TEGO Foamex 825(迪高825)技术资料

合集下载

TEGO润湿分散剂

TEGO润湿分散剂

Alberdingk® U9900 VP面漆 ,5%黄色浆,100um刮涂
颜料色浆参考配方
Sicotrans Rockwood Sicotrans Sicotrans LANXESS Sicotrans
C.I.
Yellow L 1915 PY 42
Yellow PY 42
Red L 2816 PR 101
酞菁蓝 (PB 15:4) Heliogen Blue L 7101 F 30.7 33.9 4.3 1.0 0.1
30.0 100.0 5.7%
碳黑 (Pbk 7) Special Black 4 34.5 33.4 8.4 1.0 0.1 0.6 22.0 100.0 15.3%
TEGO® Dispers 752 W
Red L 2817 PR 101
Red 130M PR 101
Orange L 2416
-
Water TEGO® Dispers 752 W
56.9
43.9
43.9
43.7
39.9
43.9
12.0
16.0
16.0
16.0
20.0
16.0
AMP 90
1.0
-
-
0.2
-
-
颜料
30.0
40.0
40.0
40.0
Competitor 19 TEGO® Dispers 757 W
Shear rate [1/s]
Industrial waterborne 1K PU acrylate coating
TEGO润湿分散剂
涂料中颜料的润湿与稳定
TEGO® Dispers
润湿分散剂 - 颜料分散原理

N08825是什么材料

N08825是什么材料

NO8825是什么材料,NO8825是什么材质, NO8825是什么价格?1概述高镍成份使合金具有有效的抗应力腐蚀开裂性。

在各种介质中的耐腐蚀性都很好,如硫酸、磷酸、硝酸和有机酸,碱金属如氢氧化钠、氢氧化钾和盐酸溶液。

Incoloy 825较高的综合性能表现在腐蚀介质多样的核燃烧溶解器中,如硫酸、硝酸和氢氧化钠都在同一个设备中处理。

2NO8825化学成分与相近牌号NO8825相近牌号NS142(中国)、NC21FeDu (法国)、W.N r.2.4858 NiCr21Mo (德国) NA16 (英国) NO8825、UNS NO8825(美国)NiFe30Cr21Mo3(ISO)NO8825化学成分镍Ni:38-46铬Cr:19.5-23.5铁Fe:余量碳C:≤0.025锰Mn:≤1.0硅Si:≤0.5钼Mo:2.5-3.5铜Cu:1.5-3.0钴Co:≤1.0铝Al:≤0.2钛Ti:0.6-1.23NO8825合金特性●好的耐应力腐蚀开裂性能●好的耐点腐蚀和缝隙腐蚀性能●很好的抗氧化性和非氧化性热酸性能●在室温和高达550℃的高温时都具有很好的机械性能●具有制造温度达450℃的压力容器的认证4NO8825合金应用领域编辑Incoloy 825广泛应用于各种使用温度不超过550℃的工业领域。

典型应用为:●硫酸酸洗工厂用的加热管、容器、筐及链等。

●海水冷却热交换器、海洋产品管道系统、酸性气体环境管道。

●磷酸生产中的热交换器、蒸发器、洗涤、浸渍管等。

●石油精炼中的空气热交换器●食品工程●化工流程●压氧气应用的阻燃合金5NO8825 焊接Incoloy 825适合采用任何传统焊接工艺与同种材料或其他金属焊接,如钨电极惰性气体保护焊、等离子弧焊、手工亚弧焊、金属极惰性气体保护焊、熔化极惰性气体保护焊,其中脉冲电弧焊是首选方案。

在采用手工电弧焊时,推荐使用(Ar+He+H2+CO2)多种成份混合的保护气体。

水性塑胶涂料配方设计基础

水性塑胶涂料配方设计基础
又由于影响因素错综复杂,特别是目前塑胶材质的多样化,加上涂 料从油性向水性方向的发展,设计塑胶材质用水性涂料并建立一个符合 实际使用要求的水性塑胶涂料配方是一个长期和复杂的课题,需要反复 进行必要的试验并且根据现场情况进行调整,才能得到符合使用要求的 涂料配方。

