数字信号处理实验1,2,3,4

数字信号处理实验1,2,3,4
数字信号处理实验1,2,3,4

实验一 连续时间系统的时域和频域分析相关MATLAB 函数1.设描述连续时间系统的微分方程为:)()()()()()()()(01)1(1)(01)1(1)(t f b t f b t f b t f b t y a t y a t y a t y a m m m m n n n n +'+++=+'+++---- 则可用向量和表示该系统,即

a b ]

,,,,[011a a a a a n n -=],,,,[011b b b b b m m -=注意,向量和的元素一定要以微分方程时间求导的降幂次序排列,且缺项要用0补齐。a b 如微分方程)()()(2)(3)(t f t f t y t y t y +''=+'+''表示该系统的向量为

]2 3 1[=a ]1 0 1[=b (1)求解冲激响应:impulse()函数impulse()函数有以下四种调用格式:

① impulse(b,a) 该调用格式以默认方式绘制由向量和定义的连续时间系统的冲激响应的时域波形。a b ② impulse(b,a,t)该调用格式绘制由向量和定义的连续时间系统在时间范围内的冲激响应的时a b t ~0域波形。③ impulse(b,a, t1:p:t2)该调用格式绘制由向量和定义的连续时间系统在时间范围内,且以时间间a b 21~t t 隔均匀抽样的冲激响应的时域波形。p ④ y=impulse(b,a,t1:p:t2)该调用格式并不绘制系统冲激响应的波形,而是求出由向量和定义的连续时间系a b 统在时间范围内以时间间隔均匀抽样的系统冲激响应的数值解。21~t t p (2)求解阶跃响应:step()函数

step()函数也有四种调用格式:① step(b,a)

② step(b,a,t)

③ step(b,a, t1:p:t2)

④ y=step(b,a,t1:p:t2)

上述调用格式的功能与impulse()函数完全相同。

(3)求解零状态响应:lsim()函数lsim()函数有以下二种调用格式:

① lsim(b,a,x,t)在该调用格式中,和是描述系统的两个行向量,表示输入信号时间范围的向量,a b t 则是输入信号在向量定义的时间点上的取样值。

x t ② y=lsim(b,a,x,t)该调用格式并不绘制系统的零状态响应曲线,而是求出与向量定义的时间间隔相一t 致的系统零状态响应的数值解。

2. 设系统的频率响应为01110111)()()()()(a j a j a j a b j b j b j b j H n n n n m m m m +Ω++Ω+Ω+Ω++Ω+Ω=Ω---- ],,,,[011a a a a a n n -=],,,,[011b b b b b m m -=求解频率响应:freqs()函数(1)h=freqs(b,a,w) 该调用格式中,w 为形如w1:p:w2的冒号运算定义的系统频率响应的频率范围,w1为起始频率,w2为终止频率,p 为频率取样间隔。向量h 返回在向量w 所定义的频率点上系统频响的样值。(2)[h,w]=freqs(b,a)该调用格式将计算默认频率范围内200个频率点的系统频率响应的样值,并赋值给返回变量h ,200个频率点记录在w 中。(3)[h,w]=freqs(b,a,n)该调用格式将计算默认频率范围内n 个频率点的系统频率响应的样值,并赋值给返回变量h ,n 个频率点记录在w 中。(4)freqs(b,a)该调用格式并不返回系统频率响应的样值,而是以对数坐标的方式绘制系统的幅频响应和相频响应。

实验内容:1.已知描述系统的微分方程和激励信号如下

,)(3)()(4)(4)(t f t f t y t y t y +'=+'+'')()(t e t f t ε=-要求:(1)从理论上求解系统的冲激响应和零状态响应,并根据求解结果用MATLAB 绘制其时域波形;

(2)分别用MATLAB 的impulse()函数和lsim()函数绘制系统的冲激响应和零状态响应,验证(1)中的结果。2.下图是用RLC 元件构成的二阶低通滤波器。设,,,试

H L 8.0=F C 1.0=Ω=2R 用MATLAB 的freqs()函数绘出该系统的幅频特性曲线和相频特性曲线。(求模:abs()函数,求相角:angle()函数)据规范与规程规定,制定

)(t f )(t y 3.已知某二阶系统的零极点分别为,,(二重零点),1001-=p 2002-=p 021==z z 试用MATLAB 绘出该系统在0 ~ 1kHz 频率范围内的幅频特性曲线(要求用频率响应的几何求解方法实现),并说明该系统的作用。

