高考复数专题及答案百度文库

合集下载

高考数学复数习题及答案

高考数学复数习题及答案

高考复习试卷(附参考答案)一、选择题(每小题只有一个选项是正确的,每小题5分,共100分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(2013·山东)复数3-i1-i等于 ( )A .1+2iB .1-2iC .2+iD .2-i 答案:C解析:3-i 1-i =(3-i)(1+i)(1-i)(1+i)=4+2i 2=2+i.故选C.2.(2013·宁夏、海南)复数3+2i 2-3i -3-2i2+3i=( )A .0B .2C .-2iD .2i答案:D解析:3+2i 2-3i -3-2i 2+3i =(3+2i)(2+3i)(2-3i)(2+3i)-(3-2i)(2-3i)(2-3i)(2+3i)=13i 13--13i 13=i +i =2i.3.(2013·陕西)已知z 是纯虚数,z +21-i是实数,那么z 等于( )A .2iB .iC .-iD .-2i 答案:D解析:由题意得z =a i.(a ∈R 且a ≠0). ∴z +21-i =(2+a i)(1+i)(1-i)(1+i)=2-a +(a +2)i 2,则a +2=0,∴a =-2.有z =-2i ,故选D.4.(2013·武汉市高三年级2月调研考试)若f (x )=x 3-x 2+x -1,则f (i)= ( )A .2iB .0C .-2iD .-2 答案:B解析:依题意,f (i)=i 3-i 2+i -1=-i +1+i -1=0,选择B.5.(2013·北京朝阳4月)复数z =2-i1+i(i 是虚数单位)在复平面内对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:D解析:z =2-i 1+i =12-32i ,它对应的点在第四象限,故选D.6.(2013·北京东城3月)若将复数2+i i 表示为a +b i(a ,b ∈R ,i 是虚数单位)的形式,则ba的值为( )A .-2B .-12C .2 D.12答案:A解析:2+i i =1-2i ,把它表示为a +b i(a ,b ∈R ,i 是虚数单位)的形式,则b a的值为-2,故选A.7.(2013·北京西城4月)设i 是虚数单位,复数z =tan45°-i·sin60°,则z 2等于 ( ) A.74-3i B.14-3i C.74+3i D.14+3i 答案:B解析:z =tan45°-i·sin60°=1-32i ,z 2=14-3i ,故选B.8.(2013·黄冈中学一模)过原点和3-i 在复平面内对应的直线的倾斜角为 ( ) A.π6 B .-π6C.23πD.56π 答案:D解析:3-i 对应的点为(3,-1),所求直线的斜率为-33,则倾斜角为56π,故选D. 9.设a 、b 、c 、d ∈R ,若a +b ic +d i为实数,则( )A .bc +ad ≠0B .bc -ad ≠0C .bc -ad =0D .bc +ad =0 答案:C解析:因为a +b i c +d i =(a +b i)(c -d i)c 2+d 2=ac +bd c 2+d 2+bc -ad c 2+d 2i ,所以由题意有bc -adc 2+d2=0⇒bc -ad =0.10.已知复数z =1-2i ,那么1z = ( )A.55+255i B.55-255i C.15+25iD.15-25i 答案:D 解析:由z =1-2i 知z =1+2i ,于是1z =11+2i =1-2i 1+4=15-25i.故选D.11.已知复数z 1=3-b i ,z 2=1-2i ,若z 1z 2是实数,则实数b 的值为( )A .6B .-6C .0 D.16答案:A解析:z 1z 2=3-b i 1-2i =(3-b i)(1+2i)(1-2i)(1+2i)=(3+2b )+(6-b )i 5是实数,则实数b 的值为6,故选A.12.(2013·广东)设z 是复数,α(z )表示满足z n =1的最小正整数n ,则对虚数单位i ,α(i )=( ) A .2 B .4 C .6 D .8 答案:B解析:α(i )表示i n =1的最小正整数n ,因i 4k =1(k ∈N *),显然n =4,即α(i )=4.故选B. 13.若z =12+32i ,且(x -z )4=a 0x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 2等于( )A .-12+32i B .-3+33iC .6+33iD .-3-33i 答案:B解析:∵T r +1=C r 4x4-r(-z )r , 由4-r =2得r =2,∴a 2=C 24(-z )2=6×(-12-32i )2 =-3+33i .故选B.14.若△ABC 是锐角三角形,则复数z =(cos B -sin A )+i (sin B -cos A )对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:B解析:∵△ABC 为锐角三角形, ∴A +B >90°,B >90°-A , ∴cos B <sin A ,sin B >cos A , ∴cos B -sin A <0,sin B -cos A >0, ∴z 对应的点在第二象限.15.如果复数2-bi1+2i(其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b 等于( )A. 2B.23 C .-23D .2答案:C解析:2-bi 1+2i =(2-bi )(1-2i )5=(2-2b )5+(-4-b )5i由2-2b 5=--4-b 5得b =-23.16.设函数f (x )=-x 5+5x 4-10x 3+10x 2-5x +1,则f (12+32i )的值为( )A .-12+32i B.32-12iC.12+32i D .-32+12i 答案:C解析:∵f (x )=-(x -1)5∴f (12+32i )=-(12+32i -1)5=-ω5(其中ω=-12+32i )=-ω=-(-12-32i )=12+32i .17.若i 是虚数单位,则满足(p +qi )2=q +pi 的实数p ,q 一共有 ( )A .1对B .2对C .3对D .4对 答案:D解析:由(p +qi )2=q +pi 得(p 2-q 2)+2pqi =q +pi ,所以⎩⎪⎨⎪⎧ p 2-q 2=q ,2pq =p .解得⎩⎪⎨⎪⎧ p =0,q =0,或⎩⎪⎨⎪⎧p =0,q =-1,或⎩⎨⎧p =32,q =12,或⎩⎨⎧p =-32,q =12,因此满足条件的实数p ,q 一共有4对.总结评述:本题主要考查复数的基本运算,解答复数问题的基本策略是将复数问题转化为实数问题来解决,解答中要特别注意不要出现漏解现象,如由2pq =p 应得到p =0或q =12.18.已知(2x 2-x p )6的展开式中,不含x 的项是2027,那么正数p 的值是 ( )A .1B .2C .3D .4 答案:C解析:由题意得:C 46·1p 4·22=2027,求得p =3.故选C.总结评述:本题考查二项式定理的展开式,注意搭配展开式中不含x 的项,即找常数项.19.复数z =-lg(x 2+2)-(2x +2-x -1)i (x ∈R )在复平面内对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:C解析:本题考查复数与复平面上的点之间的关系,复数与复平面上的点是一一对应的关系,即z =a +bi ,与复平面上的点Z (a ,b )对应,由z =-lg(x 2+2)-(2x +2-x -1)i (x ∈R )知:a =-lg(x 2+2)<0,又2x +2-x -1≥22x ·2-x -1=1>0;∴-(2x +2-x -1)<0,即b <0.∴(a ,b )应为第三象限的点,故选C.20.设复数z +i (z ∈C )在映射f 下的象为复数z 的共轭复数与i 的积,若复数ω在映射f 下的象为-1+2i ,则相应的ω为( ) A .2 B .2-2i C .-2+i D .2+i答案:A解析:令ω=a +bi ,a ,b ∈R ,则ω=[a +(b -1)i ]+i , ∴映射f 下ω的象为[a -(b -1)i ]·i =(b -1)+ai =-1+2i .∴⎩⎪⎨⎪⎧ b -1=-1,a =2.解得⎩⎪⎨⎪⎧b =0,a =2.∴ω=2. 第Ⅱ卷(非选择题 共50分)二、填空题(本大题共5小题,每小题4分,共20分,请将答案填在题中的横线上。

高考数学《复数》专项练习(含答案)

高考数学《复数》专项练习(含答案)