水性塑胶涂料基本组成
常用助剂包括颜料分散剂、流平剂、消泡剂、催干剂、增塑剂、防霉剂、 抗结皮剂、防紫外线剂、流变剂等。
例如:气体化学:表面活性剂SURFYNOL 104E/104BC;海名斯:聚氨酯缔合 流变助剂 RHEOLATE 266粘土类流变助剂: BENTONE DE BENTONE EW BENTONE DY CE BENTONE LT 潤濕分散劑 NUOSPERSE W-22 防腐防黴劑 DEUADD MB-11; 毕克助剂:润湿分散剂 DISPER BYK-181 BYK-190 / BYK-191 DISPER BYK-192 底材润湿和表面滑爽性 BYK-333/BYK-346/BYK-347 /BYK-349 消泡剂 BYK011/BYK-024;蜡乳液和分散体 AQUATIX 8421; 迪高助剂:润湿分散剂 DISPERS 651/DISPERS 750W, 消泡剂 FOAMEX 805 FOAMEX 822 FOAMEX 825 ,脱泡剂 AIREX 901W AIREX 902W ,表面控制助剂 GLIDE 100 GLIDE 110 GLIDE 410 ; 道康宁助剂DOW CORNING; 陶氏DOW:聚氨酯增稠剂 RM-8W/RM-12W/SCT-275,阴 离子碱溶胀型增稠剂 ASE-60;OMG BORCHERS GMBH: 湿润剂和分散剂 BORCHI GEN SN 95; 兄弟股份公司:聚氨酯增稠剂 BORCHI GEL PW 25; 巴斯夫BASF(汽 巴CIBA):丙烯酸酯共聚物增稠剂 VISCALEX HV 30;中和剂 AMP-95/ DMEA(N,N二甲基乙醇胺/)氨水(NH4.H20)-28%/ 三乙胺TEA等

德国TEGO迪高助剂迪高消泡剂产品应用介绍

德国TEGO迪高助剂迪高消泡剂产品应用介绍

德国TEGO迪高助剂迪高消泡剂产品应用介绍tego迪高助剂的迪高消泡剂有俩种类型一种是脱泡剂Airex系列和消泡剂Foamex 系列,消泡剂应用于水性、溶剂型和UV固化体系。

消泡剂和脱泡剂必须在效率和相容性之间找到正确的平衡点。

而且在高粘度和厚涂(如环氧地平漆)中应用时,必须使用高效脱泡剂。

消泡剂和脱泡剂都是作用在表面活性剂稳定的气液界面,消泡剂主要用于消除大泡,同时消除部分微泡,脱泡剂特别应用于消除微泡,但也能消除大泡的作用。

消泡剂和脱泡剂必须在效率和相容性之间找到正确的平衡。

因为相容性太好,消泡/脱泡效果弱,相容性太羟,会带来表面缺陷,如鱼眼、混浊、降低光泽、缩孔等.tego脱泡剂Airex产品应用情况:脱泡剂的选择要考虑对重涂性和层间附着力影响,非硅类脱泡剂在一些高速施工条件下,不影响重印性,并且高效脱泡。

如TEGO920非硅类脱泡剂迪高Airex962有机改性聚硅氧烷和有消泡功能的聚合物溶液,应用于溶剂型汽车漆、工业漆、木器漆、非常好的清漆透明性,通用性非常好,相容性优异,脱泡性能良好,可用于罩光油或色漆。

tego931和tegp932一款迪高消泡剂非常突出的氟硅氧烷改性有机硅脱泡剂,非常高效的脱泡性能和相容性。

可用于哑光和高光体系,适用于底漆和面漆中,广泛应用于汽车漆、工业漆、木器漆等。

tego900脱泡剂,环氧地坪漆中最常用到的消泡剂,是一款有机改性聚硅氧烷脱泡剂,含疏水二氧化硅,特别适用于色漆配方,广泛应用于环氧类地坪涂料,丝网印刷油墨,辐射固化清漆,木器涂料和皮革涂料等,特别适用于哑光漆、色漆及UV丝印油墨中。

