电子元器件检测方法

合集下载

三电极测试方法

三电极测试方法

三电极测试方法引言:三电极测试方法是一种常用的电子元器件测试方法,广泛应用于电子工程领域。

本文将介绍三电极测试方法的原理、应用和实施步骤,旨在帮助读者更好地理解和应用该方法。

一、原理三电极测试方法是通过对电子元器件的三个电极进行测试,分别是基极、集电极和发射极。

这三个电极在电子元器件中扮演着不同的角色和功能,通过对其进行测试可以获取元器件的相关参数和性能指标。

1. 基极测试:基极是晶体管等元器件的控制端,通过对基极进行测试可以得到元器件的输入电流、输入电阻等参数。

2. 集电极测试:集电极是晶体管等元器件的输出端,通过对集电极进行测试可以得到元器件的输出电流、输出电阻等参数。

3. 发射极测试:发射极是晶体管等元器件的发射端,通过对发射极进行测试可以得到元器件的发射电流、发射电阻等参数。

二、应用三电极测试方法广泛应用于电子元器件的研发、生产和维修过程中,具有以下几个方面的应用:1. 参数测试:通过对基极、集电极和发射极进行测试,可以获取元器件的参数,如电流增益、电压增益等。

这些参数是评估元器件性能的重要指标,对于选型和设计具有重要意义。

2. 故障诊断:三电极测试方法可以用于电子元器件故障的诊断。

通过对元器件的三个电极进行测试,可以判断元器件是否正常工作,进而确定故障点所在。

3. 质量控制:在电子元器件的生产过程中,可以使用三电极测试方法对元器件进行质量检测和筛选。

通过测试元器件的三个电极,可以判断元器件的质量是否合格,保证产品的可靠性和稳定性。

三、实施步骤三电极测试方法的实施步骤如下:1. 准备测试仪器:需要准备相应的测试仪器,如测试仪、示波器、万用表等。

2. 连接测试电路:根据元器件的类型和测试要求,连接相应的测试电路。

一般情况下,基极、集电极和发射极分别接入测试仪器的相应端口。

3. 设置测试参数:根据测试要求,设置测试仪器的相关参数,如电流范围、电压范围等。

4. 进行测试:根据测试仪器的提示,逐个测试元器件的基极、集电极和发射极。

常用电子元器件的识别与检测

常用电子元器件的识别与检测

常用电子元器件的识别与检测
电子元器件是电子设备的基本构成部分,广泛应用于电子产品、信息技术、通讯等领域,因此对于电子元器件的识别与检测是电子产业的基本技能。

下面将根据常见的电子元
器件,介绍其识别与检测方法。

1. 电容器
电容器是常用的电子元器件,常见的有电解电容器和陶瓷电容器。

电解电容器的极性
明显,阳极和阴极可以通过外观识别,用万用表可以测试容值和损耗等参数。

而陶瓷电容
器的极性不明显,对其进行测试需要在检测时注意新旧电容的区别,使用万用表或LCR表
可以测试其容值、Q值等参数。

电阻器是电子电路中常用的电子元件,通常使用万用表测量其电阻值。

需要注意的是,电阻器通常会有一个色环编码,按照编码对其颜色进行判断可以知道电阻值。

此外,电阻
器的品质检测需要检查其温度系数等参数。

3. 二极管
二极管是常用的半导体器件,具有单向导电性。

通过外观和标识可以判断二极管的正
负极,通过万用表可以测试其导通电压和反向电压等参数。

需要注意的是,有些二极管具
有低压降和高压降等不同类型,需要对其类型进行识别。

5. 集成电路
集成电路是电子电路中常用的器件,可以包含多种电子元件。

其品牌、型号、批次等
信息通过外观可以判断,使用万用表进行测试,可以测试其输入电压和输出电压等参数。

此外,还需要注意集成电路的静态和动态特性,比如其工作温度和供电电流等等。

总之,对于以上所介绍的电子元件,识别和检测是电子产业中必不可少的技能,有效
的识别和检测方法可以将故障排查时间缩短,提升生产效率。

常用电子元器件识别与检测

常用电子元器件识别与检测

常用电子元器件识别与检测电子元器件是现代电子产品中不可或缺的组成部分,它们的质量直接影响到产品的性能和可靠性。

因此,对常用电子元器件的识别与检测具有重要意义。

本文将从理论和实践两个方面,详细介绍常用电子元器件的识别与检测方法。