【复数】专项练习参考答案1.〔2021全国Ⅰ卷,文2,5分〕设(12i)(i)a ++的实部与虚部相等,其中a 为实数,那么a =( )〔A 〕−3 〔B 〕−2 〔C 〕2 〔D 〕3 【答案】A【解析】(12i)(i)2(12)i a a a ++=-++,由,得a a 212+=-,解得3-=a ,选A .2.〔2021全国Ⅰ卷,理2,5分〕设(1i)1i x y +=+,其中x ,y 是实数,那么i =x y +( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】B【解析】因为(1i)=1+i,x y +所以i=1+i,=1,1,|i |=|1+i |x x y x y x x y +==+=所以故应选B .3.〔2021全国Ⅱ卷,文2,5分〕设复数z 满足i 3i z +=-,那么z =( ) 〔A 〕12i -+ 〔B 〕12i - 〔C 〕32i + 〔D 〕32i - 【答案】C【解析】由i 3i z +=-得32i z =-,所以32i z =+,应选C .4.〔2021全国Ⅱ卷,理1,5分〕(3)(1)i z m m =++-在复平面内对应的点在第四象限,那么实数m 的取值范围是( )〔A 〕(31)-, 〔B 〕(13)-, 〔C 〕(1,)∞+ 〔D 〕(3)∞--,5.〔2021全国Ⅲ卷,文2,5分〕假设43i z =+,那么||zz =( ) 〔A 〕1 〔B 〕1- 〔C 〕43i 55+ 〔D 〕43i 55-【答案】D【解析】∵43i z =+,∴z =4-3i ,|z |=2234+.那么43i ||55z z ==-,应选D .6.〔2021全国Ⅲ卷,理2,5分〕假设z =1+2i ,那么4i1zz =-( ) (A)1 (B)−1 (C)i (D)−i 【答案】C【解析】∵z =1+2i ,∴z =1-2i ,那么4i 4ii (12i)(12i)11zz ==+---,应选C . 7.〔2021全国Ⅰ卷,文3,5分〕复数z 满足(z -1)i =1+i ,那么z =( )A .-2-iB .-2+iC .2-iD .2+i【答案】C【解析一】(z -1)i =1+i ⇒ zi -i =1+i ⇒ zi =1+2i ⇒ z =1+2i i=(1+2i)i i 2=2-i .应选C .【解析二】(z -1)i =1+i ⇒ z -1=1+i i⇒ z =1+i i+1 ⇒z =(1+i)i i 2+1=2-i .应选C .8.〔2021全国Ⅰ卷,理1,5分〕设复数z 满足1+z1z-=i ,那么|z|=( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】A 【解析一】1+z1z-=i ⇒ 1+z =i(1-z) ⇒ 1+z =i -zi ⇒ z +zi =-1+i ⇒ (1+i)z =-1+i ⇒9.〔2021全国Ⅱ卷,文2,5分〕假设a 为实数,且2+ai 1+i=3+i ,那么a =( )A .-4B .-3C .3D .4 【答案】D【解析】由得2+ai =(1+i)(3+i)=2+4i ,所以a =4,应选D .10.〔2021全国Ⅱ卷,理2,5分〕假设a 为实数,且(2+ai)(a -2i)=-4i ,那么a =( )A .-1B .0C .1D .2 【答案】B【解析】(2+ai)(a -2i)=-4i ⇒ 2a -4i +a 2i +2a =-4i ⇒ 2a -4i +a 2i +2a +4i =0⇒ 4a +a 2i =0 ⇒ a =0.11.〔2021全国Ⅰ卷,文3,5分〕设z =11+i+i ,那么|z|=( )A .12 B .√22 C .√32 D .2 【答案】B 【解析】z =11+i+i =1-i 2+i =12+12i ,因此|z|=√(12)2+(12)2=√12=√22,应选B .12.(1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i 【答案】D 【解析】(1+i )3(1-i )2=(1+i )2(1+i)(1-i )2·=(1+i 2+2i)(1+i)1+i 2-2i==2i(1+i)-2i=-(1+i)=-1-i ,应选D .13.〔2021全国Ⅱ卷,文2,5分〕1+3i 1-i=( )A .1+2iB .-1+2iC .1-2iD .-1-2i【答案】B 【解析】1+3i 1-i=(1+3i )(1+i )(1-i )(1+i )=-2+4i 2=-1+2i ,应选B .14.〔2021全国Ⅱ卷,理2,5分〕设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,那么z 1z 2=( )A .-5B .5C .-4+iD .-4-i【答案】A【解析】由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i)=-5,应选A .15.〔2021全国Ⅰ卷,文2,5分〕1+2i (1-i )2=( )A .-1-12i B .-1+12i C .1+12i D .1-12i 【答案】B 【解析】1+2i(1-i )2=1+2i -2i=(1+2i )i (-2i )i=-2+i 2=-1+12i ,应选B .16.〔2021全国Ⅰ卷,理2,5分〕假设复数z 满足(3-4i)z =|4+3i|,那么z 的虚部为( )A .-4B .-45 C .4 D .45 【答案】D【解析】∵|4+3i|=√42+32=5,∴(3-4i)z =5,∴z=53-4i=5(3+4i )25=35+45i ,虚部为45,应选D .17.〔2021全国Ⅱ卷,文2,5分〕|21+i|=( )A .2√2B .2C .√2D .1【答案】C 【解析】|21+i|=|2(1-i )2|=|1-i|=22)1(1-+=√2.选C .18〔2021全国Ⅱ卷,理2,5分〕设复数z 满足(1-i)z =2i ,那么z =( )A .-1+iB .-1-iC .1+iD .1-i 【答案】A【解析】由题意得z =2i1-i=2i ·(1+i )(1−i )(1+i)=2i +2i 22=2i−22=-1+i ,应选A .19.〔2021全国卷,文2,5分〕复数z =-3+i 2+i的共轭复数是( ) A .2+i B .2-I C .-1+iD .-1-i【答案】D【解析】z =-3+i 2+i=(-3+i )(2-i )(2+i )(2-i )=-5+5i 5=-1+i ,∴z =-1-i ,应选D .20.〔2021全国卷,文2,5分〕复数5i1-2i=( )A .2-iB .1-2iC .-2+iD .-1+2i【答案】C 【解析】5i 1-2i=5i (1+2i )(1-2i )(1+2i )=5(i -2)5=-2+i ,应选C .21.〔2021北京,文2,5分〕复数( ) 〔A 〕i 〔B 〕1+i 〔C 〕 〔D 〕【答案】A 【解析】,应选A .22.〔2021北京,理9,5分〕设,假设复数在复平面内对应的点位于实轴上,那么_____________. 【答案】-1【解析】(1+i)(a +i)=a +i +ai +i 2=a +i +ai -1=(a -1)+(1+a)i ,由题意得虚部为0,即(1+a)=0,解得a =-1. 23.〔2021江苏,文/理2,5分〕复数其中i 为虚数单位,那么z 的实部是____.【答案】524.〔2021山东,文2,5分〕假设复数21iz =-,其中i 为虚数单位,那么z =( ) 〔A 〕1+i〔B 〕1−i〔C 〕−1+i 〔D 〕−1−i【答案】B25.〔2021山东,理1,5分〕假设复数z 满足232i,z z +=- 其中i 为虚数单位,那么z =( )〔A 〕1+2i 〔B 〕1-2i 〔C 〕12i -+ 〔D 〕12i --【答案】B26.〔2021上海,文/理2,5分〕设32iiz +=,其中i 为虚数单位,那么z 的虚部等于_______. 【答案】-312i=2i+-i -1i -12i (12i)(2i)2i 4i 2i 2i (2i)(2i)5+++++-===--+a ∈R (1i)(i)a ++a =(12i)(3i),z =+-【解析】32i 23i,iz +==-故z 的虚部等于−3.27.〔2021四川,文1,5分〕设i 为虚数单位,那么复数(1+i)2=( )(A) 0 (B)2 (C)2i (D)2+2i 【答案】C【解析】22(1i)12i i 2i +=++=,应选C .28.〔2021天津,文9,5分〕i 是虚数单位,复数z 满足(1i)2z +=,那么z 的实部为_______.【答案】1【解析】2(1)211i i iz z +=⇒==-+,所以z 的实部为1.29.〔2021天津,理9,5分〕,a b ∈R ,i 是虚数单位,假设(1+i)(1-b i)=a ,那么ab的值为____.【答案】2【解析】由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab=,故答案为2.。

高考数学专题《复数》习题含答案解析

高考数学专题《复数》习题含答案解析

专题10.2 复数1.(2020·全国高考真题(理))复数113i-的虚部是( )A .310-B .110-C .110D .310【答案】D 【解析】因为1131313(13)(13)1010i z i i i i +===+--+,所以复数113z i =-的虚部为310.故选:D.2.(2020·全国高考真题(文))(1–i )4=( )A .–4B .4C .–4i D .4i【答案】A 【解析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-.故选:A.3.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =( )A .1i --B .1i-+C .1i-D .1i+【答案】D 【分析】由题意利用复数的运算法则整理计算即可求得最终结果.【详解】由题意可得:()()()()2121211112i i z i i i i ++====+--+.故选:D.4.(2021·全国·高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i-C .62i+D .42i+【答案】C 【分析】练基础利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i+=-+--=+故选:C.5.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =( )A .312i--B .312i-+C .32i-+D .32i--【答案】B 【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解.【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅.故选:B.6.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( )A .12i -B .12i+C .1i+D .1i-【答案】C 【分析】设z a bi =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【详解】设z a bi =+,则z a bi =-,则()()234646z z z z a bi i ++-=+=+,所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1z i =+.故选:C.7.(2021·全国·高考真题(文))设i 43i z =+,则z =( )A .–34i -B .34i-+C .34i-D .34i+【答案】C 【分析】由题意结合复数的运算法则即可求得z 的值.【详解】由题意可得:()2434343341i i i i z i i i ++-====--.故选:C.8.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =( )A .1-B .1C .3-D .3【答案】C 【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值.【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-.故选:C.9.(2019·北京高考真题(文))已知复数z =2+i ,则( )ABC .3D .5【答案】D 【解析】∵ 故选D.10.(2019·全国高考真题(文))设,则=( )A.2B CD .1【答案】C 【解析】因为,所以,所以,故选C .1.(2010·山东高考真题(文))已知 ,,其中 为虚数单位,则=( )A .-1B .1C .2D .3【答案】B 【解析】z z ⋅=z 2i,z z (2i)(2i)5=+⋅=+-=3i12iz -=+z 312iz i -=+(3)(12)17(12)(12)55i i z i i i --==-+-z ==2a ib i i+=+,a b ∈R i +a b 练提升因为 ,,所以,则,故选B.2.(全国高考真题(理))复数的共轭复数是( )A .B .iC .D .【答案】A 【解析】,故其共轭复数为.所以选A.3.(2018·全国高考真题(理))设,则( )A .B .C .D【答案】C 【解析】,则,故选c.4.(2009·重庆高考真题(理))已知复数的实部为,虚部为2,则的共轭复数是( )A .B .C .D .【答案】B 【解析】由题意得:所以,共轭负数为2+i 故选B5.(2017·山东高考真题(理))已知,是虚数单位,若,,22222a i ai i ai b i i i+--==-=+-,a b ∈R 2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩+1a b =212ii+-i -35i-35i()()()()2i 12i 5i i12i 12i 5++==-+i -1i2i 1iz -=++||z =0121()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+i 2i i =-+=1z =z 1-5iz2i -2i+2i--2i-+R a ∈i z a =4z z ⋅=则( )A .1或B或C .D【答案】A 【解析】由得,所以,故选A.6.(2021·广东龙岗·高三期中)已知复数z 满足()2i 34i z +=+(其中i 为虚数单位),则复数z =( )A .2i -B .2i-+C .2i+D .2i--【答案】C 【分析】根据复数除法运算求出z ,即可得出答案.【详解】()2i 35z +=+= ,()()()52i 52i 2i 2i 2i z -∴===-++-,则2i z =+.故选:C.7.(2021·安徽·合肥一六八中学高一期中)欧拉公式i s co in s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】先由欧拉公式计算可得312e π=,然后根据复数的几何意义作出判断即可.【详解】根据题意i s co in s i xe x x +=,故i3is n 1cos 33i 2e πππ=+=,对应点12⎛ ⎝,在第一象限.故选:A .8.【多选题】(2021·全国·模拟预测)已知复数z =(i 为虚数单位),则下列说法正确的是()A .复数z 在复平面内对应的点坐标为()sin 3cos3,sin 3cos3+-a =1-,4z a z z =+⋅=234a +=1a =±B .z 的虚部为C .2z z ⋅=D .z ⋅为纯虚数【答案】CD 【分析】根据复数的概念、共轭复数的概念、复数的几何意义以及四则运算法则即可求解.【详解】复数3cos3i sin 3cos3z =++-.因为334ππ<<,所以sin 3cos3304π⎛⎫+=+< ⎪⎝⎭,sin 3cos30->,所以原式()()sin 3cos3i sin 3cos3=-++-,所以选项A 错误;复数z B错误;222z z ⋅=+=,所以选项C 正确;z ⋅=()i 1sin 61sin 62i⋅=++-=,所以选项D 正确.故选:CD.9.【多选题】(2021·河北武强中学高三月考)已知复数cos isin z θθ=+(其中i 为虚数单位),下列说法正确的是( )A .1z z ⋅=B .1z z+为实数C .若83πθ=,则复数z 在复平面上对应的点落在第一象限D .若(0,)θπ∈,复数z 是纯虚数,则2πθ=【答案】ABD 【分析】对选项A ,根据计算1z z ⋅=即可判断A 正确,对选项B ,根据12cos z zθ+=即可判断B 正确,对选项C ,根据88cosisin 33z ππ=+在复平面对应的点落在第二象限,即可判断C 错误,对选项D ,根据z 是纯虚数得到2πθ=即可判断D 正确.【详解】对选项A ,()()()2222cos isin cos isin cos isin cos sin 1z z θθθθθθθθ⋅=+-=-=+=,故A 正确.对选项B ,因为11cos isin cos isin z z θθθθ+=+++()()cos isin cos isin cos isin cos isin θθθθθθθθ-=+++-cos isin cos isin 2cos θθθθθ=++-=,所以1z z+为实数.故B 正确.对选项C ,因为83πθ=为第二象限角,所以8cos03π<,8sin 03π>,所以88cos isin 33z ππ=+在复平面对应的点落在第二象限.故C 错误.对选项D ,复数z 是纯虚数,则cos 0sin 0θθ=⎧⎨≠⎩,又因为(0,)θπ∈,所以2πθ=,故D 正确.故选:ABD10.(2021·福建·厦门一中模拟预测)在复平面内,复数(,)z a bi a b R =+∈对应向量OZ(O为坐标原点),设||OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则(cos sin )z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:1111(cos sin )z r i θθ=+,2222(cos sin )z r i θθ=+,则12121212[cos()sin()]z z rr i θθθθ=+++,由棣莫弗定理可以推导出复数乘方公式:[(cos sin )](cos sin )n n r i r n i n θθθθ+=+,已知4)z i =,则||z =______;若复数ω满足()*10n n ω-=∈N ,则称复数ω为n 次单位根,若复数ω是6次单位根,且ω∉R ,请写出一个满足条件的ω=______.【答案】16 ()22cossin 1,2,4,566k k i k ππ+= 【分析】2(cos sin )66i i ππ+=+,则4222(cos sin )33z i ππ=+,再由||||z z =求解,由题意知61ω=,设cos sin i ωθθ=+,即可取一个符合题意的θ,即可得解.【详解】解: 2(cos sin )66i i ππ=+,∴4422)2(cos sin )33z i i ππ==+,则4||||216z z ===.由题意知61ω=,设cos sin i ωθθ=+,则6cos 6sin 61i ωθθ=+=,所以sin 60cos 61θθ=⎧⎨=⎩,又ω∉R ,所以sin 0θ≠,故可取3πθ=,则cossin33i ππω=+故答案为:16,cossin33i ππω=+(答案不唯一).1.(2021·江苏·高考真题)若复数z 满足()1i 3i z +=-,则z 的虚部等于( )A .4B .2C .-2D .-4【答案】C 【分析】利用复数的运算性质,化简得出12z i =-.【详解】若复数z 满足()1i 3i z +=-,则()()()()3i 1i 3i 12i 1i 1i 1i z ---===-++-,所以z 的虚部等于2-.故选:C.2.(2021·全国·高考真题)复数2i13i--在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】利用复数的除法可化简2i13i--,从而可求对应的点的位置.【详解】()()2i 13i 2i 55i 1i13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭,该点在第一象限,故选:A.3.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |=( )A .0B .1C D .2练真题【答案】D 【解析】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.4.(2020·全国高考真题(文))若312i i z =++,则||=z ( )A .0B .1CD .2【答案】C 【解析】因为31+21+21z i i i i i =+=-=+,所以z ==故选:C .5.(2019·全国高考真题(理))设z =-3+2i ,则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】由得则对应点(-3,-2)位于第三象限.故选C .6.(2018·江苏高考真题)若复数满足,其中i 是虚数单位,则的实部为________.【答案】2【解析】因为,则,则的实部为.z 32,z i =-+32,z i =--32,z i =--z i 12i z ⋅=+z i 12i z ⋅=+12i2i iz +==-z 2。

