范数
范数的名词解释

范数的名词解释范数是线性代数中一个重要的概念,它可以衡量向量空间中向量的大小。
在数学上,范数是一种从向量到实数的函数,它满足一定的性质。
范数不仅在线性代数中有重要应用,也在其他学科中被广泛使用,如函数空间、统计学、机器学习等。
一、范数的定义范数是向量空间中度量向量大小的一种方式。
对于一个实数域上的向量空间V,范数可以定义为一个从V到实数集上的非负实值函数,记作||·||,满足以下性质:1. 非负性:对于任意向量x∈V,有||x||≥0,且当且仅当x=0时,等号成立。
2. 齐次性:对于任意向量x∈V和任意实数α,有||αx||=|α|·||x||。
3. 三角不等式:对于任意向量x、y∈V,有||x+y||≤||x||+||y||。
二、范数的类型根据范数函数的定义方式,范数可以分为不同的类型。
常见的范数有:1. L1范数(曼哈顿范数):L1范数定义为||x||1=∑|xi|,表示向量x中每个元素绝对值之和。
L1范数在稀疏表示、压缩感知等领域有广泛应用。
2. L2范数(欧几里德范数):L2范数定义为||x||2=√(∑|xi|^2),表示向量x中每个元素的平方和的平方根。
L2范数也称为欧几里德范数,是我们常用的向量长度度量方式。
3. 无穷范数:无穷范数定义为||x||∞=max(|xi|),表示向量x中绝对值最大的元素。
无穷范数在机器学习中的正则化和特征选择中使用广泛。
三、范数的应用范数作为度量向量大小的一种方式,在实际应用中有很多重要的用途。
1. 正规化:范数可以作为正则化项用于优化问题,如Lasso回归中使用L1范数作为正则化项,使得模型获得稀疏解。
2. 特征选择:范数可以用于特征选择,通过限制特征向量的范数大小,保留重要的特征,去除冗余信息。
3. 函数空间:范数在函数空间中也有广泛应用,例如L2范数用于定义函数空间上的内积。
4. 最优化问题:范数在最优化问题中起到了重要的作用,如L1范数最小化问题可以得到稀疏解。
数值分析12-范数

1 i n j 1 T
A 2 ( A A)
( 2-范数,谱范数 )
| aij |2
i 1 j 1 n n
Frobenius 范数: A
F
( F-范数)
是向量 || · 2 的直接推广,但不是算子范数。 ||
y D Ly D Ux
1
1
高斯-塞德尔公式的证明
写出分量形式有
设 得
且
高斯-塞德尔公式的证明
得
利用对角占优条件知
命题得证
线性方程组的性态问题
考虑线性方程组:
Ax b
由于系数矩阵和右端项都是通过计算或观察得来的, 通常都 带有一定的误差,即受到了一些(相对)微小的扰动。那么 这些扰动对方程组的解会产生什么样的影响?
迭代过程的收敛性
迭代法的收敛条件
X ( k 1) GX k d
定理1:对任意初始向量X(0)及常向量d,上述迭代格式
收敛的充分必要条件是迭代矩阵B的谱半径(G) < 1。
定理2:若迭代矩阵B的某种范数
G 1 则上述
确定的迭代法对任意初值X(0)均收敛于方程组
X = GX + d的唯一解x*。
|| x || || b || || A || || A1 || || x || || b ||
(2)由于系数矩阵的扰动而引起的解的变化
x A1 A ( x x)
|| x |||| A1 || || A || || x x ||
|| x || || A || 1 || A || || A || || x x || || A ||
范数及其应用

一般来说,监督学习可以看做最小化下面的目标函数:
L(yi,f(xi;w)) 衡量我们的模型(分类或者回归)对第i个样 本的预测值f(xi;w)和真实的标签yi之前的误差。
L0范数与L1范数
L0范数是指向量中非0的元素的个数。如果我 们用L0范数来规则化一个参数矩阵W的话,就是 希望W的大部分元素都是0,让参数W是稀疏的 。
c1 x
x
c2 x
并称 和 定理
为 Cn上的等价范数。
(向量序列收敛性定理) 设 xk Cn , 则
k xi xi 0, i 1, 2, , n lim xk x 0 lim k k
lim x k = x
k
其中 x k x1 , x2 , , xn
这说明,W的L1范数是绝对值,|w|在w=0处是不可微的。
L1范数和L0范数可以实现稀疏,L1因具有比L0更好的优 化求解特性而被广泛应用。