实验二 离散时间系统的时域和频域分析相关MATLAB 函数1. 求解零状态响应:filter()函数y=filter(b,a,x) 由向量b 和a 组成的系统对输入x 进行滤波2. 求解单位序列响应:impz()函数(1)h=impz(b,a) 计算单位序列响应的序列值,取样点个数由MATLAB 自动选取(2)h=impz(b,a,n)计算指定范围内(0: n-1)的单位序列响应的序列值(3)impz(b,a)绘制单位序列响应的时域波形3. 求解频率响应:freqz()函数(1)[h,w]=freqz(b,a,n)可得到n 点频率响应,这n 个点均匀地分布在上半单位圆(即),并将这n 点频π~0率记录在w 中,相应的频率响应记录在h 中。n 最好能取2的幂次方,如果缺省,则n=512。(2)[h,w]=freqz(b,a,n,'whole')在之间均匀选取n 个点计算频率响应。π2~0(3)[h,w]=freqz(b,a,n,Fs)Fs 为采样频率(以Hz 为单位),在0~Fs/2频率范围内选取n 个频率点,计算相应的频率响应。(4)[h,w]=freqz(b,a,n,'whole',Fs) 在0~Fs 之间均匀选取n 个点计算频率响应。(5)freqz(b,a)可以直接得到系统的幅频和相频特性曲线。其中幅频特性以分贝的形式给出,频率特性曲线的横轴采用的是归一化频率,即Fs/2=1。

4. 系统函数的零极点图的绘制:zplane(b,a)

实验内容:1. 已知某系统的系统函数为,,要求:(1)从21112.04.0121)(----++=z z z z H )()(n u n f =理论上求解系统的单位冲激响应和零状态响应,并根据求解结果用MATLAB 绘制其时域波形;(2)试分别用MATLAB 的impz()函数和filter()函数绘制系统的单位冲激响应和零状态响应。

2.已知某系统的系统函数为5

.0)(-=z z

z H

(1)绘制其零极点图(2)用freqz()函数绘出该系统的幅频特性曲线和相频特性曲线,并说明该系统的作用。

3.已知某系统的差分方程为,其中,,

)2()1()()2()1()(1221-+-+=-+-+n x n x b n x b n y b n y b n y 1.11-=b ,设输入信号为,绘出该系统的幅频特性曲线和相频特性6.02=b )1.0sin()(n n x π=曲线,以及系统的输入信号和响应,并说明该系统的性能。

实验三 模拟滤波器及IIR 数字滤波器的设计一、模拟滤波器的设计1.设计一个巴特沃斯模拟低通滤波器,以满足:通带截止频率,通带Hz f p 5=最大衰减,阻带截止频率,阻带最小衰减。要

dB p 2=αHz f s 12=dB s 30=α求绘出滤波器的幅频特性曲线。(幅度用分贝值表示)2.设计一个巴特沃斯模拟高通滤波器,以满足:通带截止频率,通

Hz f p 20=带最大衰减,阻带截止频率,阻带最小衰减。dB p 3=αHz f s 10=dB s 15=α要求绘出滤波器的幅频特性曲线。(幅度用分贝值表示)3.设计一个巴特沃斯模拟带通滤波器,以满足:通带范围为10Hz ~25Hz ,阻带截止频率分别为5Hz 、30Hz ,通带最大衰减为3dB ,阻带最小衰减为30dB 。要求绘出滤波器的幅频特性曲线。(幅度用分贝值表示)4.设计一个巴特沃斯模拟带阻滤波器,以满足:通带截止频率分别为10HZ 、35HZ ,阻带截止频率分别为15HZ 、30HZ ,通带最大衰减为3dB ,阻带最小衰减为30dB 。要求绘出滤波器的幅频特性曲线。(幅度用分贝值表示)提示: 在巴特沃斯模拟滤波器设计中常用的Matlab 函数有:① [N,Wn]=buttord(Wp,Ws,Rp,Rs,'s')其中,参数Wp 和Ws 分别是通带边界频率和阻带边界频率,Wp 和Ws 的单位是rad/s 。Rp 和Rs 分别为通带最大衰减和阻带最小衰减(dB )。返回的参数N 和Wn 分别为滤波器的阶数和3dB 截止频率。对于带通和带阻滤波器,Wp 和Ws 都是二维向量,向量的第一个元素对应低端的边界频率,第二个元素对应高端的边界频率。