复数考试题目大全及答案

复数考试题目大全及答案

复数考试题目大全及答案一、选择题1. 下列哪个选项是复数的共轭?A. 2 + 3iB. 2 - 3iC. 3 + 2iD. 3 - 2i答案:B2. 复数 \( z = 3 + 4i \) 的模是:A. 5B. 7C. 8D. 9答案:A3. 复数 \( z_1 = 2 + i \) 和 \( z_2 = 1 - 2i \) 的和是:A. 3 - iB. 3 + iC. 1 + 3iD. 1 - 3i答案:A二、填空题1. 复数 \( z = a + bi \) 中,\( a \) 称为复数的______,\( b \) 称为复数的______。

答案:实部,虚部2. 复数 \( z = -4 + 3i \) 的共轭复数是______。

答案:-4 - 3i3. 若复数 \( z \) 的模为 10,且 \( z \) 的虚部为 6,则 \( z \) 的实部为______。

答案:±8三、简答题1. 解释什么是复数的模,并给出计算公式。

答案:复数的模是复数在复平面上到原点的距离,计算公式为\( |z| = \sqrt{a^2 + b^2} \),其中 \( z = a + bi \)。

2. 描述如何计算两个复数的乘积。

答案:两个复数 \( z_1 = a + bi \) 和 \( z_2 = c + di \) 的乘积计算公式为 \( z_1 \cdot z_2 = (a + bi)(c + di) = ac - bd+ (ad + bc)i \)。

四、计算题1. 计算复数 \( z = 1 + 2i \) 的模和共轭复数。

答案:复数 \( z \) 的模为 \( |z| = \sqrt{1^2 + 2^2} =\sqrt{5} \),共轭复数为 \( 1 - 2i \)。

2. 求复数 \( z_1 = 3 - 4i \) 和 \( z_2 = 1 + i \) 的乘积。

答案:\( z_1 \cdot z_2 = (3 - 4i)(1 + i) = 3 + 3i - 4i -4i^2 = 3 - i + 4 = 7 - i \)。

