数值微分的计算方法
数 值 微 分

2!
3!
4!
5!
代入(6.17)得
G(h) f (a) h2 f (a) h4 f (5) (a) (6.18)
3!
5!
由此可知,从截断误差的角度来看,步长越小,计算结果
越准确。但从舍入误差角度, h越小, f (a h) 与 f (a h)
越接近,直接相减会造成有效数字的严重损失。就舍
(n 1)!
(n 1)! dx
式中
(x)
n
(x
xk
)。在这一余项公式中,由于
k 0
ξ和x是未知函数,因此无法对它的第二项作出
估计,但在插值节点xk处,由于上式右端的第二 项因式 (xk ) 等于零,因而在插值节点处的导数 余项为
f (x) P(x) f (n1) ( ) (x)
(n 1)!
平均值。上述三种方法的截断误差分别为 O(h) 、
O(h2) 和 O(h2 )
如右图所示,前述三种导数
A
T
的近似值分别表示弦线 AB, C
B
AC和BC的斜率,将这三条
通过A点的弦的斜率与切线
x0-h
x0
x0+h
AT的斜率进行比较后,可见弦BC的斜率更接近于切
线AT的斜率 f (x,0 )因此从精度方面看,用中心差商 近似代替导数值更可取,则称
f
( x0
)
G(
h 2
)
1 3
G(
h) 2
G(h)
由此可以看出,只要当二分前后的2个近似值G(h)和
G( h ) 2
很接近,就可以保证 G( h ) 的截断误差很小,大
2
致等于
1 3
微分方程的数值解法

微分方程的数值解法微分方程是自然科学和现代技术领域中一种最基本的数学描述工具,它可以描述物理世界中的各种现象。
微分方程的解析解往往很难求出,因此数值解法成为解决微分方程问题的主要手段之一。
本文将介绍几种常见的微分方程的数值解法。
一、欧拉法欧拉法是微分方程初值问题的最简单的数值方法之一,它是由欧拉提出的。
考虑一阶常微分方程:$y'=f(t,y),y(t_0)=y_0$其中,$f(t,y)$表示$y$对$t$的导数,则$y(t_{i+1})=y(t_i)+hf(t_i,y_i)$其中,$h$为步长,$t_i=t_0+ih$,$y_i$是$y(t_i)$的近似值。
欧拉法的精度较低,误差随着步长的增加而增大,因此不适用于求解精度要求较高的问题。
二、改进欧拉法改进欧拉法又称为Heun方法,它是由Heun提出的。
改进欧拉法是在欧拉法的基础上进行的改进,它在每个步长内提高求解精度。
改进欧拉法的步骤如下:1. 根据当前$t_i$和$y_i$估算$y_{i+1}$:$y^*=y_i+hf(t_i,y_i),t^*=t_i+h$2. 利用$y^*$和$t^*$估算$f(t^*,y^*)$:$f^*=f(t^*,y^*)$3. 利用$y_i$、$f(t_i,y_i)$和$f^*$估算$y_{i+1}$:$y_{i+1}=y_i+\frac{h}{2}(f(t_i,y_i)+f^*)$改进欧拉法具有比欧拉法更高的精度,但是相较于其他更高精度的数值方法,它的精度仍然较低。
三、龙格-库塔法龙格-库塔法是一种广泛使用的高精度数值方法,它不仅能够求解一阶和二阶常微分方程,还能够求解高阶常微分方程和偏微分方程。
其中,经典的四阶龙格-库塔法是最常用的数值方法之一。
四阶龙格-库塔法的步骤如下:1. 根据当前$t_i$和$y_i$估算$k_1$:$k_1=f(t_i,y_i)$2. 根据$k_1$和$y_i$估算$k_2$:$k_2=f(t_i+\frac{h}{2},y_i+\frac{h}{2}k_1)$3. 根据$k_2$和$y_i$估算$k_3$:$k_3=f(t_i+\frac{h}{2},y_i+\frac{h}{2}k_2)$4. 根据$k_3$和$y_i$估算$k_4$:$k_4=f(t_i+h,y_i+hk_3)$5. 根据$k_1$、$k_2$、$k_3$和$k_4$计算$y_{i+1}$:$y_{i+1}=y_i+\frac{h}{6}(k_1+2k_2+2k_3+k_4)$龙格-库塔法的精度较高,在求解一些对精度要求较高的问题时,龙格-库塔法是一个比较好的选择。
数值微分方法

数值微分方法是一种用于求解函数微分问题的数值计算方法。
它通过在给定区间内选择一些离散点,并对这些点进行插值和逼近,来近似地求解函数的微分。
最常见的数值微分方法是差分法。
这种方法将函数的定义域划分为一系列小区间,并在这每个小区间上选择一个点,然后使用这些点的差分来近似函数的微分。
差分法的精度取决于选取的点数和区间的大小。
另一种常见的数值微分方法是中心差分法,它使用两个相邻的点之间的差的平均值来近似函数的微分。
这种方法比单纯的差分法更精确,但计算成本也更高。
除了差分法,还有其他一些数值微分方法,如样条插值法、最小二乘法、高斯积分法等。
这些方法各有优缺点,应根据具体的问题和要求选择合适的方法。
数值微分方法在科学计算、工程设计、经济学、生物学等领域都有广泛的应用。
例如,在物理学中,数值微分方法被用于模拟物体的运动和力学的相互作用;在经济学中,数值微分方法被用于预测市场的变化和制定经济政策;在生物学中,数值微分方法被用于研究生物系统的动态变化和演化。
第4节 数值微分

对于
f ( n1) ( ) R1 ( xk ) n 1 ( x k ) ( n 1)!