稀疏的原因
特征选择
稀疏规则化受欢迎的一个关键原因在于它能实现特征的 自动选择。
可解释性
通过稀疏可以使模型更容易解释。
L2范数
L2范数: ||W||2,在回归里面,有人把有它的 回归叫“岭回归”,有人也叫它“权值衰减”。 它的强大功效是改善机器学习里面一个非常重要 的问题:过拟合。
上面的图是线性回归,从左到右分别是欠拟合,合适的 拟合和过拟合三种情况。
Logistic回归
如果模型复杂(可以拟合任意的复杂函数),它可以让 我们的模型拟合所有的数据点,也就是基本上没有误差。 对于回归来说,就是我们的函数曲线通过了所有的数据 点。对分类来说,就是我们的函数曲线要把所有的数据 点都分类正确。这两种情况很明显过拟合了。
范数的三个条件

范数的三个条件1.引言1.1 概述概述部分的内容:范数是数学中一种度量向量的大小的方式。
它是向量空间中的一种函数,将向量映射为非负实数。
在实际应用中,范数经常被用来衡量向量的长度、大小或距离。
范数的概念在数学、物理、计算机科学等领域有着广泛的应用和重要的作用。
本文将介绍范数的三个条件。
在讨论这三个条件之前,我们将先对范数进行定义和讨论其基本性质。
然后,我们将详细讲解范数的三个条件,这些条件对于确定一个函数是否能称为范数至关重要。
最后,我们将总结范数的三个条件,并探讨应用范数的意义和价值。
通过学习本文,读者将能够对范数有更深入的理解,并能够应用范数解决实际问题。
无论是在数学研究中还是在工程应用中,范数都是一个十分重要的工具,对于理解和描述向量空间中的各种性质和关系具有重要意义。
接下来,我们将详细介绍范数的定义和基本性质。
1.2 文章结构论文结构的目的是使读者能够清晰地理解和掌握论文的主要内容和论证过程。
文章结构一般包括引言、正文和结论三个部分。
引言部分是论文的开篇,用来引入论文的主题并说明研究的背景、意义和目的。
在本文中,引言部分的目的是介绍范数及其基本性质,并指出本文将重点讨论范数的三个条件。
正文部分是论文的核心内容,用来详细阐述和论证研究问题。
在本文中,正文部分将重点讨论范数的三个条件。
首先,将介绍范数的定义和基本性质,为读者建立起相关的基础知识。
然后,将详细分析并讨论范数的三个条件,分别从数学定义和性质的角度进行阐述和论证。
结论部分是论文的总结和回顾,用来归纳研究结果、总结讨论及提出展望。
在本文中,结论部分将对范数的三个条件进行总结,并强调范数在实践中的意义和价值。
同时,也可以对范数的应用领域进行展望,指出可能的研究方向和未来可探索的问题。
通过以上结构安排,读者可以从文章的标题、目录和各部分的内容中清晰地了解到本文的主要内容和论证结构,有助于读者理解和把握文章的逻辑性和连贯性。
1.3 目的本文的主要目的是探讨范数的三个条件。
关于范数的理解或定义

I 、向量的范数向量x ∈R n的范数f(x )是定义在R n空间上取值为非负实数且满足下列性质的函数:1ο对于所有的x ≠ 0,x ∈R n有f(x )>0; (非负性)2ο对于所有的α∈R 有f(αx )=αf(x ); (正齐性) 3ο对于所有的x,y ∈R n有f(x+y )≤f(x )+f(y ). (三角不等式)一、 一般情况下,f(x )的具体模式如下:p x = p ni pix 11)(∑=,p 1≥ 也称它为p-范数。
下证p-范数满足上述的三个性质:1、对于所有的x ∈R n,x ≠ 0,p ni pix 11)(∑=显然是大于0的,故性质1ο成立。
2、 由pxα = pni pix 11)(∑=α = αp ni pix 11)(∑= = αp x 知性质2ο成立。