② [B,A]=butter(N,Wn,'s') 其中,N 和Wn 分别为滤波器的阶数和3dB 截止频率。利用此函数可以获得低通和带通滤波器系统函数的分子多

项式(B )和分母多项式(A )的系数。[B,A]=butter(N,Wn,'high','s') 可以获得高通滤波器系统函数的分子多项式(B )

和分母多项式(A )的系数。[B,A]=butter(N,Wn,'stop','s') 可以获得带阻滤波器系统函数的分子多项式(B )和分母多项式(A )的系数。

利用freqs 函数计算模拟滤波器的频率响应:H=freqs(B,A,w)

其中,B 和A 分别表示滤波器系统函数的分子多项式和分母多项式的系数。该函数返回矢量w 指定的那些频率点上的频率响应,w 的单位是rad/s 。 不带输出变量的freqs 函数,将绘制出幅频和相频曲线。二、用脉冲响应不变法和双线性变换法设计IIR 数字滤波器1.要求分别用脉冲响应不变法和双线性变换法设计一个数字低通滤波器,以满足:通带截止频率为,阻带截止频率为,通带最大衰减为1dB ,π2.0π3.0阻带最小衰减为15dB ,采样间隔设为1s 。2.用脉冲响应不变法设计一个数字低通滤波器,使其特征逼近一个低通

Butterworth 模拟滤波器的下列性能指标:通带截止频率,2000rad/s 2?π=Ωp 通带最大衰减,阻带截止频率,阻带最小衰减dB p 3=α3000rad/s 2?π=Ωs ,设采样频率。假设该数字低通滤波器有一个输入dB s 15=αHz Fs 10000=信号,其中,,。试将t f t f t x 212cos 5.02sin )(π+π=Hz f 10001=Hz f 40002=滤波器的输出信号与输入信号进行比较。提示:① [bz,az]=impinvar(b,a,Fs) 可以实现用脉冲响应不变法将模拟滤波器转换为数字滤波器。其中b 和a 分别是模拟滤波器的系统函数的分子多项式和分母多项式的系数,Fs 是脉)s (H 冲响应不变法中的采样频率,单位为Hz ,如果Fs 没有说明,其缺省值为1Hz 。运算的结果bz 和az 分别表示数字滤波器的系统函数的分子多项式)z (H

和分母多项式的系数。

②[bz,az]=bilinear(b,a,Fs)

可以实现用双线性变换法将模拟滤波器转换为数字滤波器。参数含义同上。

③利用freqz函数计算数字滤波器的频率响应

④利用filter函数计算数字滤波器的输出

实验四基于窗函数的FIR DF的设计

提示:

1. Matlab中提供了很多常用的窗函数,其中一些窗函数的调用形式为:

矩形窗:w=boxcar(N)

三角形窗:w=bartlett(N)

汉宁窗:w=hanning(N)

哈明窗:w=hamming(N)

布莱克曼窗:w=blackman(N)

其中,输入参数N表示窗口的长度,返回的变量w是一个长度为N的列向量,

表示窗函数在这N点的取值。

2. b=fir1(N,Wc,'ftype',Window)

fir1函数用来设计FIR滤波器。其中N为滤波器的阶数;Wc是截止频率,其

取值在0~1之间,它是以为基准频率的标称值,设计低通和高通滤波器时,

π

Wc是标量,设计带通和带阻滤波器时,Wc是1×2的向量;设计低通和带通滤

波器时,无需'ftype',当ftype=high时,设计高通滤波器,当ftype=stop时,设计

带阻滤波器;Window表示设计滤波器所采用的窗函数类型,Window的长度为

N+1,若Window缺省,则fir1默认使用哈明窗;b对应设计好的滤波器的系数h(n),即单位冲激响应,h(n)的长度为N+1。

需注意的长度与滤波器的阶数间的关系。FIR滤波器的系统函数可表示)

(n

h

为:

∑-=-

=

1

) (

)

(

N

n

n

z n

h

z

H

的长度为,而滤波器的阶数为阶。

)

(n

h N1

-

N

3. 求数字滤波器的频率响应

h=freqz(b,a,w)

其中,b和a 分别为系统函数的分子多项式和分母多项式的系数。对于

)

(z

H

FIR滤波器,此处的b即为h(n),a可看作1。

实验题目:1.