在溶剂型,无溶剂型和辐射固化涂料中脱泡性能优异的脱泡剂。

迪高消泡剂Foammex系列消泡剂的产品应用情况tego迪高消泡剂Foamex系列,在添加到涂料及油墨中必须认真选择,妥善地混合在体系里,必须避免出现表面缺陷。

以求达到低的表面张力,高的渗透能力,高的铺展能力。

tego825消泡剂,特别适用于纯丙和苯丙体系。

Incoloy 825化学成分Incoloy 825力学性能

Incoloy 825化学成分Incoloy 825力学性能

上海梵普实业研制、加工高品质哈氏合金、高温合金、镍基合金。

Incoloy 825Incoloy825特性及应用领域概述:Incoloy 825是钛稳定化处理的全奥氏体镍铁铬合金,并添加了铜和钼。

Incoloy 825是一种通用的工程合金,在氧化和还原环境下都具有抗酸和碱金属腐蚀性能。

高镍成份使合金具有有效的抗应力腐蚀开裂性。

在各种介质中的耐腐蚀性都很好,如硫酸、磷酸、硝酸和有机酸,碱金属如氢氧化钠、氢氧化钾和盐酸溶液。

Incoloy 825较高的综合性能表现在腐蚀介质多样的核燃烧溶解器中,如硫酸、硝酸和氢氧化钠都在同一个设备中处理。

特性●好的耐应力腐蚀开裂性能●好的耐点腐蚀和缝隙腐蚀性能●很好的抗氧化性和非氧化性热酸性能●在室温和高达550℃的高温时都具有很好的机械性能●具有制造温度达450℃的压力容器的认证Incoloy825相近牌号:NS142(中国)、NC21FeDu (法国)、W.N r.2.4858 NiCr21Mo (德国)NA16 (英国)Incoloy825、UNS NO8825(美国)NiFe30Cr21Mo3(ISO)Incoloy825 化学成份:镍Ni:38-46铬Cr:19.5-23.5铁Fe:余量碳C:≤0.025锰Mn:≤1.0硅Si:≤0.5钼Mo:2.5-3.5铜Cu:1.5-3.0钴Co:≤1.0铝Al:≤0.2钛Ti:0.6-1.2Incoloy 825为面心立方晶格结构。

Incoloy825工艺性能与要求:热加工1、合适的热加工温度为1150-900℃,冷却方式可以是水淬或快速空冷;2、热加工时,工件可直接送入已经到温的炉子。

炉子到温后,材料的保温时间为每100mm厚度60分钟。

保温到规定的时间后立即出炉,在规定的温度范围内加工。

如果金属的温度降到加工温度以下,应再次加热;3、热加工后应及时退火以保证得到耐腐蚀性能和适合的晶体结构。

冷加工1、冷加工应在固溶处理后进行,加工硬化率和奥氏体不锈钢接近,因此加工设备应作相应调整。

Incoloy825合金

Incoloy825合金

Incoloy825合金简介上海康晟航材位于上海市嘉定高新技术产业园区,具有高温合金、耐蚀合金、精密合金、钛合金等特种合金的研发、生产执照资质的高新技术型企业,下面就由康晟航材带大家从不同的角度了解一下Incoloy825合金的特性:Incoloy825概述Incoloy825是钛稳定化处理的全奥氏体镍铁铬合金,并添加了铜和钼。

Incoloy825具有以下特性:●好的耐应力腐蚀开裂性能。

●好的耐点腐蚀和缝隙腐蚀性能●很好的抗氧化性和非氧化性热酸性能●在室温和高达550℃的高温时都具有很好的机械性能●具有制造温度达450℃的压力容器的认证Incoloy825牌号和标准:Incoloy825物理及化学性能Incoloy825 密度:ρ=8.14g/cm3Incoloy825力学性能下表中所列性质适用于Incoloy825合金的指定规格产品软化退火(稳定化退火)后的情况。

非标准尺寸材料的特殊性能可以根据特定应用场合的要求提供。

室温平均值:轴向>=150J/cm2径向>=100J/cm2时间-温度-敏化曲线Incoloy825组织结构Incoloy825条件应力值:达到90%屈服强度的高条件应力值可应用于允许略大一点变形量的应用场合。

这些应力引起的永久应力会导致尺寸的变化,因此不推荐用于法兰和密封垫圈连接件。

Incoloy825金相结构:Incoloy825合金具有稳定的面心立方结构。

化学成分和恰当的热处理保证了耐腐蚀性不受敏化性的削弱。

Incoloy825耐腐蚀性:Incoloy825是一种通用的工程合金,在氧化和还原环境下都具有抗酸和碱金属腐蚀性能。

高镍成份使合金具有有效的抗应力腐蚀开裂性。

在各种介质中的耐腐蚀性都很好,如硫酸、磷酸、硝酸和有机酸,碱金属如氢氧化钠、氢氧化钾和盐酸溶液。

Incoloy825较高的综合性能表现在腐蚀介质多样的核燃烧溶解器中,如硫酸、硝酸和氢氧化钠都在同一个设备中处理。

迪高产品应用

迪高产品应用


UV

















































































推荐的助剂
TEGO Wet KL 245 适用于水性配方和溶剂型配方,重涂性佳。主要应用于:汽车涂料,塑胶漆, 工业涂料,木器漆,喷墨油墨等。
●●
TEGO®Foamex 805


