断开路后, 可根据经验作出判断: 若发现熔断电阻器表面发黑或烧焦, 可断定是其负荷过重, 经过它的电流超过额定值很多倍所致; 如果其表面无任何痕迹而开路, 则表明流过的电流刚好等于或稍大于其额定熔断值。
对于表面无任何痕迹的熔断电阻器好坏的判断, 可借助万用表R×1挡来测量, 为保证测量准确, 应将熔断电阻器一端从电路上焊下。
若测得的阻值为无穷大, 则说明此熔断电阻器已失效开路, 若测得的阻值与标称值相差甚远, 表明电阻变值, 也不宜再使用。
在维修实践中发现, 也有少数熔断电阻器在电路中被击穿短路的现象, 检测时也应予以注意。
4电位器的检测。
检查电位器时, 首先要转动旋柄, 看看旋柄转动是否平滑, 开关是否灵活, 开关通、断时”喀哒”声是否清脆, 并听一听电位器内部接触点和电阻体摩擦的声音, 如有”沙沙”声, 说明质量不好。
用万用表测试时, 先根据被测电位器阻值的大小, 选择好万用表的合适电阻挡位, 然后可按下述方法进行检测。
A用万用表的欧姆挡测”1”、”2”两端, 其读数应为电位器的标称阻值, 如万用表的指针不动或阻值相差很多, 则表明该电位器已损坏。
B检测电位器的活动臂与电阻片的接触是否良好。
用万用表的欧姆档测”1”、”2”(或”2”、”3”)两端, 将电位器的转轴按逆时针方向旋至接近”关”的位置, 这时电阻值越小越好。
再顺时针慢慢旋转轴柄, 电阻值应逐渐增大, 表头中的指针应平稳移动。
当轴柄旋至极端位置”3”时, 阻值应接近电位器的标称值。
如万用表的指针在电位器的轴柄转动过程中有跳动现象, 说明活动触点有接触不良的故障。
5正温度系数热敏电阻(PTC)的检测。
检测时, 用万用表R×1挡, 具体可分两步操作: A常温检测(室内温度接近25℃);将两表笔接触PTC热敏电阻的两引脚测出其实际阻值, 并与标称阻值相对比, 二者相差在±2Ω内即为正常。
实际阻值若与标称阻值相差过大, 则说明其性能不良或已损坏。
B加温检测; 在常温测试正常的基础上, 即可进行第二步测试—加温检测, 将一热源(例如电烙铁)靠近PTC热敏电阻对其加热, 同时用万用表监测其电阻值是否随温度的升高而增大, 如是, 说明热敏电阻正常, 若阻值无变化, 说明其性能变劣, 不能继续使用。
注意不要使热源与PTC热敏电阻靠得过近或直接接触热敏电阻, 以防止将其烫坏。
6负温度系数热敏电阻(NTC)的检测。
(1)、测量标称电阻值Rt用万用表测量NTC热敏电阻的方法与测量普通固定电阻的方法相同, 即根据NTC热敏电阻的标称阻值选择合适的电阻挡可直接测出Rt的实际值。
但因NTC热敏电阻对温度很敏感, 故测试时应注意以下几点: A Rt是生产厂家在环境温度为25℃时所测得的, 因此用万用表测量Rt时, 亦应在环境温度接近25℃时进行, 以保证测试的可信度。
B测量功率不得超过规定值, 以免电流热效应引起测量误差。
C注意正确操作。
测试时, 不要用手捏住热敏电阻体, 以防止人体温度对测试产生影响。
(2)、估测温度系数αt先在室温t1下测得电阻值Rt1, 再用电烙铁作热源, 靠近热敏电阻Rt, 测出电阻值RT2, 同时用温度计测出此时热敏电阻RT 表面的平均温度t2再进行计算。
7压敏电阻的检测。
用万用表的R×1k挡测量压敏电阻两引脚之间的正、反向绝缘电阻, 均为无穷大, 否则, 说明漏电流大。
若所测电阻很小, 说明压敏电阻已损坏, 不能使用。
8光敏电阻的检测。
A用一黑纸片将光敏电阻的透光窗口遮住, 此时万用表的指针基本保持不动, 阻值接近无穷大。
此值越大说明光敏电阻性能越好。
若此值很小或接近为零, 说明光敏电阻已烧穿损坏, 不能再继续使用。
B将一光源对准光敏电阻的透光窗口, 此时万用表的指针应有较大幅度的摆动, 阻值明显减小。
此值越小说明光敏电阻性能越好。
若此值很大甚至无穷大, 表明光敏电阻内部开路损坏, 也不能再继续使用。
C将光敏电阻透光窗口对准入射光线, 用小黑纸片在光敏电阻的遮光窗上部晃动, 使其间断受光, 此时万用表指针应随黑纸片的晃动而左右摆动。
如果万用表指针始终停在某一位置不随纸片晃动而摆动, 说明光敏电阻的光敏材料已经损坏。
二、电容器的检测方法与经验1固定电容器的检测A检测10pF以下的小电容因10pF以下的固定电容器容量太小, 用万用表进行测量, 只能定性的检查其是否有漏电, 内部短路或击穿现象。
测量时, 可选用万用表R×10k挡, 用两表笔分别任意接电容的两个引脚, 阻值应为无穷大。