高考复数专题及答案

高考复数专题及答案

复数专题及答案一1.2015高考新课标2,理2若a 为实数且(2)(2)4ai a i i +-=-,则a =A .1-B .0C .1D .2答案B解析由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B . 考点定位复数的运算.名师点睛本题考查复数的运算,要利用复数相等列方程求解,属于基础题.2.2015高考四川,理2设i 是虚数单位,则复数32i i- A -i B -3i C i. D3i答案C解析32222i i i i i i i i-=--=-+=,选C. 考点定位复数的基本运算.名师点睛复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.3.2015高考广东,理2若复数()32z i i =- i 是虚数单位 ,则z =A .32i - B .32i + C .23i + D .23i - 答案D .解析因为()3223z i i i =-=+,所以z =23i -,故选D .考点定位复数的基本运算,共轭复数的概念.名师点睛本题主要考查复数的乘法运算,共轭复数的概念和运算求解能力,属于容易题;复数的乘法运算应该是简单易解,但学生容易忘记和混淆共轭复数的概念,z a bi =+的共轭复数为z a bi =-.4.2015高考新课标1,理1设复数z 满足11z z+-=i ,则|z|=答案A解析由11z i z +=-得,11i z i -+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 考点定位本题主要考查复数的运算和复数的模等.名师点睛本题将方程思想与复数的运算和复数的模结合起来考查,试题设计思路新颖,本题解题思路为利用方程思想和复数的运算法则求出复数z,再利用复数的模公式求出|z|,本题属于基础题,注意运算的准确性.5.2015高考北京,理1复数()i 2i -=A .12i +B .12i -C .12i -+D .12i -- 答案A考点定位:本题考查复数运算,运用复数的乘法运算方法进行计算,注意21i =-.名师点睛本题考查复数的乘法运算,本题属于基础题,数的概念的扩充部分主要知识点有:复数的概念、分类,复数的几何意义、复数的运算,特别是复数的乘法与除法运算,运算时注意21i =-,注意运算的准确性,近几年高考主要考查复数的乘法、除法,求复数的模、复数的虚部、复数在复平面内对应的点的位置等.6.2015高考湖北,理1 i 为虚数单位,607i 的共轭复数....为 A .i B .i - C .1 D .1- 答案A解析i i i i -=⋅=⨯31514607,所以607i 的共轭复数....为i ,选A . 考点定位共轭复数.名师点睛复数中,i 是虚数单位,24142434111()n n n n i i i i i i i n +++=-==-=-=∈Z ;,,,7.2015高考山东,理2若复数z 满足1z i i=-,其中i 为虚数为单位,则z = A 1i - B 1i + C 1i -- D 1i -+答案A 解析因为1z i i=-,所以,()11z i i i =-=+ ,所以,1z i =- 故选:A. 考点定位复数的概念与运算.名师点睛本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解.本题属于基础题,注意运算的准确性.8.2015高考安徽,理1设i 是虚数单位,则复数21i i-在复平面内所对应的点位于 A 第一象限 B 第二象限 C 第三象限 D 第四象限答案B 解析由题意22(1)2211(1)(1)2i i i i i i i i +-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,故选B.考点定位1.复数的运算;2.复数的几何意义.名师点睛复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化分母乘以自己的共轭复数,这也历年考查的重点;另外,复数z a bi =+在复平面内一一对应的点为(,)Z a b .9.2015高考重庆,理11设复数a +bia ,b ∈R 则a +bia -bi =________. 答案3解析由a bi +==即223a b +=,所以22()()3a bi a bi a b +-=+=. 考点定位复数的运算.名师点晴复数的考查核心是代数形式的四则运算,即使是概念的考查也需要相应的运算支持.本题首先根据复数模的定义得a bi +=复数相乘可根据平方差公式求得()()a bi a bi +-22()a bi =-22a b =+,也可根据共轭复数的性质得()()a bi a bi +-22a b =+.10.2015高考天津,理9i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .答案2-解析()()()12212i a i a a i -+=++-是纯虚数,所以20a +=,即2a =-.考点定位复数相关概念与复数的运算.名师点睛本题主要考查复数相关概念与复数的运算.先进行复数的乘法运算,再利用纯虚数的概念可求结果,是容易题.11.2015江苏高考,3设复数z 满足234z i =+i 是虚数单位,则z 的模为_______.解析22|||34|5||5||z i z z =+=⇒=⇒=考点定位复数的模名师点晴在处理复数相等的问题时,一般将问题中涉及的两个复数均化成一般形式,利用复数相等的充要条件“实部相等,虚部相等”进行求解.本题涉及复数的模,利用复数模的性质求解就比较简便:2211121222||||||||||||.||z z z z z z z z z z ==⋅=,, 12.2015高考湖南,理1已知()211i i z -=+i 为虚数单位,则复数z =A.1i +B.1i -C.1i -+D.1i --答案D.考点定位复数的计算.名师点睛本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代数形式四则运算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数的乘法则是按多项式的乘法法则进行处理.13.2015高考上海,理2若复数z 满足31z z i +=+,其中i 为虚数单位,则z = .答案1142i + 解析设(,)z a bi a b R =+∈,则113()1412142a bi a bi i ab z i ++-=+⇒==⇒=+且考点定位复数相等,共轭复数名师点睛研究复数问题一般将其设为(,)z a bi a b R =+∈形式,利用复数相等充要条件:实部与实部,虚部与虚部分别对应相等,将复数相等问题转化为实数问题:解对应方程组问题.复数问题实数化转化过程中,需明确概念,如(,)z a bi a b R =+∈的共轭复数为(,)z a bi a b R =-∈,复数加法为实部与实部,虚部与虚部分别对应相加. 2015高考上海,理15设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件答案B解析若1z 、2z 皆是实数,则12z z -一定不是虚数,因此当12z z -是虚数时,则“1z 、2z 中至少有一个数是虚数”成立,即必要性成立;当1z 、2z 中至少有一个数是虚数,12z z -不一定是虚数,如12z z i ==,即充分性不成立,选B.考点定位复数概念,充要关系名师点睛形如a +b i a ,b ∈R 的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.判断概念必须从其定义出发,不可想当然.复数专题及答案二一、选择题1.2010·全国Ⅰ理复数错误!=A .iB .-iC .12-13iD .12+13i答案 A解析 错误!=错误!=错误!=i .2.2010·北京文在复平面内,复数6+5i,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是A .4+8iB .8+2iC .2+4iD .4+i答案 C解析 由题意知A 6,5,B -2,3,AB 中点Cx ,y ,则x =错误!=2,y =错误!=4,∴点C 对应的复数为2+4i ,故选C.3.若复数m 2-3m -4+m 2-5m -6i 表示的点在虚轴上,则实数m 的值是A.-1B.4C.-1和4D.-1和6答案 C解析由m2-3m-4=0得m=4或-1,故选C.点评复数z=a+bia、b∈R对应点在虚轴上和z为纯虚数应加以区别.虚轴上包括原点参见教材104页的定义,切勿错误的以为虚轴不包括原点.4.文已知复数z=错误!,则错误!·i在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限答案 B解析z=错误!,错误!=错误!+错误!,错误!·i=-错误!+错误!i.实数-错误!,虚部错误!,对应点错误!在第二象限,故选B.理复数z在复平面上对应的点在单位圆上,则复数错误!A.是纯虚数B.是虚数但不是纯虚数C.是实数D.只能是零答案 C解析解法1:∵z的对应点P在单位圆上,∴可设P cosθ,sinθ,∴z=cosθ+i sinθ.则错误!=错误!=错误!=2cosθ为实数.解法2:设z=a+bia、b∈R,∵z的对应点在单位圆上,∴a2+b2=1,∴a-bia+bi=a2+b2=1,∴错误!=z+错误!=a+bi+a-bi=2a∈R.5.2010·广州市复数3i-1i的共轭复数....是A.-3+iB.-3-iC.3+iD.3-i答案 A解析3i-1i=-3-i,其共轭复数为-3+i.6.2010·湖南衡阳一中已知x,y∈R,i是虚数单位,且x-1i-y=2+i,则1+i x-y的值为A.-4B.4C.-1D.1答案 A解析由x-1i-y=2+i得,x=2,y=-2,所以1+i x-y=1+i4=2i2=-4,故选A.7.文2010·吉林市质检复数z1=3+i,z2=1-i,则z=z1·z2在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限答案 D解析∵z=z1z2=3+i1-i=4-2i,∴选D.理现定义:e iθ=cosθ+isinθ,其中i是虚数单位,e为自然对数的底,θ∈R,且实数指数幂的运算性质对e iθ都适用,若a=C50cos5θ-C52cos3θsin2θ+C54cosθsin4θ,b=C51cos4θsinθ-C53cos2θsin3θ+C55sin5θ,那么复数a+b i等于A.cos5θ+isin5θB.cos5θ-isin5θC.sin5θ+icos5θD.sin5θ-icos5θ答案 A解析a+b i=C50cos5θ+iC51cos4θsinθ+i2C52cos3θsin2θ+i3C53cos2θsin3θ+i4C54cosθsin4θ+i5C55sin5θ=cosθ+isinθ5=e iθ5=e i5θ=cos5θ+isin5θ,选A.8.文2010·安徽合肥市质检已知复数a=3+2i,b=4+xi其中i为虚数单位,若复数错误!∈R,则实数x的值为A.-6B.6D.-错误!答案 C解析错误!=错误!=错误!=错误!+错误!i∈R,∴错误!=0,∴x=错误!.理2010·山东邹平一中月考设z=1-ii是虚数单位,则z2+错误!=A.-1-iB.-1+iC.1-iD.1+i答案 C解析∵z=1-i,∴z2=-2i,错误!=错误!=1+i,∴z2+错误!=1-i,选C.9.2010·山东聊城市模拟在复平面内,复数错误!对应的点到直线y=x+1的距离是C.2D.2错误!答案 A解析∵错误!=错误!=1+i对应点为1,1,它到直线x-y+1=0距离d=错误!=错误!,故选A.10.文2010·山东临沂质检设复数z满足关系式z+|错误!|=2+i,则z等于A.-错误!+i-i+iD.-错误!-i答案 C解析由z=2-|错误!|+i知z的虚部为1,设z=a+ia∈R,则由条件知a=2-错误!,∴a=错误!,故选C.理2010·马鞍山市质检若复数z=错误!a∈R,i是虚数单位是纯虚数,则|a+2i|等于A.2B.2错误!C.4D.8答案 B解析z=错误!=错误!=错误!+错误!i是纯虚数,∴错误!,∴a=2,∴|a+2i|=|2+2i|=2错误!.二、填空题11.规定运算错误!=ad-bc,若错误!=1-2i,设i为虚数单位,则复数z=________.答案1-i解析由已知可得错误!=2z+i2=2z-1=1-2i,∴z=1-i.12.2010·南京市调研若复数z1=a-i,z2=1+ii为虚数单位,且z1·z2为纯虚数,则实数a的值为________.答案-1解析因为z1·z2=a-i1+i=a+1+a-1i为纯虚数,所以a=-1.13.文若a是复数z1=错误!的实部,b是复数z2=1-i3的虚部,则ab等于________.答案-错误!解析∵z1=错误!=错误!=错误!+错误!i,∴a=错误!.又z2=1-i3=1-3i+3i2-i3=-2-2i,∴b=-2.于是,ab=-错误!.理如果复数错误!i是虚数单位的实数与虚部互为相反数,那么实数b等于________.答案-错误!解析错误!=错误!·错误!=错误!-错误!i,由复数的实数与虚数互为相反数得,错误!=错误!,解得b=-错误!.14.文若复数z=sinα-i1-cosα是纯虚数,则α=________.答案2k+1πk∈Z解析依题意,错误!,即错误!,所以α=2k+1πk∈Z.点评新课标教材把复数这一章进行了精简,不再要求复数的三角形式以及复杂的几何形式和性质;对于复数的模的要求很低,了解概念就行.主要考查复数的代数形式以及复数的四则运算,这是我们复习的重点,不要超过范围.理2010·上海大同中学模考设i为虚数单位,复数z=12+5i cosθ+i sinθ,若z∈R,则tanθ的值为________.答案-错误!解析z=12cosθ-5sinθ+12sinθ+5cosθi∈R,∴12sinθ+5cosθ=0,∴tanθ=-错误!.三、解答题15.2010·江苏通州市调研已知复数z=错误!+a2-5a-6ia∈R.试求实数a分别为什么值时,z分别为:1实数;2虚数;3纯虚数.解析1当z为实数时,错误!,∴a=6,∴当a=6时,z为实数.2当z为虚数时,错误!,∴a≠-1且a≠6,故当a∈R,a≠-1且a≠6时,z为虚数.3当z为纯虚数时,错误!∴a=1,故a=1时,z为纯虚数.16.2010·上海徐汇区模拟求满足错误!=1且z+错误!∈R的复数z.解析设z=a+bia、b∈R,由错误!=1|z+1|=|z-1|,由|a+1+bi|=|a-1+bi|,∴a+12+b2=a-12+b2,得a=0,∴z=bi,又由bi+错误!∈R得,b-错误!=0b=±错误!,∴z=±错误!i.。

高考数学复数典型例题附答案

高考数学复数典型例题附答案

1, 已知复数求k的值。

的值。

解:解:,∴由的表示形式得k=2 即所求k=2 点评:点评:(i) 对于两个复数、,只要它们不全是实数,就不能比较大小,因此,、能够比较大小,均为实数。

均为实数。

比较大小,更无正负之分,因此,(ii)虚数不能与0比较大小,更无正负之分,因此,对于任意复数z,且R;且R。

2, 若方程有实根,求实数m的值,并求出此实根。

的值,并求出此实根。

解:设为该方程的实根,将其代入方程得由两复数相等的定义得,消去m得,故得当时得,原方程的实根为;当时得,原方程的实根为。

点评:对于虚系数一元方程的实根问题,一般解题思路为:设出实根——代入方程——利用两复数相等的充要条件求解。

充要条件求解。

3, 已知复数z满足,且z的对应点在第二象限,求a的取值范围。

的取值范围。

解:设,。

由得①对应点在第二象限,故有对应点在第二象限,故有②又由①得③由③得,即,∴,∴④于是由②,④得 ,即于是由②,④得再注意到a<0,故得即所求a的取值范围为点评:为利用导出关于a的不等式,再次利用①式:由①式中两复数相等切入,导出关于与a的关系式:此为解决这一问题的关键。

此外,这里对于有选择的局部代入以及与的相互转化,都展示了解题的灵活与技巧,请同学们注意领悟,借鉴。

4, 求同时满足下列两个条件的所有复数:(1);的实部与虚部都是整数。

(2)z的实部与虚部都是整数。

,则解:设,则由题意,∴∴y=0或(Ⅰ)当y=0时,,,∴由 得①∴由注意到当x<0时,;当x>0时,,此时①式无解。

此时①式无解。

(Ⅱ)当时,由得∴又这里x,y均为整数均为整数∴x=1,或x=3,,∴或于是综合(Ⅰ)(Ⅱ)得所求复数z=1+3i,1-3i,3+i,3-i. 5, (1)关于x的方程在复数集中的一个根为-2i,求a+b的值。