分别用矩形窗和哈明窗设计FIR 低通滤波器,设窗宽,截止频率11=N ,要求绘出两种窗函数设计的滤波器幅频曲线,并进行比较。rad c πω2.0=2. 设计一个线性相位FIR 低通滤波器,通带截止频率为,阻带截

rad p πω2.0=止频率为,阻带最小衰减为。要求分别绘制理想冲激响rad s πω4.0=dB s 50=α应,窗函数的时域波形及幅频特性,实际冲激响应,FIR 滤波器的幅频特性和相频特性。

数字信号处理实验一

实验一 离散时间信号分析 班级 信息131班 学号 201312030103 姓名 陈娇 日期 一、实验目的 掌握两个序列的相加、相乘、移位、反褶、卷积等基本运算。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列)}({n x 来表示,其中)(n x 代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为+∞<<∞-n 的整数,n 取其它值)(n x 没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号)(t x a 进行等间隔采样,采样间隔为T ,得到)}({nT x a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)) (n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 ∑∞ -∞==-= m n h n x m n h m x n y )(*)()()()( 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。

(2)移位:将)(m h -移位n ,得)(m n h -。当n 为正数时,右移n 位;当n 为负数时,左移n 位。 (3)相乘:将)(m n h -和)(m x 的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。 三、主要实验仪器及材料 微型计算机、Matlab6.5 教学版、TC 编程环境。 四、实验内容 (1)用Matlab 或C 语言编制两个序列的相加、相乘、移位、反褶、卷积等的程序; (2)画出两个序列运算以后的图形; (3)对结果进行分析; (4)完成实验报告。 五、实验结果 六、实验总结

数字信号处理实验一

一、实验目的 1. 通过本次实验回忆并熟悉MATLAB这个软件。 2. 通过本次实验学会如何利用MATLAB进行序列的简单运算。 3. 通过本次实验深刻理解理论课上的数字信号处理的一个常见方法——对时刻n的样本附近的一些样本求平均,产生所需的输出信号。 3. 通过振幅调制信号的产生来理解载波信号与调制信号之间的关系。 二、实验内容 1. 编写程序在MATLAB中实现从被加性噪声污染的信号中移除噪声的算法,本次试验采用三点滑动平均算法,可直接输入程序P1.5。 2. 通过运行程序得出的结果回答习题Q1.31-Q1.33的问题,加深对算法思想的理解。 3. 编写程序在MATLAB中实现振幅调制信号产生的算法,可直接输入程序P1.6。 4. 通过运行程序得出的结果回答习题Q1.34-Q1.35的问题,加深对算法思想的理解。 三、主要算法与程序 1. 三点滑动平均算法的核心程序: %程序P1.5 %通过平均的信号平滑 clf; R=51; d=0.8*(rand(R,1)-0.5);%产生随噪声 m=0:R-1; s=2*m.*(0.9.^m);%产生为污染的信号 x=s+d';%产生被噪音污染的信号 subplot(2,1,1); plot(m,d','r-',m,s,'g--',m,x,'b-.');

xlabel('时间序号n');ylabel('振幅'); legend('d[n]','s[n]','x[n]'); x1=[0 0 x];x2=[0 x 0];x3=[x 0 0]; y=(x1+x2+x3)/3; subplot(2,1,2); plot(m,y(2:R+1),'r-',m,s,'g--'); legend('y[n]','s[n]'); xlabel('时间序号n');ylabel('振幅'); 2. 振幅调制信号的产生核心程序:(由于要几个结果,因此利用subplot函数画图) %程序P1.6 %振幅调制信号的产生 n=0:100; m=0.1;fH=0.1;fL=0.01; m1=0.3;fH1=0.3;fL1=0.03; xH=sin(2*pi*fH*n); xL=sin(2*pi*fL*n); y=(1+m*xL).*xH; xH1=sin(2*pi*fH1*n); xL1=sin(2*pi*fL1*n); y1=(1+m1*xL).*xH; y2=(1+m*xL).*xH1; y3=(1+m*xL1).*xH; subplot(2,2,1); stem(n,y); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.1;fH=0.1;fL=0.01;'); subplot(2,2,2); stem(n,y1); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.1;fL=0.01;'); subplot(2,2,3); stem(n,y2); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.3;fL=0.01;'); subplot(2,2,4); stem(n,y3); grid;