由 n1 ( xk ) ( xk x0 )( xk xk 1 )( xk xk 1 )( xk xn )
及
可知
f ( n 1 ) ( x ) M , x [a , b ]
M M n R1 ( xk ) ( x n x0 ) (b a ) n ( n 1)! ( n 1)! 0, ( n )
可知当分点越多时,用如下公式求数值微商越精确
f ( xk ) Ln ( xk ),
k 0,1,, n
对于插值型数值微商公式
f ( xk ) Ln ( xk ),
得到一阶中心差商数值微分公式
f ( x0 ) f ( x0 h) f ( x0 h) 2h R1 ( x0 ) O( h2 )
误差为
二阶中心差商数值微分公式为 f ( x0 h) 2 f ( x0 ) f ( x0 h) ( x0 ) f h2 误差为 R2 ( x0 ) O( h2 )
3! dx ( ) 1 2 df (4h 6hf ( )) O( h) 6 dx ( ) 1 2 df R2 ( x1 ) ( h ) O ( h2 ) R2 ( x2 ) O( h) 6 dx
总结一下,两点、三点数值微商公式:
一阶两点微商公式
f ( x1 ) f ( x0 ) f ( x0 ) h f ( x1 ) f ( x0 ) ( x1 ) f h 一阶三点微商公式 1 f ( x0 ) L2 ( x0 ) [3 f ( x0 ) 4 f ( x1 ) f ( x2 )] 2h
微分方程的数值解法

微分方程的数值解法微分方程(Differential Equation)是描述自然界中变化的现象的重要工具,具有广泛的应用范围。
对于一般的微分方程,往往很难找到解析解,这时候就需要使用数值解法来近似求解微分方程。
本文将介绍几种常见的微分方程数值解法及其原理。
一、欧拉方法(Euler's Method)欧拉方法是最基本也是最容易理解的数值解法之一。
它的基本思想是将微分方程转化为差分方程,通过给定的初始条件,在离散的点上逐步计算出函数的近似值。
对于一阶常微分方程dy/dx = f(x, y),利用欧拉方法可以得到近似解:y_n+1 = y_n + h * f(x_n, y_n)其中,h是步长,x_n和y_n是已知点的坐标。
欧拉方法的优点在于简单易懂,但是由于是一阶方法,误差较大,对于复杂的微分方程可能不够准确。
二、改进的欧拉方法(Improved Euler's Method)改进的欧拉方法又称为改进的欧拉-柯西方法,是对欧拉方法的一种改进。
它通过在每一步计算中利用两个不同点的斜率来更准确地逼近函数的值。
对于一阶常微分方程dy/dx = f(x, y),改进的欧拉方法的迭代公式为:y_n+1 = y_n + (h/2) * [f(x_n, y_n) + f(x_n+1, y_n + h * f(x_n, y_n))]相较于欧拉方法,改进的欧拉方法具有更高的精度,在同样的步长下得到的结果更接近真实解。
三、四阶龙格-库塔方法(Fourth-Order Runge-Kutta Method)四阶龙格-库塔方法是一种更高阶的数值解法,通过计算多个点的斜率进行加权平均,得到更为准确的解。