一、常用电子元器件的分类及特点1.1 电阻器电阻器是一种用于限制电流流动的元器件,其主要特点是阻值固定,根据阻值的不同可以分为可调电阻器和固定电阻器。

可调电阻器可以通过旋转电位器来调节阻值,而固定电阻器的阻值在制造时就已经确定,无法调整。

电阻器的温度系数是指其阻值随温度变化的程度,通常用ppm/°C表示。

电阻器的功率承受能力是指在一定温度下,电阻器能够承受的最大功率,单位为W。

1.2 电容器电容器是一种用于存储电荷的元器件,其主要特点是电压稳定,能够消除电路中的高频噪声。

根据介质的不同,电容器可以分为陶瓷电容器、塑料电容器和金属箔电容器。

陶瓷电容器具有体积小、容量大、稳定性好等特点;塑料电容器成本低、体积大、容量较小;金属箔电容器则具有良好的导电性。

电容器的工作电压一般不超过50V,工作温度范围为-55°C~+150°C。

1.3 二极管二极管是一种具有单向导电性的元器件,其主要特点是正向压降小、反向击穿电压高。

根据材料的不同,二极管可以分为硅基二极管、锗基二极管和化合物半导体二极管。

硅基二极管是目前应用最广泛的二极管类型,具有正向压降小、温度系数低等特点;锗基二极管的正向压降较大,但反向击穿电压高;化合物半导体二极管则具有正向压降小、反向击穿电压高等优点。

二极管的封装形式有插脚型、表面贴装型等。

1.4 三极管三极管是一种具有放大作用的元器件,其主要特点是电流放大倍数高、输入阻抗低。

根据结构的不同,三极管可以分为晶体三极管和场效应晶体管。

晶体三极管是一种常见的三极管类型,具有电流放大倍数高、输入阻抗低等特点;场效应晶体管则具有输入阻抗低、功耗小等特点。

万用表来检测电子元器件的好坏

万用表来检测电子元器件的好坏

万用表来检测电子元器件的好坏在维修过程中,根据故障情况要用万用表来检测电子元器件的好坏,如测量方法不正确就很可能导致误判断,这将给维修工作造成困难,甚至造成不必要的经济损失。

测量方法分为元器件测试和线路板在路测试两种方式。

在路测试:断开变频器电源,在不拆动线路板元器件的条件下,测量线路板上的元器件。

对于元器件击穿、短路、开路性故障,这种检测方法可以方便快捷的查找出损坏的元器件,但还应考虑线路板上所测元器件与其并联的元器件对测量结果所产生的影响,以免造成误判断错误。

下面介绍元器件好坏的判断方法:一、普通二极管的检测用MF47型万用表测量,将红、黑表笔分别接在二极管的两端,读取读数,再将表笔对调测量。

根据两次测量结果判断,通常小功率锗二极管的正向电阻值为300-500Ω,硅二极管约为1kΩ或更大些。

锗管反相电阻为几十千欧,硅管反向电阻在500kΩ以上(大功率二极管的数值要小的多)。

好的二极管正向电阻较低,反向电阻较大,正反向电阻差值越大越好。

如果测得正、反向电阻很小均接近于零,说明二极管内部已短路;若正、反向电阻很大或趋于无穷大,则说明管子内部已断路。

在这两种情况下二极管就需报废。

来源:在路测试:测试二极管PN结正反向电阻,比较容易判断出二极管是击穿短路还是断路。

二、三极管检测将数字万用表拨到二极管档,用表笔测PN结,如果正向导通,则显示的数字即为PN 结的正向压降。

先确定集电极和发射极;用表笔测出两个PN结的正向压降,压降大的是发射极e,压降小的是集电极c。

在测试两个结时,红表笔接的是公共极,则被测三极管为NPN型,且红表笔所接为基极b;如果黑表笔接的是公共极,则被测三极管是PNP型,且此极为基极b。

三极管损坏后PN结有击穿短路和开路两种情况。

在路测试:在路测试三极管,实际上是通过测试PN结的正、反向电阻,来达到判断三极管是否损坏。

支路电阻大于PN结正向电阻,正常时所测得正、反向电阻应有明显区别,否则PN结损坏了。

常用电子元器件检测方法及技巧

常用电子元器件检测方法及技巧

民常用电子元器件检测方法与技巧元器件的检测是家电维修的一项基本功,如何准确有效地检测元器件的相关参数,判断元器件的是否正常,不是一件千篇一律的事,必须根据不同的元器件采用不同的方法,从而判断元器件的正常与否。