数字信号处理实验

实验一 离散傅里叶变换(DFT )对确定信号进行谱分析 一.实验目的 1.加深对DFT 算法原理和基本性质的理解。 2.熟悉DFT 算法和原理的编程方法。 3.学习用DFT 对信号进行谱分析的方法,了解可能出现的误差及其原因,以便在实际中正确利用。 二.实验原理 一个连续信号)(t x a 的频谱可以用其傅里叶变换表示,即 dt e t x j X t j a a Ω-∞ ∞ -? = Ω)()( 若对)(t x a 进行理想采样可得采样序列 )(|)()(nT x t x n x a nT t a === 对)(n x 进行DTFT ,可得其频谱为: ∑∞ -∞ =-= n n j j e n x e X ωω )()( 其中数字频率ω与模拟频率Ω的关系为: s f T Ω = Ω=ω )(n x 的DFT 为∑∞ -∞ =-= n nk N j e n x k X π 2)()( 若)(t x a 是限带信号,且在满足采样定理的条件下,)(ω j e X 是)(Ωj X a 的周期延拓, )(k X 是)(ωj e X 在单位圆上的等间隔采样值,即k N j e X k X πωω2| )()(= =。 为在计算机上分析计算方便,常用)(k X 来近似)(ω j e X ,这样对于长度为N 的有限 长序列(无限长序列也可用有限长序列来逼近),便可通过DFT 求其离散频谱。 三.实验内容 1.用DFT 对下列序列进行谱分析。 (1))()04.0sin(3)(100n R n n x π=

1 (2)]0,0,0,0,0,0,0,0,1,1,1,1[)(=n x 2.为了说明高密度频谱和高分辨率频谱之间的区别,考察序列 )52.0cos()48.0cos()(n n n x ππ+= (1)当0≤n ≤10时,确定并画出x(n)的离散傅里叶变换。 (2)当0≤n ≤100时,确定并画出x(n)的离散傅里叶变换。 四.实验结果 1. (1) (2)

数字信号处理实验报告(实验1_4)

实验一 MATLAB 仿真软件的基本操作命令和使用方法 实验容 1、帮助命令 使用 help 命令,查找 sqrt (开方)函数的使用方法; 2、MATLAB 命令窗口 (1)在MATLAB 命令窗口直接输入命令行计算3 1)5.0sin(21+=πy 的值; (2)求多项式 p(x) = x3 + 2x+ 4的根; 3、矩阵运算 (1)矩阵的乘法 已知 A=[1 2;3 4], B=[5 5;7 8],求 A^2*B

(2)矩阵的行列式 已知A=[1 2 3;4 5 6;7 8 9],求A (3)矩阵的转置及共轭转置 已知A=[1 2 3;4 5 6;7 8 9],求A' 已知B=[5+i,2-i,1;6*i,4,9-i], 求B.' , B' (4)特征值、特征向量、特征多项式 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征值、特征向量、特征多项式;

(5)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9];求A 中第3 列前2 个元素;A 中所有列第2,3 行的元素; 4、Matlab 基本编程方法 (1)编写命令文件:计算1+2+…+n<2000 时的最大n 值;

(2)编写函数文件:分别用for 和while 循环结构编写程序,求 2 的0 到15 次幂的和。

5、MATLAB基本绘图命令 (1)绘制余弦曲线 y=cos(t),t∈[0,2π]

(2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π] (3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求: (a)线形为点划线、颜色为红色、数据点标记为加号; (b)坐标轴控制:显示围、刻度线、比例、网络线 (c)标注控制:坐标轴名称、标题、相应文本; >> clear;