若测出阻值(指针向右摆动)为零, 则说明电容漏电损坏或内部击穿。
B检测10PF~001μF固定电容器是否有充电现象, 进而判断其好坏。
万用表选用R×1k挡。
两只三极管的β值均为100以上, 且穿透电流要小。
可选用3DG6等型号硅三极管组成复合管。
万用表的红和黑表笔分别与复合管的发射极e和集电极c相接。
由于复合三极管的放大作用, 把被测电容的充放电过程予以放大, 使万用表指针摆幅度加大, 从而便于观察。
应注意的是: 在测试操作时, 特别是在测较小容量的电容时, 要重复调换被测电容引脚接触A、 B两点, 才能明显地看到万用表指针的摆动。
C对于001μF以上的固定电容, 可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电, 并可根据指针向右摆动的幅度大小估计出电容器的容量。
2电解电容器的检测A因为电解电容的容量较一般固定电容大得多, 因此, 测量时, 应针对不同容量选用合适的量程。
根据经验, 一般情况下, 1~47μF间的电容, 可用R×1k挡测量, 大于47μF的电容可用R×100挡测量。
B将万用表红表笔接负极, 黑表笔接正极, 在刚接触的瞬间, 万用表指针即向右偏转较大偏度(对于同一电阻挡, 容量越大, 摆幅越大), 接着逐渐向左回转, 直到停在某一位置。
此时的阻值便是电解电容的正向漏电阻, 此值略大于反向漏电阻。
实际使用经验表明, 电解电容的漏电阻一般应在几百kΩ以上, 否则, 将不能正常工作。
在测试中, 若正向、反向均无充电的现象, 即表针不动, 则说明容量消失或内部断路; 如果所测阻值很小或为零, 说明电容漏电大或已击穿损坏, 不能再使用。
C对于正、负极标志不明的电解电容器, 可利用上述测量漏电阻的方法加以判别。
即先任意测一下漏电阻, 记住其大小, 然后交换表笔再测出一个阻值。
两次测量中阻值大的那一次便是正向接法, 即黑表笔接的是正极, 红表笔接的是负极。
D使用万用表电阻挡, 采用给电解电容进行正、反向充电的方法, 根据指针向右摆动幅度的大小, 可估测出电解电容的容量。
3可变电容器的检测A用手轻轻旋动转轴, 应感觉十分平滑, 不应感觉有时松时紧甚至有卡滞现象。
将载轴向前、后、上、下、左、右等各个方向推动时, 转轴不应有松动的现象。
B用一只手旋动转轴, 另一只手轻摸动片组的外缘, 不应感觉有任何松脱现象。
转轴与动片之间接触不良的可变电容器, 是不能再继续使用的。
C将万用表置于R×10k挡, 一只手将两个表笔分别接可变电容器的动片和定片的引出端, 另一只手将转轴缓缓旋动几个来回, 万用表指针都应在无穷大位置不动。
在旋动转轴的过程中, 如果指针有时指向零, 说明动片和定片之间存在短路点; 如果碰到某一角度, 万用表读数不为无穷大而是出现一定阻值, 说明可变电容器动片与定片之间存在漏电现象。
三、电感器、变压器检测方法与经验1色码电感器的的检测将万用表置于R×1挡, 红、黑表笔各接色码电感器的任一引出端, 此时指针应向右摆动。
根据测出的电阻值大小, 可具体分下述三种情况进行鉴别:A被测色码电感器电阻值为零, 其内部有短路性故障。
B被测色码电感器直流电阻值的大小与绕制电感器线圈所用的漆包线径、绕制圈数有直接关系, 只要能测出电阻值, 则可认为被测色码电感器是正常的。
2中周变压器的检测A将万用表拨至R×1挡, 按照中周变压器的各绕组引脚排列规律, 逐一检查各绕组的通断情况, 进而判断其是否正常。
B检测绝缘性能将万用表置于R×10k挡, 做如下几种状态测试:(1)初级绕组与次级绕组之间的电阻值;(2)初级绕组与外壳之间的电阻值;(3)次级绕组与外壳之间的电阻值。
上述测试结果分出现三种情况:(1)阻值为无穷大: 正常;(2)阻值为零: 有短路性故障;(3)阻值小于无穷大, 但大于零: 有漏电性故障。
3电源变压器的检测A经过观察变压器的外貌来检查其是否有明显异常现象。
如线圈引线是否断裂, 脱焊, 绝缘材料是否有烧焦痕迹, 铁心紧固螺杆是否有松动, 硅钢片有无锈蚀, 绕组线圈是否有外露等。
B绝缘性测试。
用万用表R×10k挡分别测量铁心与初级, 初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值, 万用表指针均应指在无穷大位置不动。
否则, 说明变压器绝缘性能不良。
C线圈通断的检测。
将万用表置于R×1挡, 测试中, 若某个绕组的电阻值为无穷大, 则说明此绕组有断路性故障。