对于一阶常微分方程dy/dx = f(x, y),四阶龙格-库塔方法的迭代公式为:k1 = h * f(x_n, y_n)k2 = h * f(x_n + h/2, y_n + k1/2)k3 = h * f(x_n + h/2, y_n + k2/2)k4 = h * f(x_n + h, y_n + k3)y_n+1 = y_n + (k1 + 2k2 + 2k3 + k4)/6四阶龙格-库塔方法是数值解法中精度最高的方法之一,它的计算复杂度较高,但是能够提供更为准确的结果。
数值微分的计算方法

数值微分的计算方法数值微分是一种近似计算微分的方法,它通过利用函数在其中一点附近的取值来估计函数的导数。
在实际应用中,数值微分经常用于无法解析求得导数的函数或者在计算机中进行数值模拟等情况。
一、数值微分的基本思想f'(x)≈(f(x+h)-f(x))/h其中,h为步长,表示x的增量。
当h足够小的时候,这种近似可以得到较准确的结果。
二、前向差分法前向差分法是数值微分中最简单的一种方法,它利用函数在x和x+h两个点的取值来估计导数。
根据数值微分的定义,可以得到前向差分公式:f'(x)≈(f(x+h)-f(x))/h前向差分法的优点是计算简单,但是误差较大,主要原因是使用了x+h点上的函数值,而未使用x点之前的信息。
三、后向差分法后向差分法也是一种常见的数值微分方法,它类似于前向差分法,但是利用了x-h点上的函数值。
根据数值微分的定义,可以得到后向差分公式:f'(x)≈(f(x)-f(x-h))/h后向差分法的特点是使用了x点之前的函数值,所以可以更好地利用已知的信息来估计导数。
与前向差分法相比,后向差分法可以较好地逼近导数的真实值。
四、中心差分法中心差分法是数值微分中最常用的一种方法,它利用了函数在x-h和x+h两个点的取值。
f'(x)≈(f(x+h)-f(x-h))/(2h)中心差分法的优点是可以利用x点前后的信息来估计导数,从而减小误差。
与前向差分法和后向差分法相比,中心差分法精度更高,误差更小。
五、其他数值微分方法除了上述的常见数值微分方法外,还有一些其他方法,如高阶差分法、复合差分法等。
高阶差分法通过增加函数在更多点上的取值来提高精度,而复合差分法将函数区间等分成若干子区间,然后在每个子区间上进行数值微分。
六、数值微分的误差分析综上所述,数值微分是一种近似计算微分的方法,常用的数值微分方法包括前向差分法、后向差分法、中心差分法等。
数值微分方法的选择应根据具体问题来确定,需要考虑精度和计算复杂度等因素。
数值微分 计算方法讲解

(1)称为x0点的向前差商公式, (2) 称为x1点的向后差商公式。
i 0,1
(1) (2)
数值分析
数值分析
例1 设f(x)=lnx,x0=1.8,用2点公式计算f’(x0)。
解:计算f '( x0 )的误差为
hf "( ) h 2 2 2 ,
这里 1.8 1.8 h 或 1.8 h 1.8
k0
lk
(x)
(x x0 ) ( xk x0 )
( x xk1 )( x xk1 ) ( xk xk1 )( xk xk1 )
(x xn ) (xk xn )
称为n+1点求导公式。
数值分析
数值分析
常用的数值微分公式是 n = 1 ,2 的插值型微分公式.
当n=1时,有
f R1 ( xi ) f ( xi ) L'1( xi )
f (n1)
注意到在插值节点处
n1
(
xi
)
d dx
( x ) 0,此时的余项为
(n 1)!
(n1)
(n1)
f f Rn( xi ) f ( xi ) L'n( xi )
(
n
(i
1)!
)
n 1
(
xi
)
(n
(i
1)!