数字信号处理实验答案完整版

数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验一熟悉Matlab环境 一、实验目的 1.熟悉MATLAB的主要操作命令。 2.学会简单的矩阵输入和数据读写。 3.掌握简单的绘图命令。 4.用MATLAB编程并学会创建函数。 5.观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 clear all; a=[1 2 3 4]; b=[3 4 5 6]; c=a+b; d=a-b; e=a.*b; f=a./b; g=a.^b; n=1:4; subplot(4,2,1);stem(n,a); xlabel('n');xlim([0 5]);ylabel('A'); subplot(4,2,2);stem(n,b); xlabel('n');xlim([0 5]);ylabel('B'); subplot(4,2,3);stem(n,c); xlabel('n');xlim([0 5]);ylabel('C'); subplot(4,2,4);stem(n,d); xlabel('n');xlim([0 5]);ylabel('D'); subplot(4,2,5);stem(n,e); xlabel('n');xlim([0 5]);ylabel('E'); subplot(4,2,6);stem(n,f); xlabel('n');xlim([0 5]);ylabel('F'); subplot(4,2,7);stem(n,g); xlabel('n');xlim([0 5]);ylabel('G'); (2)用MATLAB实现下列序列: a) x(n)= 0≤n≤15 b) x(n)=e+3j)n 0≤n≤15 c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15 d) 将c)中的x(n)扩展为以16为周期的函数x(n)=x(n+16),绘出四个周期。

数字信号处理实验4-6

实验4 离散系统的变换域分析 一、实验目的 1、熟悉对离散系统的频率响应分析方法; 2、加深对零、极点分布的概念理解。 二、实验原理 离散系统的时域方程为 其变换域分析方法如下: 频域: 系统的频率响应为: Z域: 系统的转移函数为:

分解因式: , 其中和称为零、极点。 三、预习要求 1.在MATLAB中,熟悉函数tf2zp、zplane、freqz、residuez、zp2sos的使用,其中:[z, p,K]=tf2zp(num,den)求得有理分式形式的系统转移函数的零、极点;zplane(z,p)绘制零、极点分布图;h=freqz(num,den,w)求系统的单位频率响应;[r,p,k]=residuez (num,den)完成部分分式展开计算;sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系统的串联。 2.阅读扩展练习中的实例,学习频率分析法在MATLAB中的实现; 3.编程实现系统参数输入,绘出幅度频率响应和相位响应曲线和零、极点分布图。 四、实验内容 求系统 的零、极点和幅度频率响应和相位响应。 解析: 【代码】 num=[0.0528 0.0797 0.1295 0.1295 0.797 0.0528]; den=[1 -1.8107 2.4947 -1.8801 0.9537 -0.2336]; [z,p,k]=tf2zp(num,den); disp('零点');disp(z); disp('极点');disp(p); disp('增益系数');disp(k); figure(1) zplane(num,den)

figure(2) freqz(num,den,128) 【图形】 -2 -1.5 -1 -0.500.5 1 1.5 -1.5 -1 -0.5 0.51 1.5 Real Part I m a g i n a r y P a r t 0.1 0.2 0.30.40.50.60.70.80.9 1 -800 -600-400-2000 Normalized Frequency (?π rad/sample) P h a s e (d e g r e e s ) 0.1 0.2 0.30.40.50.60.70.80.9 1 -40-2002040Normalized Frequency (?π rad/sample) M a g n i t u d e (d B ) 【结果】 零点 -1.5870 + 1.4470i

数字信号处理实验三

实验三 离散付里叶变换(DFT ) 一、实验目的: 1. 掌握离散付里叶级数 2. 掌握DFT 变换。 3. 掌握DFT 特性。 4. 掌握利用DFT 计算线性卷积。 5. 掌握快速付里叶变换(FFT)。 二、实验原理: 1.离散付里叶级数(DFS ) )(~n x 为周期序列,其频率为基本频率(N /2π )的倍数(或谐波)。其离散付叶级 数(DFS )为:;∑ -=-±== 1 2,,1,0,)(~)(~N n kn N j k e n x k X π IDFS 为:∑ -== 1 2)(~ 1)(~N k kn N j e k X N n x π 2.离散付里叶变换(DFT ) )(n x 为长度N 的有限长序列,其DFT 为:21 1()()N j kn N k x n X k e N π--== ∑ IDFT 为:21 ()(),0,1,N j kn N n X k x n e k π-== =±∑ 3.DFT 的特性: (1) 线性性:)]([)]([)]()([2121n x bDFT n x aDFT n bx n ax DFT +=+ (2) 循环折叠(圆周对称)性:?? ? -≤≤-==-1 1) (0) 0())((N n n N x n x n x N (3) 共轭性: N k X n x DFT ))(()]([* *-= (4) 实序列的对称性(圆周共轭对称性):N k X k X ))(()(* -= (5) 序列的圆周移位:N m n x m n x ))(()(~ -=-