特别对初学者来说,熟练掌握常用元器件的检测方法和经验很有必要,以下对常用电子元器件的检测经验和方法进行介绍供对考。

一、电阻器的检测方法与经验:1固定1固定电容器的检测A检测10pF以下的小电容因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。

测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。

若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。

B检测10PF~0固定电容器是否有充电现象,进而判断其好坏。

万用表选用R×1k挡。

两只三极管的β值均为100以上,且穿透电流要小。

可选用3DG6等型号硅三极管组成复合管。

万用表的红和黑表笔分别与复合管的发射极e和集电极c 相接。

由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。

应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动。

C对于0以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量。

2电解电容器的检测A因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。

根据经验,一般情况下,1~47μF间的电容,可用R×1k挡测量,大于47μF的电容可用R×100挡测量。

B将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置。

元器件的识别与检测

元器件的识别与检测

元器件的识别与检测元器件的识别与检测是电子设备维修中非常重要的一环。

无论是在维修现场,还是在研发生产中,都需要对元器件进行识别与检测,以确保电子设备的正常运行和质量保证。

下面将分几个步骤来阐述元器件的识别与检测过程。

第一步:外观检测元器件外观检测是识别和检测元器件最基本的方法,通过观察元器件的包装、引脚、颜色、图案等信息,可以初步了解元器件的类型、品牌、规格等。

在外观检测时需要注意以下几点:1. 仔细观察元器件的包装是否完整,有无变形、损坏等情况。

2. 观察元器件的引脚是否完整、对称、没有歪曲等。

3. 观察元器件的标识是否清晰,是否有模糊、刮花等情况。

第二步:测量参数除了外观检测,测量元器件的参数也是检测元器件的重要方法之一。

不同类型的元器件的参数测量方法也不尽相同。

例如,对于电容的测量可以使用LCR表或数字电桥,而对于电阻的测量可以使用万用表或硬度测试仪。

需要注意的是,在测量参数时,我们应确保测量的仪器准确、可靠。

第三步:检查内部结构对于一些特殊的元器件(例如保险丝、变压器、开关等),需要进一步检查其内部结构。

这可以通过打开元器件外壳进行直接观察来实现。

在检查内部结构时,需要注意以下几点:1. 对于开关等元件,需要检查其触点是否完好,是否运行灵活。

2. 对于变压器等元件,需要检查其线圈是否完整、焊点是否牢固。

第四步:使用专业工具在元器件的识别和检测中,专业工具是非常必要的。

例如,使用示波器可以观察元器件的工作状态,使用程控电源可以模拟各种电压及其波形。

我们需要熟练掌握这些专业工具的使用方法,以便更好地进行元器件的识别和检测。

总之,对于电子工程师和维修人员而言,元器件的识别和检测是非常重要的技能之一。

通过上述几个步骤,我们可以更加准确地识别和检测元器件,保障电子设备的正常运行和其质量保证。

电子元器件识别与检测方法大全

电子元器件识别与检测方法大全

电阻器基础知识与检测方法一、基础知识电阻器是电路元件中应用最广泛的一种,在电子设备中约占元件总数的30%以上,其质量的好坏对电路工作的稳定性有极大影响。

它的主要用途是稳定和调节电路中的电流和电压,其次还作为分流器分压器和负载使用。

1.分类在电子电路中常用的电阻器有固定式电阻器和电位器,按制作材料和工艺不同,固定式电阻器可分为:膜式电阻(碳膜RT、金属膜RJ、合成膜RH 和氧化膜RY)、实芯电阻(有机RS 和无机RN)、金属线绕电阻(RX)、特殊电阻(MG 型光敏电阻、MF 型热敏电阻)四种。