的值。

(2)若一元二次方程有虚根,且,试判断a,b,c所成数列的特征。

特征。

解:解:(1)解法一:解法一:由于∴由解:由题意得1z的两个方程R∴=122ab2|=2∴4=4=1=41515i151zz z=02z,下同解法一这些都是解决复数问题的常用方法2的最小值|=11)i133=1时,上式取等号zz 2200220001452225x x x x x æö+++++ç÷èø455225+222z 224(4)4z a -+132(4)413a -+222AC ABz z w ()(03313333z z yi y x x - 33333x )33设直线上任意一点(),P x y 经过变换后得到的()3,3Q x y x y +-仍然在该直线上仍然在该直线上 ()()()33313x y k x y b k y k x b Þ-=++Þ-+=-+当0b ¹时,方程组()3113k k kì-+=ïíï-=î无解无解 当0b =时,()231333230313或k k k k k k-+-=Þ+-=Þ=-Þ存在这样的直线,其方程为333或y x y x ==-16, 判断下列命题是否正确 (1) (1)若若C z Î, , 则则02³z (2) (2)若若,,21C z z Î且021>-z z,则21z z > (3) (3)若若b a >,则i b i a +>+17, 满足条件512=++-z i z 的点的轨迹是(的点的轨迹是( ))A.A.椭圆椭圆椭圆B. B. B.直线直线直线C. C. C.线段线段线段D. D. D.圆圆 18,.211<<-+=w w 是实数,且是虚数,设z z z.的实部的取值范围的值及求z z 解析解析 是虚数z yix yi x z z +++=+=\1)(1w 可设 i yx y y y x x x y x yi x yix)()(222222+-+++=+-++=,0¹y 是实数,且w 1,0112222=+=+-\y x y x 即 ,1=\zx 2=w 此时22121<<-<<-x 得由w)1,21(,121-<<-\的实部的范围是即z x圆锥曲线圆锥曲线一、在椭圆中一般以选择题或填空题的形式考查考生对椭圆的两个定义、焦点坐标、准线方程等基础知识的掌握情况;以解答题的形式考查考生在求椭圆的方程、直线与椭圆的位置关系等涉及分析、探求的数学思想的掌握情况.数学思想的掌握情况.例1.从集合{1,2,3,,11,11}} 中任意取两个元素作为椭圆22221x y m n+=方程中的m 和n ,则能组成落在矩形区域(){},|||1111,,||9B x y x y =<<内的椭圆的个数是(内的椭圆的个数是( )A 、43B 43 B、、72C 72 C、、86D 、90解:解:根据题意,根据题意,m 是不大于10的正整数、n 是不大于8的正整数.的正整数.但是当但是当m n =时22221x y m n +=是圆而不是椭圆.先确定n ,n 有8种可能,对每一个确定的n ,m 有1019-=种可能.故满足条件的椭圆有8972´=个.本题答案选B .例2.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,则1234567PF P F P F P F P F P F P F ++++++=______________.. 解:如图,根据椭圆的对称性知,117111122PF P F PF PF a +=+=, 同理其余两对的和也是2a ,又41P F a =,∴1234567735PF P F P F P F P F P F P F a ++++++== 例3.如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(Ⅰ)求在0k =,01b <<的条件下,S 的最大值;的最大值;(Ⅱ)当2AB =,1S =时,求直线AB 的方程.的方程. 解:(Ⅰ)设A 1()x b ,,B 2()x b ,,由2214x b +=,解得21221xb =±-,,所以1212S b x x =- 2222111b b b b =-£+-= .当且仅当22b =时,S 取到最大值1. (Ⅱ)由2214y kx bx y =+ìïí+=ïî,得2221()2104k x kbx b +++-=,2241k b D =-+① 2121AB k x x =+- 2222411214k b k k -+=+=+.②.②AyxOB例3图设O 到AB 的距离为d ,则21Sd AB ==,又因为21b d k=+, 所以221b k =+,代入②式并整理,得42104k k -+=, 解得212k =,232b =,代入①式检验,0D >,故直线AB 的方程是的方程是 2622y x =+或2622y x =-或2622y x =-+,或2622y x =--.点评:本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.方法和综合解题能力.二、在双曲线中常以一道选择题或填空题的形式考查双曲线的两个定义、焦点坐标、准线方程以及渐近线方程等基础知识;解答题中往往综合性较强,在知识的交汇点出题,对双曲线的基础知识、解析几何的基本技能和基本方法进行考查.的基本技能和基本方法进行考查.例4.已知双曲线22221x y a b-=(0,0)a b >>的右焦点为F ,右准线与一条渐近线交于点A ,OAFD 的面积为22a (O 为原点),则两条渐近线的夹角为(,则两条渐近线的夹角为( )A .30º.30ºB .45º.45ºC .60º.60ºD .90º.90º解:解:D D .双曲线222221(0,0)(,0),x y a a b F c x abc-=>>=的焦点右准线方程,x ab y =渐近线,则),(2c ab c a A ,所以2212a c ab c S OAF =´´=D ,求得a b =,所以双曲线为等轴双曲线,则两条渐进线夹角为90°,故选D .点评:本题考查双曲线中焦距,本题考查双曲线中焦距,准线方程,准线方程,准线方程,渐近线方程,渐近线方程,渐近线方程,三角形面积,三角形面积,三角形面积,渐近线夹角等知识的综合运用.渐近线夹角等知识的综合运用.例5. P 是双曲线221916x y -=的右支上一点,M、N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为(的最大值为( ))A. 6B.7C.8D.9解:设双曲线的两个焦点分别是1(5,0)F -与2(5,0)F ,则这两点正好是两圆的圆心,当且仅当点P 与M 、1F 三点共线以及P 与N 、2F 三点共线时所求的值最大,此时三点共线时所求的值最大,此时12(2)(1)1019PM PN PF PF -=---=-=,故选B .例例6.已知双曲线222x y -=的左、的左、右焦点分别为右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.点.(Ⅰ)若动点M 满足1111F M F A F B FO=++(其中O 为坐标原点),求点M 的轨迹方程;的轨迹方程;(Ⅱ)在x 轴上是否存在定点C ,使CA ·CB为常数?若存在,求出点C 的坐标;若不存在,请说明理由.明理由.解:由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.(Ⅰ)设()M x y ,,则则1(2)F M x y =+ ,,111(2)F A x y =+,, 1221(2)(20)F B x y FO =+= ,,,,由1111F M F A F B FO =++得121226x x x y y y +=++ìí=+î,即12124x x x y y y +=-ìí+=î,,于是AB 的中点坐标为422x y -æöç÷èø,. 当AB 不与x 轴垂直时,121224822yy y yxx x x-==----,即1212()8y y y x x x -=--.又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=.当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程.,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=.(Ⅱ)假设在x 轴上存在定点(0)C m ,,使CA CB为常数.为常数.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-¹±. 代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是21212()()(2)(2)CA CB x m x m k x x =--+--22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++--222222(12)2442(12)11m k mm m m k k -+-=+=-++--.因为CA CB是与k 无关的常数,所以440m -=,即1m =,此时CA CB =1-. 当AB 与x 轴垂直时,点A B ,的坐标可分别设为(22),,(22)-,,此时(12)(12)1CA CB =-=-,,.故在x 轴上存在定点(10)C ,,使CA CB 为常数.为常数.三、抛物线是历年高考的重点,在高考中除了考查抛物线的定义、标准方程、几何性质外,还常常与函数问题、应用问题结合起来进行考查,难度往往是中等.函数问题、应用问题结合起来进行考查,难度往往是中等.例例7.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是(的纵坐标是( )A .1716 B .1516 C .78D .0 解:由题意抛物线为:y x 412=,则焦点为1(0,)16F ,准线为:116y =-;由抛物线上的点00(,)M x y 到焦点的距离与到准线的距离相等,推得:16150=y,即M 点的纵坐标为1516,故选B .例8.已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(0)l >.过A 、B 两点分别作抛物线的切线,设其交点为M.两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明FM AB为定值;为定值;(Ⅱ)设△ABM 的面积为S ,写出()S f l =的表达式,并求S 的最小值.的最小值.解:(Ⅰ)由已知条件,得(0,1)F ,0l >.设11(,)A x y ,22(,)B x y .由AF →=λFB →, 即得1122(,1)(,1)x y x y l --=-,îïíïì-x 1=λx 2 ①①1-y 1=λ(y 2-1) 1) ②② 将①式两边平方并把y 1=14x 12,y 2=14x 22代入得y 1=λ2y 2 ③③ 解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-=-44λy 2=-=-44,抛物线方程为y =14x 2,求导得y ′=12x .所以过抛物线上A 、B 两点的切线方程分别是两点的切线方程分别是y =12x 1(x (x--x 1)+y 1,y =12x 2(x (x--x 2)+y 2,即y =12x 1x -14x 12,y =12x 2x -14x 22. 解出两条切线的交点M 的坐标为的坐标为((x 1+x 22,x 1x 24)=(x 1+x 22,-,-1)1)1)..所以FM →·AB →=(x 1+x 22,-,-2)2)2)··(x 2-x 1,y 2-y 1)=12(x 22-x 12)-2(14x 22-14x 12)=0所以FM →·AB →为定值,其值为0.(Ⅱ)由(Ⅰ)知在△(Ⅱ)由(Ⅰ)知在△ABM ABM 中,中,FM FM FM⊥⊥AB AB,因而,因而S =12|AB||FM||AB||FM|..|FM||FM|==(x 1+x 22)2+(-2)2=14x 12+14x 22+12x 1x 2+4=y 1+y 2+12×(-4)4)++4=λ+1λ+2=λ+1λ.++λ+λ)=|AB||FM||AB||FM|=(λ+λ)λ+1λ≥2m ÷ø,m+=m +=2my -,2my -,211-+122y y +-24m - Oyx1 1- l FP B QMFO Axyyy P BOA 1d 2d2q解:(Ⅰ)在P AB △中,2AB =,即222121222cos2d d d d q =+-,2212124()4sin d d d d q =-+,即2121244sin 212d d d d q l -=-=-<(常数), 点P 的轨迹C 是以A B ,为焦点,实轴长221a l =-的双曲线.方程为:2211x y l l -=-.(Ⅱ)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即21115110112l l ll l -±-=Þ+-=Þ=-,因为01l <<,所以512l -=.②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x l l ì-=ï-íï=-î得:2222(1)2(1)(1)()k x k x k l l l l l éù--+---+=ëû,由题意知:2(1)0k l l éù--¹ëû,所以21222(1)(1)k x x k l l l --+=--,2122(1)()(1)k x x k l l l l --+=--.于是:22212122(1)(1)(1)k y y k x x k l l l =--=--. 因为0OM ON = ,且M N ,在双曲线右支上,所以在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x l l l l l l l l l l l l l l l -ì+=ì-ì=ï>-ïïï+-+>ÞÞÞ<<+--íííïïï>+->>îîï-î. 由①②知,51223l -£<.。

高中数学第七章复数经典大题例题(带答案)

高中数学第七章复数经典大题例题(带答案)