)
n k0
( xi
xk
)
ki
因此插值型求导公式常用于求节点处的导数值
n
f ( xi ) L'n( xi ) f ( xk )l 'k ( xi ) i 0,1, ..., n
f
'( xi )h
1 2
f
数值分析中的数值微分与数值积分

数值分析中的数值微分与数值积分数值微分和数值积分是数值分析领域中两个重要的概念。
它们在计算机科学、工程学和物理学等领域中有广泛的应用。
本文将介绍数值微分和数值积分的概念、原理以及一些常用的方法和技巧。
一、数值微分数值微分是通过数值方法来计算函数的导数。
导数是描述函数变化率的工具,它在物理学、经济学和生物学等领域中具有重要的作用。
1. 前向差分法(Forward Difference)前向差分法是一种简单而常用的计算导数的方法。
它利用函数在某一点上的值与函数在该点附近的一个点上的值之间的差异来估计导数。
具体公式如下:f'(x) ≈ (f(x+h) - f(x))/h其中,h为步长,为了提高精度,需要选择足够小的步长。
2. 后向差分法(Backward Difference)后向差分法与前向差分法类似,不同之处在于它利用函数在某一点上的值与函数在该点附近的一个点上的值之间的差异来估计导数。
具体公式如下:f'(x) ≈ (f(x) - f(x-h))/h同样地,步长h需要选择足够小。
3. 中心差分法(Central Difference)中心差分法是一种更加准确的数值微分方法,它利用函数在某一点上的前后两个点的值来估计导数。
具体公式如下:f'(x) ≈ (f(x+h) - f(x-h))/(2h)中心差分法相对于前向差分法和后向差分法而言,具有更高的精度。
二、数值积分数值积分是通过数值方法来计算函数的积分。
积分在物理学、经济学和统计学等领域中起着重要的作用,它可以用来计算面积、体积以及概率等。
1. 矩形法(Rectangle Method)矩形法是一种简单的数值积分方法,它利用多个矩形来逼近曲线下的面积。
具体来说,将积分区间等分为若干子区间,然后在每个子区间上选择一个点作为高度,从而构造出多个矩形。
最后,将各个矩形的面积相加,即可得到近似的积分值。
2. 梯形法(Trapezoidal Method)梯形法是一种更加准确的数值积分方法,它利用多个梯形来逼近曲线下的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值微分的计算方法内容摘要 求解数值微分问题,就是通过测量函数在一些离散点上的值,求得函数的近似导数。
本文就所学知识,归纳性地介绍了几种常用的数值微分计算方法。
并举例说明计算,实验结果表明了方法的有效性。
关键词 数值微分 Taylor 展开式 Lagrange 插值 三对角矩阵引言:数值微分即根据函数在一些离散点的函数值,推算它在某点的导数或高阶导数的近似值的方法。
常见的可以用一个能够近似代替该函数的较简单的可微函数(如多项式或样条函数等)的相应导数作为能求导数的近似值,由此也可导出多点数值微分计算公式。
当函数可微性不太好时,利用样条插值进行数值微分要比多项式插值更适宜。
1.Taylor 展开式方法理论基础:Taylor 展开式()()()()()()()()()000000022!!nnx x x x f x f x x x f x f x f x n --'''=+-++++我们借助Taylor 展开式,可以构造函数f x 在点0x x 的一阶导数和二阶导数的数值微分公式。
取步长0h则),()(2)()()(0011''20'00h x x f h x hf x f h x f +∈++=+ξξ (1)所以),()(2)()()(0011''000'h x x f h h x f h x f x f +∈--+=ξξ (2)同理),()(2)()()(0022''20'00x h x f h x hf x f h x f -∈+-=-ξξ (3) ),()(2)()()(0022''000'x h x f h h h x f x f x f -∈+--=ξξ (4)式(2)和式(4)是计算'0f x 的数值微分公式,其截断误差为O h ,为提高精度,将Taylor 展开式多写几项),()(24)(6)(2)()()(0011)4(40'''30''20'00h x x f h x f h x f h x hf x f h x f +∈++++=+ξξ ),()(24)(6)(2)()()(0022)4(40'''30''20'00x h x f h x f h x f h x hf x f h x f -∈+-+-=-ξξ两式相减得)()(62)()()(40'''2000'h O x f h h h x f h x f x f +---+= (5)上式为计算)(0'x f 的微分公式,其截断误差为O(h 2),比式(2)和(4)精度高。
两式相加,如果],[)(00)4(h x h x C x f+-∈,则有2''(4)00002()2()()()()12f x h f x f x h h f x f h ξ+-+-=- ,00(,)x h x h ξ∈-+ (6)式(6)是计算)(0''x f 的数值微分公式,其截断误差为2()O h 。
例1.设函数0ln ,2,0.1f xx x h,试用数值微分公式计算'2f 的值。
解 由式(2)、式(4)和式(5)分别计算结果为4879.01.02ln 1.2ln )2('≈-≈f5129.01.09.1ln 2ln )2('≈-≈f5004.02.09.1ln 1.2ln )2('≈-≈f与真值'20.5f相比,式(5)计算的结果精度较高。
2.数值微分的Lagrange 插值方法设函数yf x 具有1n 个实验数据:,0,1,2,,i ix f x i n ,我们希望估计'f x 的值,特别i xx 时,估计'i f x 的值。