3、欲验证性质3ο,我们的借助下列不等式:设p>1,q>1,且p 1 + q1 = 1,则对所有的0,≥βα有αββα≥+qpqp证:考虑函数ptptt -=1)(ϕ,因为)1(1)(11'-=-p t pt ϕ,由()t 'ϕ=0 t=1,又因为01)1(''<-=pqϕ,所以当t = 1的时候)(t ϕ取最大值,则有:p p ttp111-≤-, 令t = q pβα,代入可得:q p p q ppq p1111=-=-⎪⎪⎭⎫⎝⎛βαβα, 化简之后即得: αββα≥+qpqp证毕!又令∑=)(1i px x piα,∑=)(1i qy y qiβ,代入上不等式可得:∑∑+)()(iq i i p iy y x x qqpp∑∑≥)()(11y x yx i qi pqpii,两边同时对i 求和,并利用关系式p 1 + q1 = 1可知:∑∑≥+=∑∑∑∑∑)()(11)()(1y x yx y y x x i qi piq i ip i qpiiqqpp从而有:∑∑≤∑)()(11y x y x i qi pqpii另一方面,又有:∑+∑++=-yx y x y x iip pii ii 1)(1y x y x ii p ii +≤∑+-yy x x y x ip ip i i ii ∑+∑+--+=11()()()()()()∑∑-+∑∑-≤++y y x x y x ipiiq p ipiiq p pqpq111111()()()()⎥⎥⎦⎤⎢⎢⎣⎡∑∑-=+∑+y x y x ipip piiqp pq1111()()()⎥⎥⎦⎤⎢⎢⎣⎡∑∑=+∑+y x y x ipip piipp111 左右两边同时除以()∑+y x iip1得:()()()∑∑≤∑++y x y x ipipiip ppp111。
1范数2范数无穷范数不等式的证明

1. 主题概述在数学和线性代数中,范数是一种衡量向量大小的方法。
而1范数、2范数和无穷范数是常见的范数类型,它们在数学理论和应用中具有重要的意义。
本文将深入探讨1范数、2范数和无穷范数的概念,并通过数学不等式的证明来理解它们的性质和应用。
2. 1范数的定义和性质我们来定义1范数。
对于一个n维向量x,它的1范数记作||x||₁,定义为向量x各个元素绝对值的和:||x||₁ = |x₁| + |x₂| + ... + |xₙ|。
1范数在表示向量的稀疏性、优化问题和信号处理中具有重要作用。
1范数的性质也是我们需要关注的重点。
1范数满足三角不等式,即对于任意向量x和y,有||x + y||₁ ≤ ||x||₁ + ||y||₁。
这一性质对于证明1范数的某些优化问题具有重要意义。
3. 2范数的定义和性质接下来,我们转到2范数的讨论。
对于一个n维向量x,它的2范数记作||x||₂,定义为向量x各个元素的平方和的平方根:||x||₂ = √(x₁² + x₂² + ... + xₙ²)。
2范数常用于表示向量的长度、距离和误差。
2范数同样具有一些重要的性质。
2范数也满足三角不等式,即对于任意向量x和y,有||x + y||₂ ≤ ||x||₂ + ||y||₂。
2范数还满足柯西-施瓦茨不等式,即对于任意向量x和y,有|x·y| ≤ ||x||₂ * ||y||₂。
这些性质对于研究向量空间和内积空间具有重要意义。
4. 无穷范数的定义和性质我们进入无穷范数的领域。
对于一个n维向量x,它的无穷范数记作||x||ᵢ,定义为向量x各个元素绝对值的最大值:||x||ᵢ = max(|x₁|,|x₂|, ..., |xₙ|)。
无穷范数常用于表示向量的最大值和极限情况。
无穷范数同样具有一些重要的性质。
无穷范数也满足三角不等式,即对于任意向量x和y,有||x + y||ᵢ≤ ||x||ᵢ + ||y||ᵢ。
范数应用案例

范数应用案例
1. 在机器学习中,范数常常用来衡量数据的特征向量的大小。
例如,在支持向量机算法中,可以使用范数来正则化模型的权重参数,以防止过拟合。
2. 在图像处理中,常常使用L1范数或者L2范数来衡量图像的稀疏性。
例如,可以使用L1范数来约束稀疏表示问题,以便生成更加稀疏的图像。
3. 在信号处理中,L1范数可以用来计算信号的稀疏系数,从而进行信号降噪。
通过最小化L1范数,可以将信号的噪声部分去除,保留信号的主要特征。
4. 在推荐系统中,可以使用L2范数来衡量用户对不同商品的偏好程度。
通过最小化L2范数,可以获得更好地符合用户偏好的推荐结果。
5. 在网络流量分析中,可以使用L1范数来衡量网络连接的异常程度。
通过比较不同网络连接的L1范数,可以识别出潜在的网络攻击或者异常行为。
6. 在图像识别中,可以使用L2范数来衡量两幅图像之间的相似度。
通过计算两幅图像的L2范数,可以获得它们之间的距离。
7. 在文本数据的处理中,可以使用L1范数或者L2范数来衡量文本的稀疏性。
通过最小化范数,可以获得更加稀疏的文本
表示,从而提高文本分类或者聚类的性能。