高中数学第七章复数经典大题例题单选题1、已知z =2+i ,则z−i 1+i =( )A .1−2iB .2+2iC .2iD .−2i答案:D分析:根据共轭复数的定义及复数的除法法则即可求解.由z =2+i ,得z =2−i ,所以z−i 1+i =2−i−i 1+i =2(1−i )×(1−i )(1+i )×(1−i )=2×(1−2i+i 2)2=−2i .故选:D.2、设(−1+2i)x =y −1−6i ,x,y ∈R ,则|x −yi|=( )A .6B .5C .4D .3答案:B分析:根据复数实部等于实部,虚部等于虚部可得{x =−3y =4,进而求模长即可. 因为(−1+2i )x =y −1−6i ,所以{2x =−6−x =y −1,解得{x =−3y =4, 所以|x −yi |=|−3−4i|=√(−3)2+(−4)2=5.故选:B.3、已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z =z .则其中正确命题的个数为A .0个B .1个C .2个D .3个答案:C解析:运用复数的模、共轭复数、虚数等知识对命题进行判断.对于①中复数z 1和z 2的模相等,例如z 1=1+i ,z 2=√2i ,则z 1和z 2是共轭复数是错误的;对于②z 1和z 2都是复数,若z 1+z 2是虚数,则其实部互为相反数,则z 1不是z 2的共轭复数,所以②是正确的;对于③复数z 是实数,令z =a ,则z =a 所以z =z ,反之当z =z 时,亦有复数z 是实数,故复数z 是实数的充要条件是z =z 是正确的.综上正确命题的个数是2个.故选C小提示:本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.4、在复平面内,复数z =1+i 1−i +1−i 2对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:由复数的运算求出z ,则可得其对应的点的坐标,从而得出结论.z =(1+i)2(1−i)(1+i)+1−i 2=2i 2+1−i 2=12+12i , 则z 在复平面内对应的点为(12,12),在第一象限,故选:A .5、z 1、z 2是复数,则下列结论中正确的是( )A .若z 12+z 22>0,则z 12>−z 22B .|z 1−z 2|=√(z 1+z 2)2−4z 1⋅z 2C .z 12+z 22=0⇔z 1=z 2=0D .|z 12|=|z 1|2答案:D解析:举反例z 1=2+i ,z 2=2−i 可判断选项A 、B ,举反例,z 2=i 可判断选项C ,设z 1=a +bi ,(a,b ∈R ),分别计算|z 12|、|z 1|2即可判断选项D ,进而可得正确选项.对于选项A :取z 1=2+i ,z 2=2−i ,z 12=(2+i )2=3+2i ,z 22=(2−i )2=3−2i ,满足z 12+z 22=6>0,但z 12与z 22是两个复数,不能比较大小,故选项A 不正确;对于选项B :取z 1=2+i ,z 2=2−i ,|z 1−z 2|=|2i |=2,而√(z 1+z 2)2−4z 1⋅z 2=√42−4(2+i )(2−i )=√16−20无意义,故选项B 不正确;对于选项C :取,z 2=i ,则z 12+z 22=0,但是z 1≠0,z 2≠0,故选项C 不正确;对于选项D :设z 1=a +bi ,(a,b ∈R ),则z 12=(a +bi )2=a 2−b 2+2abi11z =11z =|z 12|=√(a 2−b 2)2+4a 2b 2=√(a 2+b 2)2=a 2+b 2,z 1=a −bi ,|z 1|=√a 2+b 2,所以|z 1|2=a 2+b 2,所以|z 12|=|z 1|2,故选项D 正确.故选:D.6、已知i 为虚数单位,则i +i 2+i 3+⋅⋅⋅+i 2021=( )A .iB .−iC .1D .-1答案:A分析:根据虚数的运算性质,得到i 4n +i 4n+1+i 4n+2+i 4n+3=0,得到i +i 2+i 3+⋅⋅⋅+i 2021=i 2021,即可求解.根据虚数的性质知i 4n +i 4n+1+i 4n+2+i 4n+3=1+i −1−i =0,所以i +i 2+i 3+⋅⋅⋅+i 2021=505×0+i 2021=i .故选:A.7、已知正三角形ABC 的边长为4,点P 在边BC 上,则AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最小值为( ) A .2B .1C .−2D .−1答案:D分析:选基底,用基向量表示出所求,由二次函数知识可得.记|BP⃗⃗⃗⃗⃗ |=x ,x ∈[0,4] 因为AP⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ , 所以AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ 2−BA ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =|BP ⃗⃗⃗⃗⃗ |2−2|BP ⃗⃗⃗⃗⃗ |=x 2−2x =(x −1)2−1≥−1. 故选:D8、已知关于x 的方程(x 2+mx )+2x i =-2-2i (m ∈R )有实数根n ,且z =m +n i ,则复数z 等于( )A .3+iB .3-iC.-3-iD.-3+i答案:B分析:根据复数相等得出m,n的值,进而得出复数z. 由题意知(n2+mn)+2n i=-2-2i,即{n 2+mn+2=02n+2=0,解得{m=3,n=−1,∴z=3−i故选:B多选题9、已知复数z=21+i,则正确的是()A.z的实部为﹣1B.z在复平面内对应的点位于第四象限C.z的虚部为﹣iD.z的共轭复数为1+i答案:BD分析:根据复数代数形式的乘除运算化简,结合复数的实部和虚部的概念、共轭复数的概念求解即可.因为z=21+i =2(1−i)(1+i)(1−i)=1−i,所以z的实部为1,虚部为-1,在复平面内对应的点为(1,-1),在第四象限,共轭复数为z=1+i,故AC错误,BD正确.故选:BD10、复数z=1−i,则()A.z在复平面内对应的点的坐标为(1,−1)B.z在复平面内对应的点的坐标为(1,1)C.|z|=2D.|z|=√2答案:AD分析:利用复数的几何意义,求出复数对应的点坐标为(1,−1),即可得答案;z=1−i在复平面内对应的点的坐标为(1,−1),|z|=√2.故选:AD.11、已知复数z满足(1+i3)z=2,则下列说法中正确的有()A.z的虚部是iB.|z|=√2C.z⋅z=2D.z2=2答案:BC分析:根据复数的除法运算求出z,结合相关概念以及复数乘法运算即可得结果.z=21+i3=21−i=1+i,其虚部为1,|z|=√2,z⋅z=(1+i)(1−i)=2,z2=(1+i)2=2i≠2.故选:BC.12、已知复数z1=−2+i(i为虚数单位),复数z2满足|z2−1+2i|=2,z2在复平面内对应的点为,则()A.复数z1在复平面内对应的点位于第二象限B.1z1=−25−15iC.(x+1)2+(y−2)2=4D.|z2−z1|的最大值为3√2+2答案:ABD分析:利用复数的几何意义可判断A选项;利用复数的除法运算可判断B选项;利用复数的模长公式可判断C选项;利用复数模长的三角不等式可判断D选项.对于A选项,复数z1在复平面内对应的点的坐标为(−2,1),该点位于第二象限,A对;对于B选项,1z1=1−2+i=−2−i(−2+i)(−2−i)=−25−15i,B对;对于C选项,由题意可得z2−1+2i=(x−1)+(y+2)i,因为|z2−1+2i|=2,则(x−1)2+(y+2)2=4,C错;对于D选项,z1−1+2i=−3+3i,则|z1−1+2i|=√(−3)2+32=3√2,所以,|z2−z1|=|(z2−1+2i)−(z1−1+2i)|≤|z2−1+2i|+|z1−1+2i|=2+3√2,D对.(), M x y故选:ABD.13、若复数z 满足:z (z +2i )=8+6i ,则( )A .z 的实部为3B .z 的虚部为1C .zz =√10D .z 在复平面上对应的点位于第一象限答案:ABD分析:根据待定系数法,将z =a +bi (a,b ∈R )代入条件即可求解a =3,b =1,进而即可根据选项逐一求解. 设z =a +bi (a,b ∈R ),因为z (z +2i )=8+6i ,所以zz +2iz =8+6i ,所以(a 2+b 2−2b )+2ai =8+6i ,所以a 2+b 2−2b =8,2a =6,所以a =3,b =1,所以z =3+i ,所以z 的实部为3,虚部为1,故A ,B 正确;zz =|z |2=10,故C 不正确;z 在复平面上对应的点(3,1)位于第一象限,故D 正确.故选:ABD .填空题14、i 2 021=________.答案:i分析:利用周期性求得所求表达式的值.i 2021=i 505×4+1=i 1=i所以答案是:i15、设复数z ,满足|z 1|=1,|z 2|=2,z 1+z 2=√3−i ,则|z 1−z 2|=____________.答案:√6解析:根据复数的几何意义得到对应向量的表示,再结合向量的平行四边形法则以及余弦定理求解出|z 1−z 2|的值.设z 1,z 2在复平面中对应的向量为OZ 1⃗⃗⃗⃗⃗⃗⃗ ,OZ 2⃗⃗⃗⃗⃗⃗⃗ ,z 1+z 2对应的向量为OZ 3⃗⃗⃗⃗⃗⃗⃗ ,如下图所示:因为z 1+z 2=√3−i ,所以|z 1+z 2|=√3+1=2,所以cos∠OZ 1Z 3=12+22−221×2×2=14, 又因为∠OZ 1Z 3+∠Z 1OZ 2=180°,所以cos∠Z 1OZ 2=−cos∠OZ 1Z 3=−14,所以|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |2=OZ 12+OZ 22−2OZ 1⋅OZ 2⋅cos∠Z 1OZ 2=1+4+1=6, 所以|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6,又|z 1−z 2|=|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6,所以答案是:√6.小提示:名师点评复数的几何意义:(1)复数z =a +bi (a,b ∈R )一一对应↔复平面内的点Z (a,b )(a,b ∈R ); (2)复数z =a +bi (a,b ∈R ) 一一对应↔平面向量OZ ⃗⃗⃗⃗⃗ . 16、在复平面内,复数z 对应的点的坐标是(3,−5).则(1−i)z =___________.答案:−2−8i ##−8i −2分析:根据给定条件求出复数,再利用复数的乘法运算计算作答.在复平面内,复数z 对应的点的坐标是(3,−5),则z =3−5i ,所以(1−i)z =(1−i)(3−5i)=−2−8i .所以答案是:−2−8i解答题17、已知复数z 1=4-m 2+(m -2)i ,z 2=λ+2sin θ+(cos θ-2)i (其中i 是虚数单位,m ,λ,θ∈R ).(1)若z 1为纯虚数,求实数m 的值;(2)若z 1=z 2,求实数λ的取值范围.答案:(1)-2;(2)[2,6]分析:(1)z 1为纯虚数,则其实部为0,虚部不为0,解得参数值;(2)由z 1=z 2,实部、虚部分别相等,求得λ关于θ的函数表达式,根据sinθ的范围求得参数取值范围.(1)由z 1为纯虚数,则{4−m 2=0,m −2≠0,解得m =-2. (2)由z 1=z 2,得{4−m 2=λ+2sinθ,m −2=cosθ−2,∴λ=4-cos 2θ-2sin θ=sin 2θ-2sin θ+3=(sinθ−1)2+2. ∵-1≤sin θ≤1,∴当sin θ=1时,λmin =2,当sin θ=-1时,λmax =6,∴实数λ的取值范围是[2,6].18、已知m ∈R ,α、β是关于x 的方程x 2+2x +m =0的两根.(1)若|α−β|=2√2,求m 的值;(2)用m 表示|α|+|β|.答案:(1)−1或3;(2)|α|+|β|={2√m,m >12,0≤m ≤12√1−m,m <0.分析:(1)由α、β是关于x 的方程x 2+2x +m =0的两根.可得α+β=−2,αβ=m ,对α,β分为实数,与一对共轭虚根即可得出.(2)不妨设α⩽β,对m 及其判别式分类讨论,利用根与系数的关系即可得出.解:(1)∵α、β是关于x 的方程x 2+2x +m =0的两根.∴α+β=−2,αβ=m ,若α,β为实数,即Δ=4−4m ≥0,解得m ≤1时;则2√2=|α−β|=√(α+β)2−4αβ=√4−4m ,解得m =−1.若α,β为一对共轭复数,即Δ=4−4m <0,解得m >1时;则2√2=|α−β|=√(α+β)2−4αβ=|√4m −4i|,解得m =3.综上可得:m =−1或3.(2)因为x2+2x+m=0,不妨设α⩽β.Δ=4−4m⩾0,即m⩽1时,方程有两个实数根.α+β=−2,αβ=m,0⩽m⩽1时,|α|+|β|=|α+β|=2.m<0时,α与β必然一正一负,则|α|+|β|=−α+β=√(α+β)2−4αβ=2√1−m.Δ=4−4m<0,即m>1时,方程有一对共轭虚根.|α|+|β|=2|α|=2√α2=2√m综上可得:|α|+|β|={2√m,m>1 2,0⩽m⩽12√1−m,m<0.。