(6) 频域中的圆周移位:)())(()]([|ln k R l k X n x W DFT N N N -=- (7) 时域循环卷积:)()()]()([2121k X k X n x n x DFT =? (8) 频域循环卷积(乘法性):)()(1)]()([2121k X k X N n x n x DFT ?= (9) 帕塞瓦尔(Parseval )定理:∑ ∑ -=-== = 1 2 1 2 ) (1)(N k N n x k X N n x E 4.用DFT 计算线性卷积: 设)(1n x 为1N 点序列,)(2n x 为2N 点序列,)(3n x 为)(1n x 和)(2n x 的线性卷积,其为121-+N N 点序列,)(4n x 为)(1n x 和)(2n x 的圆卷积,其长度为 N ,当121-+=N N N 时,)()(43n x n x =。实际中,采用分段卷积法,即重 叠保留法和重叠相加法。需要对数据流进行分块处理,这时直接采用DFT 计算线性卷积会产生一些问题,而应该将)(n x 通过重复前M-1个取样进行分块,这样可得到正确结果。 5.快速付里叶变换(FFT ): 掌握基2-时域抽取FFT(DIT-FFT)和基2-频域抽取FFT(DIF-FFT)。MATLAB 提供fft 函数来计算x 的DFT 。fft 函数是用机器语言写的,采用混合基法,其调用形式为:),(N x fft X =。如N 为2的幂,则得到高速的基2-FFT 算法;若N 不是2的乘方,则将N 分解成质数,得到较慢的混合基FFT 算法;最后,若N 为质数,则fft 函数采用的是原始的DFT 算法。 三、实验步骤: 1.离散付里叶级数(DFS ) (1)自已动手:编写实现离散付里叶级数和逆离散付里叶级数的函数。 (2)已知周期性序列如下所示:}3,2,1,0,3,2,1,0,3,2,1,0{)(~ ↑ =n x 求其离散付里叶级数。 2.离散付里叶变换(DFT ) (1) 编写实现DFT 和IDFT 的函数。 (2) 已知)(n x 是一个六点序列,如下所示: ?? ?≤≤=e ls e n n x 0 501 )( 要求计算该序列的离散时间的付里叶变换和离散付里叶变换,并绘出它们的幅度和相

数字信号处理实验三

实验三:离散LSI 系统的频域分析 一、实验内容 2、求以下各序列的z 变换: 12030() ()sin() ()sin()n an x n na x n n x n e n ωω-=== 程序清单如下: syms w0 n z a; x1=n*a^n;X1=ztrans(x1) x2=sin(w0*n);X2=ztrans(x2) x3= exp(-a*n)*sin(w0*n);X3=ztrans(x3) 程序运行结果如下: X1 =z/(a*(z/a - 1)^2) X2 =(z*sin(w0))/(z^2 - 2*cos(w0)*z + 1) X3 =(z*exp(a)*sin(w0))/(exp(2*a)*z^2 - 2*exp(a)*cos(w0)*z + 1) 3、求下列函数的逆z 变换 0 312342 1 1() () () ()() 1j z z z z X z X z X z X z z a z a z e z ω---= = = = ---- 程序清单如下: syms w0 n z a; X1=z/(z-a);x1=iztrans(X1) X2= z/(a-z)^2;x2=iztrans(X2) X3=z/ z-exp(j*w0);x3=iztrans(X3) X4=(1-z^-3)/(1-z^-1);x4=iztrans(X4) 程序运行结果如下: x1 =a^n x2 =n*a^n/a 课程名称 数字信号 实验成绩 指导教师 实 验 报 告 院系 信息工程学院 班级 学号 姓名 日期

x3 =charfcn[0](n)-iztrans(exp(i*w0),w0,n) x4 =charfcn[2](n)+charfcn[1](n)+charfcn[0](n) 4、求一下系统函数所描述的离散系统的零极点分布图,并判断系统的稳定性 (1) (0.3)()(1)(1) z z H z z j z j -= +-++ z1=[0,0.3]';p1=[-1+j,-1-j]';k=1; [b1,a1]=zp2tf(z1,p1,k); subplot(1,2,1);zplane(z1,p1); title('极点在单位圆外); subplot(1,2,2);impz(b1,a1,20); 由图可见:当极点位于单位圆内,系统的单位序列响应随着频率的增大而收敛;当极点位于单位圆上,系统的单位序列响应为等幅振荡;当极点位于单位圆外,系统的单位序列响应随着频率的增大而发散。由此可知系统为不稳定系统。 -1 -0.5 00.51 -2 -1.5-1-0.500.511.5 2Real Part I m a g i n a r y P a r t 极点在单位圆外 n (samples) A m p l i t u d e Impulse Response