8. 在最优化问题中,可以使用范数作为约束条件。
例如,可以使用L1范数作为约束条件,以获得较为稀疏的解。
矩阵和向量范数详解-数值计算方法

度量。Rn空间的向量范数 || ·|| 对任意x, y R满n足条件:
(1)
|| x|| 0 ;
|| x|| 0
x
0
(正定性)
(2) || x|| | | || x|| 对任意 C (齐次性)
(3) || x y|| || x|| || y|| (三角不等式)
定义:向量X
( x1,
gg
范数是绝对值的概念的推广,绝对值是一维概念,绝对 值的几何意义就是长度,那么很自然就有了:n维向量长度 就是范数。范数可以推广到无穷维空间。
1. 范数
向量范数和向量的模
向量的模表示的是向量的大小,比如向量
X ( x1, x2...x的n )模为
X x12 x22 ...xn2
向量的范数用于衡量一个向量的大小,是更广义
向量和矩阵范数
主要内容
1、什么是范数 2、向量范数 3、矩阵范数
2
1. 范数
范数是什么?
范数具有“长度”的概念,在线下代数、泛函分析 等相关数学领域,范数表征的是矢量空间中所有矢量的 正长度和大小。范数是对向量和矩阵的一种度量,实际 上是二维和三维向量长度概念的一种推广。
简单来说向量范数可以理解为向量的长度,矩阵范 数可以理解为矩阵的变化大小。
意义:矩阵的谱或叫矩阵的谱半径,在特征值估计、广义逆矩阵 等理论的建树中,都占有极其重要的地位;
定理 对任意算子范数 || ·|| 有( A) || A ||
即 A 的谱半径是A的任意一种范数的下界
证明:由算子范数的相容性,得到 || Ax|| || A || || x||
将任意一个特征根 所对应的特征向量 u代入 | | || u|| || u|| || Au|| || A || || u||
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
‖Ax‖≤‖A‖‖x‖
则称矩阵范数‖A‖与向量范数‖x‖相容.
Frobenius范数:
|| A ||F
| a ij |2 (向量|| ·||2的直接推广)
i 1 j 1
n
n
|| 可以证明,对方阵 A R nn和 x R n 有: , Ax ||2 || A ||F || x ||2
|| A || 1
② ( I A)1 A( I A)1 ( I A)( I A)1 I
( I A)1 I A( I A)1
|| ( I A)1 || 1 || A || || ( I A)1 ||
§1.5 线性方程组的性态(误差分析)
算子范数 ( operator norm ),又称为从属的矩阵范数: 由向量范数 || · p 导出关于矩阵 A Rnn 的 p 范数: ||
利用Cauchy 不等式 则 || AB ||p || A ||p || B ||p || Ax ||p || A ||p max max|| Ax ||p y | ||x || || y || |x 2 2 x 0 || x|| p 1 || x ||p || Ax || || A || || x ||
如果lim xki=xi对所有的i=1,2,…,n成立,
那么,称向量x*是向量序列{xk}的极限 , 若一个向量序列有极限,称这个向量序列是收敛的.
定理1.4.2 对任意一种向量范数‖· ‖而言,向量 序列{xk}收敛于向量x*的充分必要条件是
lim || xk x || 0
* k
矩阵范数 ( matrix norms )
2 2 || A || 1,|| B || 1,|| AB AB 2 2 || AB |||| A |||| B || 从而
|| 2
相容性
(1)矩阵范数与矩阵范数的相 容:‖AB‖≤‖A‖‖B‖ (2)矩阵范数与向量范数 设A∈M,‖A‖是矩阵范数,x∈Rn,‖x‖是 向量范数.如果满足不等式:
范数等价:设‖· A 和‖· B是R上任意两种范数,若存在 ‖ ‖ 常数 C1、C2 > 0 使得 ,则称 ‖· A 和‖· B 等价。 ‖ ‖
定理1.4.1 Rn 上一切范数都等价。
定义2:设{xk}是Rn上的向量序列, 令 xk=(xk1,xk2,…,xkn)T, k=1,2,…., 又设x*=(x1*,x2*,…,xn*)T是Rn上的向量.