专题17 复数-高考题专项练习(解析版)

专题17 复数-高考题专项练习(解析版)

专题17 复数-高考题专项练习一、单选题1.(2018·全国高考真题(文)) A . B . C .D .【答案】D【分析】根据公式,可直接计算得(23)32i i i +=-+ 【解析】 ,故选D .【名师点睛】复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错. 2.(2018·全国高考真题(理)) A . B . C .D .【答案】D 【解析】 故选D .3.(2019·全国高考真题(文))设,则= A .2 B . C .D .1【答案】C【分析】先由复数的除法运算(分母实数化),求得,再求. 【解析】因为,所以,所以,故选C .【名师点睛】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解.4.(2019·全国高考真题(理))设复数z 满足,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .22(1)1x y -+= C .22(1)1y x +-= D .22(+1)1y x +=【答案】C【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【解析】,(1),z x yi z i x y i =+-=+-1,z i -=则22(1)1y x +-=.故选C .【名师点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.5.(2020·浙江高考真题)已知a ∈R ,若a –1+(a –2)i (i 为虚数单位)是实数,则a = A .1 B .–1 C .2D .–2【答案】C【解析】因为(1)(2)a a i -+-为实数,所以202a a -=∴=,,故选C 6.(2020·全国高考真题(理))复数的虚部是 A . B . C .D .【答案】D【分析】利用复数的除法运算求出z 即可. 【解析】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数的虚部为.故选D .【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 7.(2020·全国高考真题(文))(1–i )4= A .–4 B .4 C .–4i D .4i【答案】A【分析】根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可. 【解析】.故选A .【名师点睛】本题考查了复数的乘方运算性质,考查了数学运算能力,属于基础题. 8.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |= A .0B .1【答案】D【分析】由题意首先求得的值,然后计算其模即可. 【解析】由题意可得()2212z i i =+=,则()222212z z i i -=-+=-.故.故选D .【名师点睛】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题. 9.(2020·全国高考真题(文))若312i i z =++,则 A .0 B .1 C . D .2【答案】C【分析】先根据将化简,再根据向量的模的计算公式即可求出. 【解析】因为31+21+21z i i i i i =+=-=+,所以.故选C . 【名师点睛】本题主要考查向量的模的计算公式的应用,属于容易题. 10.(2017·山东高考真题(文))已知i 是虚数单位,若复数z 满足,则= A .-2i B .2i C .-2D .2【答案】A【解析】由得22(i)(1i)z =+,即,所以,故选A .【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2=±2i ;(2)=i ,=-i .11.(2017·全国高考真题(理))设有下面四个命题 :若复数满足,则; :若复数满足,则; :若复数满足,则; :若复数,则. 其中的真命题为 A .B .【答案】B【解析】令i(,)z a b a b R =+∈,则由2211i i a b z a b a b-==∈++R 得,所以,故正确;当时,因为22i 1z ==-∈R ,而知,故不正确; 当时,满足,但,故不正确;对于,因为实数的共轭复数是它本身,也属于实数,故正确,故选B .【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b R =+∈的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.12.(2017·北京高考真题(文))若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是 A .(–∞,1) B .(–∞,–1) C .(1,+∞) D .(–1,+∞)【答案】B【解析】设()()()()1i i 11i z a a a =-+=++-,因为复数对应的点在第二象限,所以,解得,故选B .【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z =a +b i 复平面内的点Z (a ,b )(a ,b ∈R).复数z =a +b i(a ,b ∈R) 平面向量. 13.(2018·全国高考真题(文))设,则 A . B . C .D .【答案】C【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模. 【解析】()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+,则,故选C . 【名师点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.14.(2019·北京高考真题(理))已知复数z=2+i,则A.B.C.3D.5【答案】D【分析】题先求得,然后根据复数的乘法运算法则即得.【解析】因为z2i,z z(2i)(2i)5=+⋅=+-=故选D.【名师点睛】本题主要考查复数的运算法则,共轭复数的定义等知识,属于基础题..15.(2018·浙江高考真题)若复数,其中i为虚数单位,则 =A.1+i B.1−iC.−1+i D.−1−i【答案】B【解析】22(1i)1i,1i1i(1i)(1i)z z+===+∴=---+,选B.【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,一般考查复数运算与概念或复数的几何意义,也是考生必定得分的题目之一.16.(2019·全国高考真题(理))设z=-3+2i,则在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【分析】先求出共轭复数再判断结果.【解析】由得则对应点(-3,-2)位于第三象限.故选C.17.(2019·全国高考真题(文))设z=i(2+i),则=A.1+2i B.–1+2iC.1–2i D.–1–2i【答案】D【分析】本题根据复数的乘法运算法则先求得,然后根据共轭复数的概念,写出.【解析】2i(2i)2i i 12i z =+=+=-+,所以,选D .【名师点睛】本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.18.(2020·北京高考真题)在复平面内,复数对应的点的坐标是,则. A . B . C .D .【答案】B【分析】先根据复数几何意义得,再根据复数乘法法则得结果. 【解析】由题意得,.故选B .【名师点睛】本题考查复数几何意义以及复数乘法法则,考查基本分析求解能力,属基础题.19.(2020·海南高考真题)= A . B . C .D .【答案】B【解析】2(12)(2)2425i i i i i i ++=+++=,故选B. 20.(2020·海南高考真题) A .1 B .−1 C .i D .−i【答案】D【分析】根据复数除法法则进行计算. 【解析】,故选D.【名师点睛】本题考查复数除法,考查基本分析求解能力,属基础题. 21.(2017·全国高考真题(理))复数等于 A . B . C .D . 【答案】D【解析】=2-i .故选D .【名师点睛】这个题目考查了复数的除法运算,复数常考的还有几何意义,z =a +bi(a ,b ∈R)与复平面上的点Z(a ,b)、平面向量都可建立一一对应的关系(其中O 是坐标原点);复平面内,实轴上的点都表示实数;虚轴上的点除原点外都表示纯虚数.涉及到共轭复数的概念,一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,复数z 的共轭复数记作.22.(2017·山东高考真题(理))已知,是虚数单位,若,,则 A .1或 B .或 C .D .【答案】A【解析】由,4z a z z =+⋅=得,所以,故选A .【名师点睛】复数(,)a bi a b R +∈的共轭复数是i(,)a b a b -∈R ,据此结合已知条件,求得的方程即可.23.(2017·全国高考真题(文))(2017新课标全国卷II (文)) A . B . C . D .【答案】B【解析】由题意,故选B .【名师点睛】首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(+)i(,,,)ad bc a b c d R ∈. 其次要熟悉复数相关基本概念,如复数+i(,)a b a b R ∈的实部为、虚部为、模为、对应点为、共轭复数为.24.(2017·全国高考真题(文))复平面内表示复数z=i(–2+i)的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】C【解析】i(2i)12i z =-+=--,则表示复数i(2i)z =-+的点位于第三象限. 所以选C .【名师点睛】对于复数的四则运算,首先要切实掌握其运算技巧和常规思路,如.其次要熟悉复数的相关基本概念,如复数i(,)a b a b +∈R 的实部为、虚部为、模为、对应的点为、共轭复数为25.(2017·全国高考真题(理))(2017高考新课标III ,理3)设复数z 满足(1+i)z =2i ,则∣z ∣= A . B . C . D .2【答案】C【解析】由题意可得,由复数求模的法则可得,则.故选C . 【名师点睛】共轭与模是复数的重要性质,运算性质有: (1)1212z z z z ±=±;(2)1212z z z z ⨯=⨯;(3); (4);(5);(6).26.(2018·全国高考真题(理)) A . B . C .D . 【答案】D【分析】根据复数除法法则化简复数,即得结果.【解析】212(12)341255i i ii ++-+==∴-选D .【名师点睛】本题考查复数除法法则,考查学生基本运算能力. 二、填空题1.(2017·天津高考真题(文))已知,为虚数单位,若为实数,则的值为________. 【答案】-2 【解析】为实数, 则.【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数(,)z a bi a b R =+∈,当时,为虚数,当时,为实数,当0,0a b =≠时,为纯虚数. 2.(2019·江苏高考真题)已知复数的实部为0,其中为虚数单位,则实数a 的值是________. 【答案】2【分析】本题根据复数的乘法运算法则先求得,然后根据复数的概念,令实部为0即得a 的值. 【解析】, 令得.【名师点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.3.(2017·上海高考真题)已知复数满足,则________. 【答案】【分析】设(,)z a bi a b R =+∈,代入,由复数相等的条件列式求得的值得答案. 【解析】由,得,设(,)z a bi a b R =+∈, 由得,即,解得, 所以,则.【名师点睛】本题考查复数代数形式的乘除运算,考查了复数相等的条件以及复数模的求法,是基础题,着重考查了考生的推理与运算能力.4.(2019·浙江高考真题)复数(为虚数单位),则________. 【答案】【分析】本题先计算,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【解析】1|||1|2z i ===+. 5.(2018·天津高考真题(理))i 是虚数单位,复数________. 【答案】4–i【分析】由题意结合复数的运算法则整理计算即可求得最终结果. 【解析】由复数的运算法则得.【名师点睛】本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.6.(2019·上海高考真题)设为虚数单位,,则的值为________. 【答案】【分析】把已知等式变形得,再由,结合复数模的计算公式求解即可.【解析】由365z i i -=+,得366z i =+,即 ,本题正确结果:【名师点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,属于基础题. 7.(2019·天津高考真题(文))是虚数单位,则的值为________. 【答案】【分析】先化简复数,再利用复数模的定义求所给复数的模.【解析】5(5)(1)231(1)(1)i i i i i i i ---==-=++-. 8.(2018·上海高考真题)已知复数满足()117i z i +=-(是虚数单位),则________. 【答案】5【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解析】由(1+i )z=1﹣7i ,得()()()()1711768341112i i i iz i i i i -----====--++-,则|z|=5=.故答案为5.【名师点睛】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题. 9.(2020·江苏高考真题)已知是虚数单位,则复数(1i)(2i)z =+-的实部是________. 【答案】3【分析】根据复数的运算法则,化简即可求得实部的值. 【解析】因为复数,所以2223z i i i i =-+-=+, 所以复数的实部为3.故答案为3.10.(2020·天津高考真题)是虚数单位,复数________. 【答案】【分析】将分子分母同乘以分母的共轭复数,然后利用运算化简可得结果.【解析】()()()()8281510322225i i i ii i i i ----===-++-.故答案为. 11.(2020·全国高考真题(理))设复数,满足,,则=________. 【答案】【分析】方法一:令1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,根据复数的相等可求得2ac bd +=-,代入复数模长的公式中即可得到结果.方法二:设复数所对应的点为,12OP OZ OZ =+, 根据复数的几何意义及复数的模,判定平行四边形为菱形,,进而根据复数的减法的几何意义用几何方法计算.【解析】方法一:设1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,12()z z a c b d i i ∴+=+++=,,又,所以,,,2ac bd ∴+=-12()()z z a c b d i ∴-=-+-==.故答案为.方法二:如图所示,设复数所对应的点为,12OP OZ OZ =+,由已知,所以平行四边形为菱形,且都是正三角形,所以12Z 120OZ ∠=︒,222221212121||||||2||||cos12022222()122Z Z OZ OZ OZ OZ =+-︒=+-⋅⋅⋅-= 所以.【名师点睛】方法一:本题考查复数模长的求解,涉及到复数相等的应用;考查学生的数学运算求解能力,是一道中档题.方法二:关键是利用复数及其运算的几何意义,转化为几何问题求解12.