基于插值方法的数值微分做法是,由已知,0,1,,i ix f x i n 建立Lagrange 插值多项式或Newton 插值多项式(这里以Lagrange 插值方法为例),即n n f xL x R x于是()()()'''n n f x L x R x =+当i xx 时,有'''()()()(0,1,2,...,)n i n i i f x L x R x i n =+=其中1(1)''()()()(1)!n n n i i f R x x n ξω++=+略去误差项有''()()i n i f x L x ≈实际运用中,等距节点更为常见。
设,0,1,2,,,i b ahx a ih i n nx a th ,于是有)(!)1)...(1(...!2)1(!1)(00200x R y n n t t t y t t y t y x f n n+∆+--++∆-+∆+=所以'000(1)0(1)...(1)(){...}1!!()()(1)!n ni t i n n nj j id t t t t n f x y y y dt n h f i j n ξ=+=≠--+=+∆++∆+-+∏ 3.多点数值微分公式由于高阶插值的不稳定性,实际应用时多采用n=1,2,4的两点、三点和五点等多点插值型求导公式。
(1) 两点公式(n=1)⎪⎩⎪⎨⎧=-=-=-=)(2)()(1)()(2)()(1)(''1'011'''0'010'ξξf hx R y y h x f f h x R y y h x f (7) (2)三点公式(n=2)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=-=+-==-+-=)(3)()34(21)()(6)()(21)()(3)()43(21)()3(20'2102')3(21'201')3(20'2100'ξξξf h x R y y y h x f f h x R y y h x f f h x R y y y h x f (8) (3)五点公式(n =4)⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=+-+-=-=++-+-=-=-+-=-=+-+--==-+-+-=)(5)()254836163(121)()(20)()310186(121)()(30)()88(121)()(20)()618103(121)()(5)()316364825(121)()5(40'432104')5(43'432103')5(42'43102')5(41'432101')5(40'432100'ξξξξξf h x R y y y y y h x f f h x R y y y y y h x f f h x R y y y y h x f f h x R y y y y y h x f f h x R y y y y y h x f (9) 例2.设ln f x x ,取0.05h,分别用三点公式和五点公式计算'2f 的近似值。
解:由式(8)有499802861.0))10.2()05.2(4)2(3(05.021)2('=-+-⨯=f f f f 500104205.0))05.2()95.1((05.021)2('=+-⨯=f f f 499779376.0))2(3)95.1(4)90.1((05.021)2('=+-⨯=f f f f 由式(9)有499999843.0))10.2()05.2(6)95.1(8)90.1((05.0121)2('=-+-⨯=f f f f f与真值'20.5f 相比,三点公式已有相当满意精度,而五点公式的结果是十分满意的。
4.数值微分的隐式格式前述的Taylor 展式法和数值微分格式均称为显式格式,即直接由已知的(0,1,2,,)i f x in ,经过适当的算术四则运算,立即可得'i f x 的近似值。
显式格式优点是计算方便,工作量小,缺点是数值不稳定。
为克服后一缺点,隐式格式常常具有数值稳定性。
数值微分的隐式格式建立方法常用通过Taylor 展开式方法或数值积分方法等不同途径。
首先我们用Taylor 展开式方法来推导数值微分的隐式格式。
由式(5)和式(6),我们用k x 代替0x 得:)()(6)]()([21)(4'''2'h O x f h h x f h x f h x f k k k k +---+=)(12)]()(2)([1)()4(22''ξf h h x f x f h x f h x f k k k k --+-+=所以也有)(12)]()(2)([1)()5(2'''2'''ξf h h x f x f h x f h x f k k k k --+-+= 将最后'"k fx 表达式代入'k f x 表达式可得)()]()(2)([61)]()([21)(4''''h O h x f x f h x f h x f h x f h x f k k k k k k +-+-+---+=略去误差项4O h ,并且k m 表示'k f x 的近似值,则有),...,2,1()]()([341111n k x f x f hm m m k k k k k =-=++-++- 同样,用数值积分方法也可推导数值微分的隐式格式。
),...,2,1()(')(1111n k dxx f dx x f k k k k x x k x x ==⎰⎰+-+-根据simpson 公式)]()2(4)([6)(b f ba f a f ab dx x f ba +++-=⎰有),...,2,1(],4[62)()(1111n k m m m hx f x f k k k k k =++=-+--+),...,2,1()]()([341111n k x f x f hm m m k k k k k =-=++-++-上式是关于1n个未知量01,,n m m m 的1n 个方程,如果已知0m''0,nn f x m f x ,记)]()([311-+-=k k k x f x f hd ,故有方程组:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----n n n n n m d d d dm d m m m m m 123201123214114114114114 (10) 这就是求121,,,n m m m 的线性方程组。