表1几种常用电阻的结构和特点电阻种类电 阻 结 构 和 特 点 实物图片碳膜电阻 气态碳氢化合物在高温和真空中分解,碳沉积在瓷棒或者瓷管上,形成一层结晶碳膜。

改变碳膜厚度和用刻槽的方法变更碳膜的长度,可以得到不同的阻值。

碳膜电阻成本较低,性能一般。

金属膜电阻 在真空中加热合金,合金蒸发,使瓷棒表面形成一层导电金属膜。

刻槽和改变金属膜厚度可以控制阻值。

这种电阻和碳膜电阻相比,体积小、噪声低、稳定性好,但成本较高。

碳质电阻把碳黑、树脂、粘土等混合物压制后经过热处理制成。

在电阻上用色环表示它的阻值。

这种电阻成本低,阻值范围宽,但性能差,很小采用。

线绕电阻 用康铜或者镍铬合金电阻丝,在陶瓷骨架上绕制成。

这种电阻分固定和可变两种。

它的特点是工作稳定,耐热性能好,误差范围小,适用于大功率的场合,额定功率一般在1瓦以上。

碳膜电位器 它的电阻体是在马蹄形的纸胶板上涂上一层碳膜制成。

它的阻值变化和中间触头位置的关系有直线式、对数式和指数式三种。

碳膜电位器有大型、小型、微型几种,有的和开关一起组成带开关电位器。

还有一种直滑式碳膜电位器,它是靠滑动杆在碳膜上滑动来改变阻值的。

这种电位器调节方便。

线绕电位器用电阻丝在环状骨架上绕制成。

它的特点是阻值范围小,功率较大。

定正飞的收藏2.主要性能指标额定功率:在规定的环境温度和湿度下,假定周围空气不流通,在长期连续负载而不损坏或基本不改变性能的情况下,电阻器上允许消耗的最大功率。

常用电子元器件检

常用电子元器件检
一、电阻器的检测方法与经验
1 固定电阻器的检测。A 将两表笔(不分正负)分别 与电阻的两端引脚相接即可测出实际电阻值。为了 提高测量精度,应根据被测电阻标称值的大小来选 择量程。由于欧姆挡刻度的非线性关系,它的中间 一段分度较为精细,因此应使指针指示值尽可能落 到刻度的中段位置,即全刻度起始的20%~80%弧 度范围内,以使测量更准确。根据电阻误差等级不 同。读数与标称阻值之间分别允许有±5%、±10 %或±20%的误差。如不相符,超出误差范围,则 说明该电阻值变值了。
E
(a)
次级所有绕组全部开路,把万用表置于交流
电流挡(500mA,串入初级绕组。当初级绕组
的插头插入220V交流市电时,万用表所指示
的便是空载电流值。此值不应大于变压器满
载电流的10%~20%。一般常见电子设备电
源变压器的正常空载电流应在100mA左右。
如果超出太多,则说明变压器有短路性故障

(b) 联一个10Ω/5W的电阻,次级仍全部空载。把 万用表拨至交流电压挡。加电后,用两表笔 测出电阻R两端的电压降U,然后用欧姆定律 算出空载电流I空,即I空=U/R。
F 接220V市电,用万用表交流电压接依次测出 各绕组的空载电压值(U21、U22、U23、 U24)应符合要求值,允许误差范围一般为: 高压绕组≤±10%,低压绕组≤±5%,带中 心抽头的两组对称绕组的电压差应≤±2%。
G
40℃
~50℃,如果所用绝缘材料质量较好,允许
温升还可提高。
H 变压器时,有时为了得到所需的次级电压, 可将两个或多个次级绕组串联起来使用。采 用串联法使用电源变压器时,参加串联的各 绕组的同名端必须正确连接,不能搞错。否 则,变压器不能正常工作。
上述测试结果分出现三种情况:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子元器件检测方法 元器件的检测是家电维修的一项基本功,如何准确有效地检测元器件的相关参数,判断元器件的是否正常,不是一件千篇一律的事,必须根据不同的元器件采用不同的方法,从而判断元器件的正常与否。特别对初学者来说,熟练掌握常用元器件的检测方法和经验很有必要,以下对常用电子元器件的检测经验和方法进行介绍供对考。

一、电阻器的检测方法与经验: 1固定电阻器的检测。 A将两表笔(不分正负)分别与电阻的两端引脚相接即可测出实际电阻值。为了提高测量精度,应根据被测电阻标称值的大小来选择量程。由于欧姆挡刻度的非线性关系,它的中间一段分度较为精细,因此应使指针指示值尽可能落到刻度的中段位置,即全刻度起始的20%~80%弧度范围内,以使测量更准确。根据电阻误差等级不同。读数与标称阻值之间分别允许有±5%、±10%或±20%的误差。如不相符,超出误差范围,则说明该电阻值变值了。