●●
●●

TEGO®Foamex 8050 ●



TEGO®Foamex 810 ●
●●

●●
TEGO®Foamex 815N
●●

●●

TEGO®Foamex 822
●●●
●●
●●●

TEGO®Foamex 823
●●●
●●
●●●●
TEGO®Foamex 825


MAX825中文资料

MAX825中文资料

_______________General DescriptionThe MAX823/MAX824/MAX825* microprocessor (µP)supervisory circuits combine reset output, watchdog,and manual-reset input functions in a 5-pin SOT23-5package. They significantly improve system reliability and accuracy compared to separate ICs or discrete components. The MAX823/MAX824/MAX825 are specifically designed to ignore fast transients on V CC .Five preprogrammed reset threshold voltages are available, designated by the following package suffixes: L = 4.63V, M = 4.38V, T = 3.08V, S = 2.93V,and R = 2.63V. All three devices have an active-low reset output, which is guaranteed to be in the correct state for V CC down to 1V. The MAX824/MAX825 also have an active-high reset output. The following Selector Guide explains the functions offered in this series of parts.________________________ApplicationsBattery-Powered Computers and Controllers Embedded Controllers Intelligent Instruments Automotive Systems Critical µP MonitoringPortable/Battery-Powered Equipment____________________________Featureso Precision Monitoring of +3V, +3.3V, and +5V Power Supplies o Operating Current: 10µA (MAX823L/M)3µA (MAX825T/S/R)o Fully Specified Over Temperature o 140ms Min Power-On Reseto Guaranteed RESET Valid to V CC = 1V o Power-Supply Transient Immunity o Watchdog Timer with 1.6sec Timeout (MAX823/MAX824)o Manual-Reset Input (MAX823/MAX825)o No External ComponentsMAX823/MAX824/MAX8255-Pin Microprocessor Supervisory Circuits________________________________________________________________Maxim Integrated Products1__________________________________________________________Pin Configurations_____________________Selector Guide19-0487; Rev 1; 6/97______________Ordering Information†Insert the desired suffix letter (from the table below) into the blank to complete the part number.For free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 408-737-7600 ext. 3468.Typical Operating Circuit appears at end of data sheet.Marking Information appears at end of data sheet.*Patents PendingM A X 823/M A X 824/M A X 8255-Pin Microprocessor Supervisory Circuits 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = +4.75V to +5.5V for MAX82_L, V CC = +4.5V to +5.5V for MAX82_M, V CC = +3.15V to +3.6V for MAX82_T, V CC = +3V to +3.6V for MAX82_S, V CC = +2.7V to +3.6V for MAX82_R, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC ........................................................................-0.3V to +6.0V All Other Pins..............................................-0.3V to (V CC + 0.3V)Input Current, All Pins Except RESET and RESET ..............20mA Output Current, RESET, RESET ..........................................20mA Rate of Rise, V CC ............................................................100V/µs Continuous Power Dissipation (T A = +70°C)SOT23-5 (derate 7.1mW/°C above +70°C)...................571mWOperating Temperature RangeMAX82_EUK.....................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CELECTRICAL CHARACTERISTICS (continued)(V CC= +4.75V to +5.5V for MAX82_L, V CC= +4.5V to +5.5V for MAX82_M, V CC= +3.15V to +3.6V for MAX82_T, V CC= +3V to +3.6V for MAX82_S, V CC= +2.7V to +3.6V for MAX82_R, T A= T MIN to T MAX, unless otherwise noted. Typical values are at T A= +25°C.) (Note 1)Note 1:Over-temperature limits are guaranteed by design and not production tested.Note 2:The RESET short-circuit current is the maximum pull-up current when RESET is driven low by a µP bidirectional reset pin. Note 3:WDI is internally serviced within the watchdog period if WDI is left unconnected.Note 4:The WDI input current is specified as the average input current when the WDI input is driven high or low. The WDI input is designed to drive a three-stated-output device with a 10µA maximum leakage current and a maximum capacitive load of200pF. This output device must be able to source and sink at least 200µA when active.MAX823/MAX824/MAX8255-Pin Microprocessor Supervisory Circuits _______________________________________________________________________________________3M A X 823/M A X 824/M A X 