(2017·江苏高考真题)已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是________.【答案】【分析】利用复数的运算法则、模的计算公式即可得出.【解析】复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ,所以|z |==【名师点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()a bi c di ++=.其次要熟悉复数相关概念,如复数(,)a bi a b R +∈的实部为、虚部为、模为、对应点为、共轭复数为.13.(2018·江苏高考真题)若复数满足,其中i 是虚数单位,则的实部为________.【答案】2【分析】先根据复数的除法运算进行化简,再根据复数实部概念求结果. 【解析】因为,则12i 2i iz +==-,则的实部为. 【名师点睛】本题重点考查复数相关基本概念,如复数+i(,)a b a b ∈R 的实部为、虚部为、模为、对应点为、共轭复数为.三、双空题1.(2017·浙江高考真题)已知a ,b ∈R ,2i 34i a b +=+()(i 是虚数单位)则________,ab =________.【答案】5, 2【解析】由题意可得,则,解得,则225,2a b ab +==.【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为、虚部为、模为、对应点为(,)、共轭为等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、复数选择题1.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( )A .97- B .7 C .97D .7-2.复数312iz i=-的虚部是( ) A .65i -B .35iC .35D .65-3.已知i 是虚数单位,则复数41ii+在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.已知复数1z i i =+-(i 为虚数单位),则z =( )A .1B .iC iD i5.已知i 为虚数单位,若复数()12iz a R a i+=∈+为纯虚数,则z a +=( )A B .3C .5D .6.在复平面内,复数z 对应的点是()1,1-,则1zz =+( ) A .1i -+B .1i +C .1i --D .1i -7.已知复数z 的共轭复数212iz i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1B .-1C .iD .i -8.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3π而得到.则21arg()2z z -的值为( ) A .6πB .3πC .23π D .43π 9.若()()324z i i =+-,则在复平面内,复数z 所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限10.已知i 是虚数单位,a 为实数,且3i1i 2ia -=-+,则a =( ) A .2B .1C .-2D .-111.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3B .5C .6D .812.复数()()212z i i =-+,则z 的共轭复数z =( )A .43i +B .34i -C .34i +D .43i -13.在复平面内,复数z 对应的点的坐标是(1,1),则zi=( ) A .1i - B .1i --C .1i -+D .1i +14.设复数满足(12)i z i +=,则||z =( )A .15B C D .515.题目文件丢失!二、多选题16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( ) A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅=17.已知复数z 满足220z z +=,则z 可能为( ) A .0B .2-C .2iD .2i -18.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点19.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 20.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥21.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( )A .20zB .2z z =C .31z =D .1z =22.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数23.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根 24.以下为真命题的是( ) A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 25.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '=26.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1B .4-C .0D .527.给出下列命题,其中是真命题的是( ) A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 28.(多选)()()321i i +-+表示( ) A .点()3,2与点()1,1之间的距离 B .点()3,2与点()1,1--之间的距离 C .点()2,1到原点的距离D .坐标为()2,1--的向量的模29.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方30.已知i 为虚数单位,下列命题中正确的是( ) A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y == B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】先求出,再解不等式组即得解. 【详解】 依题意,, 因为复数为纯虚数, 故,解得. 故选:B 【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上. 解析:B 【分析】 先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩即得解.【详解】 依题意,()()()()3373321793737375858m i i m i m m z i i i i +++-+===+--+, 因为复数z 为纯虚数,故3210790m m -=⎧⎨+≠⎩,解得7m =.故选:B 【点睛】易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.2.C 【分析】由复数除法法则计算出后可得其虚部. 【详解】 因为,所以复数z 的虚部是. 故选:C .【分析】由复数除法法则计算出z 后可得其虚部. 【详解】因为33(12)366312(12)(12)555i i i i i i i i +-===-+--+, 所以复数z 的虚部是35. 故选:C .3.A 【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】,所以复数对应的坐标为在第一象限, 故选:A解析:A 【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】44(1)2(1)12i i i i i -==++,所以复数对应的坐标为(2,2)在第一象限, 故选:A 4.D 【分析】先对化简,求出,从而可求出 【详解】 解:因为, 所以, 故选:D解析:D 【分析】先对1z i i =+-化简,求出z ,从而可求出z 【详解】解:因为1z i i i i =+-==,所以z i =,故选:D5.A根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得 【详解】由复数为纯虚数,则,解得 则 ,所以,所以 故选:A解析:A 【分析】根据复数运算,化简后由纯虚数的概念可求得a ,.进而求得复数z ,再根据模的定义即可求得z a + 【详解】()()()()()()2221222*********i a i a a i a ii a z a i a i a i a a a +-++--++====+++-+++ 由复数()12i z a R a i +=∈+为纯虚数,则222012101a aa a +⎧=⎪⎪+⎨-⎪≠⎪+⎩,解得2a =- 则z i =- ,所以2z a i +=--,所以z a += 故选:A6.A 【分析】由得出,再由复数的四则运算求解即可. 【详解】 由题意得,则. 故选:A解析:A 【分析】由()1,1-得出1i z =-+,再由复数的四则运算求解即可. 【详解】由题意得1i z =-+,则1i 1i i 111i 1i i i 1z z -----+==⋅==-++-. 故选:A7.A 【分析】先化简,由此求得,进而求得的虚部. 【详解】 ,所以,则的虚部为. 故选:A解析:A 【分析】先化简z ,由此求得z ,进而求得z 的虚部. 【详解】()()()()212251212125i i i iz i i i i ----====-++-, 所以zi ,则z 的虚部为1.故选:A8.C 【分析】写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解. 【详解】 ,,所以复数在第二象限,设幅角为, 故选:C 【点睛】在复平面内运用复数的三解析:C 【分析】写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3π得到复数2z 的三角形式,从而求得212z z -的三角形式得解. 【详解】11z =,1cos 0sin 0z i ∴=+,121(cossin )3322Z i O OZ ππ=+=+2111()2222z z i --∴=+所以复数在第二象限,设幅角为θ,tan θ=23πθ∴=故选:C 【点睛】在复平面内运用复数的三角形式是求得幅角的关键.9.D 【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果. 【详解】 ,则复数对应的点的坐标为,位于第四象限. 故选:D .解析:D 【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果. 【详解】()()324(2)(4)76z i i i i i =+-=--=-,则复数z 对应的点的坐标为()7,6-,位于第四象限. 故选:D .10.B 【分析】 可得,即得. 【详解】 由,得a =1. 故选:B .解析:B 【分析】可得3(2)(1)3ai i i i -=+-=-,即得1a =. 【详解】由23(2)(1)223ai i i i i i i -=+-=-+-=-,得a =1. 故选:B .11.D利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】 ,故 则 故选:D解析:D 【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+=故选:D12.D 【分析】由复数的四则运算求出,即可写出其共轭复数. 【详解】 ∴, 故选:D解析:D 【分析】由复数的四则运算求出z ,即可写出其共轭复数z . 【详解】2(2)(12)24243z i i i i i i =-+=-+-=+∴43z i =-, 故选:D13.A 【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解. 【详解】因为在复平面内,复数对应的点的坐标是, 所以, 所以, 故选:A解析:A 【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解.因为在复平面内,复数z 对应的点的坐标是(1,1), 所以1z i =+,所以11i i i z i +==-, 故选:A14.B 【分析】利用复数除法运算求得,再求得. 【详解】 依题意, 所以. 故选:B解析:B 【分析】利用复数除法运算求得z ,再求得z . 【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以z ==故选:B15.无二、多选题 16.AD 【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断. 【详解】因为复数Z 在复平面上对应的向量, 所以,,|z|=,, 故选:AD解析:AD 【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z5z z ⋅=,故选:AD17.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.18.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.19.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 21.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.22.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.23.ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.【详解】因为(1﹣i )z =2i ,所以21i z i =-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确; 所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题. 24.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题. 25.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥,此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 26.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.27.AD【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D.根据,得到,再用共轭复数的定义判断.【详解】A .根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题.故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题. 28.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模29.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误; 当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.30.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。

相关文档
最新文档