B注意:测试时,特别是在测几十kΩ以上阻值的电阻时,手不要触及表笔和电阻的导电部分;被检测的电阻从电路中焊下来,至少要焊开一个头,以免电路中的其他元件对测试产生影响,造成测量误差;色环电阻的阻值虽然能以色环标志来确定,但在使用时最好还是用万用表测试一下其实际阻值。

2水泥电阻的检测。检测水泥电阻的方法及注意事项与检测普通固定电阻完全相同。

3熔断电阻器的检测。在电路中,当熔断电阻器熔断开路后,可根据经验作出判断:若发现熔断电阻器表面发黑或烧焦,可断定是其负荷过重,通过它的电流超过额定值很多倍所致;如果其表面无任何痕迹而开路,则表明流过的电流刚好等于或稍大于其额定熔断值。对于表面无任何痕迹的熔断电阻器好坏的判断,可借助万用表R×1挡来测量,为保证测量准确,应将熔断电阻器一端从电路上焊下。若测得的阻值为无穷大,则说明此熔断电阻器已失效开路,若测得的阻值与标称值相差甚远,表明电阻变值,也不宜再使用。在维修实践中发现,也有少数熔断电阻器在电路中被击穿短路的现象,检测时也应予以注意。

4电位器的检测。检查电位器时,首先要转动旋柄,看看旋柄转动是否平滑,开关是否灵活,开关通、断时“喀哒”声是否清脆,并听一听电位器内部接触点和电阻体摩擦的声音,如有“沙沙”声,说明质量不好。用万用表测试时,先根据被测电位器阻值的大小,选择好万用表的合适电阻挡位,然后可按下述方法进行检测。 A用万用表的欧姆挡测“1”、“2”两端,其读数应为电位器的标称阻值,如万用表的指针不动或阻值相差很多,则表明该电位器已损坏。

B检测电位器的活动臂与电阻片的接触是否良好。用万用表的欧姆档测“1”、“2”(或“2”、“3”)两端,将电位器的转轴按逆时针方向旋至接近“关”的位置,这时电阻值越小越好。再顺时针慢慢旋转轴柄,电阻值应逐渐增大,表头中的指针应平稳移动。当轴柄旋至极端位置“3”时,阻值应接近电位器的标称值。如万用表的指针在电位器的轴柄转动过程中有跳动现象,说明活动触点有接触不良的故障。

5正温度系数热敏电阻(PTC)的检测。检测时,用万用表R×1挡,具体可分两步操作:

A常温检测(室内温度接近25℃);将两表笔接触PTC热敏电阻的两引脚测出其实际阻值,并与标称阻值相对比,二者相差在±2Ω内即为正常。实际阻值若与标称阻值相差过大,则说明其性能不良或已损坏。

B加温检测;在常温测试正常的基础上,即可进行第二步测试—加温检测,将一热源(例如电烙铁)靠近PTC热敏电阻对其加热,同时用万用表监测其电阻值是否随温度的升高而增大,如是,说明热敏电阻正常,若阻值无变化,说明其性能变劣,不能继续使用。注意不要使热源与PTC热敏电阻靠得过近或直接接触热敏电阻,以防止将其烫坏。

6负温度系数热敏电阻(NTC)的检测。 (1)、测量标称电阻值Rt 用万用表测量NTC热敏电阻的方法与测量普通固定电阻的方法相同,即根据NTC热敏电阻的标称阻值选择合适的电阻挡可直接测出Rt的实际值。但因NTC热敏电阻对温度很敏感,故测试时应注意以下几点:ARt是生产厂家在环境温度为25℃时所测得的,所以用万用表测量Rt时,亦应在环境温度接近25℃时进行,以保证测试的可信度。B测量功率不得超过规定值,以免电流热效应引起测量误差。C注意正确操作。测试时,不要用手捏住热敏电阻体,以防止人体温度对测试产生影响。

(2)、估测温度系数αt 先在室温t1下测得电阻值Rt1,再用电烙铁作热源,靠近热敏电阻Rt,测出电阻值RT2,同时用温度计测出此时热敏电阻RT表面的平均温度t2再进行计算。