8255-Pin Microprocessor Supervisory Circuits 4_________________________________________________________________________________________________________________________________Typical Operating Characteristics(MAX823L, V CC = +5V, T A = +25°C, unless otherwise noted.)12.57.5-40-2040100V CC SUPPLY CURRENT vs. TEMPERATURE8.58.09.011.512.0M A X 823/4/5-01TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )020806010.511.09.510.0250150-40-2040100RESET TIMEOUT PERIOD vs. TEMPERATURE170160180230240M A X 823/4/5-02TEMPERATURE (°C)R E S E T T I M E O U T P E R I O D (m s )020806021022019020030-40-2040100RESET COMPARATOR PROPAGATION DELAYvs. TEMPERATURE525TEMPERATURE (°C)P R O P A G A T I O N D E L A Y (µs )02080602010152.01.0-40-2040100WATCHDOG TIMEOUT PERIODvs. TEMPERATURE1.21.11.31.81.9M A X 823/4/5-04TEMPERATURE (°C)W A T C H D O G T I M E O U T P E R I O D (s e c )2080601.61.71.41.5 1.060.940.960.981.001.021.04-40-2040100NORMALIZED RESET THRESHOLD VOLTAGE vs. TEMPERATUREM A X 823/4/5-05TEMPERATURE (°C)N O R M A L I Z E D R E S E T T H R E S H O L D (V )020806002040 60 80 10012014016040100200180120140160MAXIMUM V CC TRANSIENT DURATION vs. RESET THRESHOLD OVERDRIVERESET THRESHOLD OVERDRIVE (mV), V RST - V CCT R A N S I E N T D U R A T I O N (µs )208060MAX823/MAX824/MAX8255-Pin Microprocessor Supervisory Circuits_______________________________________________________________________________________5______________________________________________________________Pin DescriptionFigure 1. Functional DiagramM A X 823/M A X 824/M A X 8255-Pin Microprocessor Supervisory Circuits 6______________________________________________________________________________________________________Detailed DescriptionRESET OutputA microprocessor’s (µP’s) reset input starts the µP in a known state. The MAX823/MAX824/MAX825 µP super-visory circuits assert a reset to prevent code-execution errors during power-up, power-down, and brownout conditions. RESET is guaranteed to be a logic low for V CC down to 1V. Once V CC exceeds the reset thresh-old, an internal timer keeps RESET low for the specified reset timeout period (t RP ); after this interval, RESET returns high (Figure 2).If a brownout condition occurs (V CC dips below the reset threshold), RESET goes low. Each time RESET is asserted it stays low for the reset timeout period. Any time V CC goes below the reset threshold the internal timer restarts. RESET both sources and sinks current.RESET on the MAX824/MAX825 is the inverse of RESET .Manual-Reset Input (MAX823/MAX825)Many µP-based products require manual-reset capabili-ty, allowing the operator, a test technician, or external logic circuitry to initiate a reset. On the MAX823/MAX825, a logic low on MR asserts reset. Reset remains asserted while MR is low, and for t RP (200ms nominal)after it returns high. MR has an internal 52k Ωpull-up resistor, so it can be left open if not used. This input can be driven with CMOS-logic levels or with open-drain/collector outputs. Connect a normally open momentary switch from MR to GND to create a manual-reset func-tion; external debounce circuitry is not required. If MR is driven from long cables or the device is used in a noisy environment, connect a 0.1µF capacitor from MR to GND to provide additional noise immunity.Watchdog Input (MAX823/MAX824)In the MAX823/MAX824, the watchdog circuit monitors the µP’s activity. If the µP does not toggle the watchdog input (WDI) within t WD (1.6sec), reset asserts. The inter-nal 1.6sec timer is cleared by either a reset pulse or by toggling WDI, which detects pulses as short as 50ns.While reset is asserted, the timer remains cleared and does not count. As soon as reset is released, the timer starts counting (Figure 3).Disable the watchdog function by leaving WDI uncon-nected or by three-stating the driver connected to WDI.The watchdog input is internally driven low during the first 7/8 of the watchdog timeout period and high for the last 1/8 of the watchdog timeout period. When WDI is left unconnected, this internal driver clears the 1.6sec timer every 1.4sec. When WDI is three-stated or uncon-nected, the maximum allowable leakage current is 10µA and the maximum allowable load capacitance is 200pF.