1 1 2 例:Hilbert 阵 H n 1 n
1 2 1 3
1 n 1
1 2 n 1
1 n
cond (H2) = 27 cond (H6) = 2.9 106
cond (H3) 748
注:现在用Matlab数学软件可以很方便 求矩阵的状态数! 定义2: 设线性方程组的系数矩阵是非奇异的,如果 cond(A)越大,就称这个方程组越病态.反之,cond(A) 越小,就称这个方程组越良态.
命题(P26,推论1) 若A对称,则有: || A ||2 ( A)
证明:|| A ||2 max ( A A) max ( A )
T 2
A对称
若 是 A 的一个特征根,则2 必是 A2 的特征根。
max ( A2 ) 2 ( A) 对某个 A 的特征根 成立
又:对称矩阵的特征根为实数,即 2(A) 为非负实数, 所以2-范数亦称为 故得证。 谱范数。
|| x || || A1 || || b || xA b 相对误差放大因子 1 || A || 又 || b || || Ax || || A || || x || || x || || b ||
|| x || || b || 1 || A || || A || || x || || b ||
定理1.4.6 对任意算子范数 || ·|| 有: ( A) || A ||
证明:由算子范数的相容性,得到 || Ax || || A || || x ||
将任意一个特征根 所对应的特征向量 u 代入 | | || u || || u || || Au || || A || || u ||
注:
cond (A) 与 所取的范数有关
常用条件数有:
cond (A)1 =‖A‖1 ‖ A 1‖1 cond (A) cond (A)2 =‖A‖ ‖ A 1‖
max ( AT A) / min ( AT A)
特别地,若 A 对称,则
max | | cond ( A)2 min | |
设 b 精确,A有误差 A ,得到的解为 x x ,即 || A || || A1 || 是关键 的误差放大因子,称为 ( A A的状态数(条件数), b A)( x x) 记为cond (A) , A( x x) A( x x) b ( A A) x ( A A) x b ( A A) x Ax x A1 A( x x)
|| A1A || || A1 || || A || 1 )
1
|| A || || A || || A || 1 || x || || A || || A || || A || 1 || x || 1 || A || || A || 1 || A || || A1 || || A || || A ||
|| x || || A1 || || A || || x x || || A || || A || || A || || A ||
1
A( I A1 A) x Ax
x ( I A1 A)1 A1 Ax (只要 A充分小,使得
§1.4 向量和矩阵范数
向量范数 ( vector norms )
定义1:
(2) || x || | | || x || 对任意 C (3) || x y || || x || || y ||
常用向量范数:
|| x || 1
(1) || x || 0 ; || x || 0 x 0
若还满足(4),称为相容的矩阵范数 (4) || AB || || A || · B || ||
例5:
设A=(aij)∈M. 定义
1 || A || 2 n
i , j 1
| a
n
ij
|
证明:这样定义的非负实数不是相容的矩阵范数.
1 1 1 1 证明:设 A , B 1 1 1 1
定义3:对任意 A, B Rmn ,称|| · 为Rmn空间的矩阵 ||
范数, 指|| · ||满足(1)-(3):
(1) || A || 0 ; || A || 0 A 0 (2) || A || | | || A || 对任意 C (3) || A B || || A || || B ||
( Error Analysis for Linear system of Equations )
思考:求解 A x b 时, A 和 b 的误差对解 x 有何影响? 设 A 精确,b 有误差 b ,得到的解为 x x ,即
A( x x) b b
1
绝对误差放大因子
Rn空间的向量范数
n || · ,对任意 x , y R 满足下列条件 ||
i1
n
| xi |
|| x ||
2
i1
n
| x |
i
2
|| x || max | x i |
1 i n
主要性质
性质1:‖-x‖=‖x‖
性质2:|‖x‖-‖y‖|≤‖x-y‖
性质3: 向量范数‖x‖是Rn上向量x的连续函数.
p p p
常用的算子范数: n
j 1 n
可证(例6)。 || A || m ax | aij | (行和范数) 1 i n
i 1
|| A ||1 m ax | aij | (列和范数) 1 j n
|| A ||2
max ( AT A) (谱范数 ( spectral norm ) )
定理1.4.4 若矩阵 A 对某个算子范数满足 ||A|| < 1,则必有
①. I A 可逆; ②.
I A
1
1 1 || A ||
证明:① 若不然,则 ( I A) x 0 有非零解,即存在非零向
x0 使得 量
Ax0 x0
|| Ax0 || 1 || x0 ||