7压敏电阻的检测。用万用表的R×1k挡测量压敏电阻两引脚之间的正、反向绝缘电阻,均为无穷大,否则,说明漏电流大。若所测电阻很小,说明压敏电阻已损坏,不能使用。 8光敏电阻的检测。 A用一黑纸片将光敏电阻的透光窗口遮住,此时万用表的指针基本保持不动,阻值接近无穷大。此值越大说明光敏电阻性能越好。若此值很小或接近为零,说明光敏电阻已烧穿损坏,不能再继续使用。

B将一光源对准光敏电阻的透光窗口,此时万用表的指针应有较大幅度的摆动,阻值明显减些此值越小说明光敏电阻性能越好。若此值很大甚至无穷大,表明光敏电阻内部开路损坏,也不能再继续使用。

C将光敏电阻透光窗口对准入射光线,用小黑纸片在光敏电阻的遮光窗上部晃动,使其间断受光,此时万用表指针应随黑纸片的晃动而左右摆动。如果万用表指针始终停在某一位置不随纸片晃动而摆动,说明光敏电阻的光敏材料已经损坏。

二、电容器的检测方法与经验 1固定电容器的检测 A检测10pF以下的小电容因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。

B检测10PF~001μF固定电容器是否有充电现象,进而判断其好坏。万用表选用R×1k挡。两只三极管的β值均为100以上,且穿透电流要些可选用3DG6等型号硅三极管组成复合管。万用表的红和黑表笔分别与复合管的发射极e和集电极c相接。由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动。

C对于001μF以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量。

2电解电容器的检测 A因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。根据经验,一般情况下,1~47μF间的电容,可用R×1k挡测量,大于47μF的电容可用R×100挡测量。 B将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置。此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻。实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作。在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用。

C对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别。即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值。两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是负极。

D使用万用表电阻挡,采用给电解电容进行正、反向充电的方法,根据指针向右摆动幅度的大小,可估测出电解电容的容量。

3可变电容器的检测 A用手轻轻旋动转轴,应感觉十分平滑,不应感觉有时松时紧甚至有卡滞现象。将载轴向前、后、上、下、左、右等各个方向推动时,转轴不应有松动的现象。

B用一只手旋动转轴,另一只手轻摸动片组的外缘,不应感觉有任何松脱现象。转轴与动片之间接触不良的可变电容器,是不能再继续使用的。

C将万用表置于R×10k挡,一只手将两个表笔分别接可变电容器的动片和定片的引出端,另一只手将转轴缓缓旋动几个来回,万用表指针都应在无穷大位置不动。在旋动转轴的过程中,如果指针有时指向零,说明动片和定片之间存在短路点;如果碰到某一角度,万用表读数不为无穷大而是出现一定阻值,说明可变电容器动片与定片之间存在漏电现象。

三、电感器、变压器检测方法与经验 1色码电感器的的检测将万用表置于R×1挡,红、黑表笔各接色码电感器的任一引出端,此时指针应向右摆动。根据测出的电阻值大小,可具体分下述三种情况进行鉴别:

A被测色码电感器电阻值为零,其内部有短路性故障。 B被测色码电感器直流电阻值的大小与绕制电感器线圈所用的漆包线径、绕制圈数有直接关系,只要能测出电阻值,则可认为被测色码电感器是正常的。 2中周变压器的检测 A将万用表拨至R×1挡,按照中周变压器的各绕组引脚排列规律,逐一检查各绕组的通断情况,进而判断其是否正常。

B检测绝缘性能将万用表置于R×10k挡,做如下几种状态测试: (1)初级绕组与次级绕组之间的电阻值; (2)初级绕组与外壳之间的电阻值; (3)次级绕组与外壳之间的电阻值。 上述测试结果分出现三种情况: (1)阻值为无穷大:正常; (2)阻值为零:有短路性故障; (3)阻值小于无穷大,但大于零:有漏电性故障。 3电源变压器的检测 A通过观察变压器的外貌来检查其是否有明显异常现象。如线圈引线是否断裂,脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。

B绝缘性测试。用万用表R×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。否则,说明变压器绝缘性能不良。

C线圈通断的检测。将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。

D判别初、次级线圈。电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。再根据这些标记进行识别。

E空载电流的检测。

相关文档
最新文档