__________Applications InformationWatchdog Input CurrentThe MAX823/MAX824 WDI inputs are internally driven through a buffer and series resistor from the watchdog counter (Figure 1). When WDI is left unconnected, the watchdog timer is serviced within the watchdog timeout period by a low-high-low pulse from the counter chain.For minimum watchdog input current (minimum overall power consumption), leave WDI low for the majority of the watchdog timeout period, pulsing it low-high-low once within the first 7/8 of the watchdog timeout period to reset the watchdog timer. If WDI is externally driven high for the majority of the timeout period, up to 160µA can flow into WDI.Figure 2. Reset Timing Diagram Figure 3. MAX823/MAX824 Watchdog Timing RelationshipInterfacing to µPs with Bidirectional Reset PinsThe RESET output maximum pull-up current is 800µA for L/M versions (400µA for T/S/R versions). This allows µPs with bidirectional resets, such as the 68HC11, to force RESET low when the MAX823/MAX824/MAX825are pulling RESET high (Figure 4).Negative-Going V CC TransientsThese supervisors are relatively immune to short-duration, negative-going V CC transients (glitches), which usually do not require the entire system to shut down.Resets are issued to the µP during power-up, power-down, and brownout conditions.The Typical Operating Characteristics show a graph of the MAX823L’s Maximum V CC Transient Duration vs.Reset Threshold Overdrive, for which reset pulses are not generated. The graph was produced using nega-tive-going V CC pulses, starting at 5V and ending below the reset threshold by the magnitude indicated (reset threshold overdrive). The graph shows the maximum pulse width that a negative-going V CC transient can typically have without triggering a reset pulse. As the amplitude of the transient increases (i.e., goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a V CC transient that goes 100mV below the reset threshold and lasts for 15µs or less will not trigger a reset pulse.An optional 0.1µF bypass capacitor mounted close to V CC provides additional transient immunity.Watchdog Software Considerations(MAX823/MAX824)One way to help the watchdog timer monitor software execution more closely is to set and reset the watchdog input at different points in the program, rather than pulsing the watchdog input high-low-high or low-high-low. This technique avoids a stuck loop, in which the watchdog timer would continue to be reset inside the loop, keeping the watchdog from timing out.Figure 5 shows an example of a flow diagram where the I/O driving the watchdog input is set high at the begin-ning of the program, set low at the beginning of every subroutine or loop, then set high again when the pro-gram returns to the beginning. If the program should hang in any subroutine, the problem would quickly be corrected, since the I/O is continually set low and the watchdog timer is allowed to time out, causing a reset or interrupt to be issued. As described in the Watchdog Input Current section, this scheme results in higher time average WDI input current than does leaving WDI low for the majority of the timeout period and periodically pulsing it low-high-low.MAX823/MAX824/MAX8255-Pin Microprocessor Supervisory Circuits_______________________________________________________________________________________7Figure 4. Interfacing to µPs with Bidirectional Resets Figure 5. Watchdog Flow DiagramM A X 823/M A X 824/M A X 8255-Pin Microprocessor Supervisory Circuits Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-377-7600©1997 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.__________Typical Operating Circuit___________________Chip Information______________Package InformationTRANSISTOR COUNT: 607。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TEGO Foamex 825(迪高825)
用于水性配方的消泡剂乳液
特性
●可普遍用于清漆和色漆配方中
●高效能
应用实例
● 木器家具涂料和镶木地板漆推荐用量:0.1~1.0% ● 建筑涂料推荐用量:0.1~1.0% ● 工业涂料推荐用量:0.1~0.5% ● 罩印光油推荐用量:0.1~1.0% ● 基于丙烯酸乳液和干酪素乳液体系的皮革
推荐用量:0.1~1.0% 涂料
(以供货形式对总配方计)
电话135.370.070.10 李小姐 QQ197.973.11.18
工艺说明
●使用前搅拌。

●可在研磨阶段或调漆阶段中加入。

●预稀释或按供应形式直接添加于涂料中均可。

●消泡剂的长效性取决于体系,并应在不同配方中予以测试。

(建议
在不同温度下实验)。

●水可稀释。

●稀释液储存稳定性有限。

●鉴于影响稳定性,不要用有机溶剂稀释乳液。

技术数据
●外观白色,触变性液体
●化学成分聚醚硅氧烷共聚乳液,含气相二氧化硅●不挥发物约26%
●溶剂水
包装储存
●30kg/塑料桶
●210kg/塑料桶
●在无冰冻,40度以下的未开封的原包装中储存,6个月。

相关文档
最新文档