数字信号处理实验(吴镇扬)答案-4

实验四 有限长单位脉冲响应滤波器设计 朱方方 0806020433 通信四班 (1) 设计一个线性相位FIR 高通滤波器,通带边界频率为0.6π,阻带边界频率为0.4π,阻 带衰减不小于40dB 。要求给出h(n)的解析式,并用MATLAB 绘出时域波形和幅频特性。 解: (1) 求数字边界频率: 0.6 , .c r ωπωπ== (2) 求理想滤波器的边界频率: 0.5n ωπ= (3) 求理想单位脉冲响应: []d s i n ()s i n [()] () ()1n n n n n n h n n παωαα παωα π?-- -≠??-=? ? -=?? (4) 选择窗函数。阻带最小衰减为-40dB ,因此选择海明窗(其阻带最小衰减为-44dB);滤 波器的过渡带宽为0.6π-0.4π=0.2π,因此 6.21 0.231 , 152 N N N ππα-=?=== (5) 求FIR 滤波器的单位脉冲响应h(n): []31d sin (15)sin[0.5(15)] 1cos ()15()()()15(15)1 15 n n n R n n h n w n h n n n ππππ?---????-? ?≠? ???==-???? ? ?=? 程序: clear; N=31; n=0:N-1; hd=(sin(pi*(n-15))-sin(0.5*pi*(n-15)))./(pi *(n-15)); hd(16)=0.5; win=hanning(N); h=win'.*hd; figure; stem(n,h); xlabel('n'); ylabel('h(n)'); grid; title('FIR 高通滤波单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H)); figure;3 plot(w/pi,H); axis([0 1 -100 10]); xlabel('\omega/\pi'); ylabel('幅度/dB'); grid; title('FIR 高通滤波器,hanning 窗,N=31');

数字信号处理实验4

数字信号处理实验四 第一题结果: (1)没有增加过渡点 源码如下: N = 15; H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小 %H(3,13) = 0.75;H(5,11) = 0.25; %设置过渡点 k = 0:N-1; A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小 HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2); stem(real(hn),'.'); %绘制单位冲激响应的实部 line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))'); 单位脉冲响应曲线 幅频和相频特性曲线

(2)增加过渡点 源码如下: N = 15; H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小 H(3) = 0.75;H(13) = 0.75;H(5) = 0.25;H(11) = 0.25; %设置过渡点 k = 0:N-1; A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小 HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2); stem(real(hn),'.'); %绘制单位冲激响应的实部 line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))'); 单位脉冲响应曲线 幅频和相频特性曲线 第二题结果:

数字信号处理实验1

clc; clear; M=26;N=32;n=0:M; xa=0:M/2; xb=ceil(M/2)-1:-1:0; xn=[xa,xb]; Xk=fft(xn,512); Xk1=abs(Xk); X32k=fft(xn,32); X32k1=abs(X32k); x32n=ifft(X32k); X16k=X32k(1:2:N); X16k1=abs(X16k); x16n=ifft(X16k,N/2); figure(1); subplot(3,2,1); stem(Xk1); subplot(3,2,2); stem(X32k1); subplot(3,2,3); stem(x32n); subplot(3,2,4); stem(X16k1); subplot(3,2,5); stem(x16n); Lx=41;N=5;M=10; hn=ones(1,N);hn1=[hn zeros(1,Lx-N)]; n=0:Lx-1; xn=cos(pi*n/10)+cos(2*pi*n/5); yn=fftfilt(hn,xn,M); figure(1); subplot(3,1,1); stem(hn1); subplot(3,1,2); stem(xn); subplot(3,1,3); stem(yn);

clc; clear; n=0:31; A=3; y=A*exp((0.8+j*314)*n); subplot(2,1,1); stem(y); Az=[0.7 0.3]; Bz=[1 -0.8 -0.5]; subplot(2,1,2); zplane(Bz,Az);

数字信号处理实验二

实验二: 用FFT 作谱分析 实验目的 (1) 进一步加深DFT 算法原理和基本性质的理解(因为FFT 只是DFT 的一种快速算法, 所以FFT 的运算结果必然满足DFT 的基本性质)。 (2) 熟悉FFT 算法原理和FFT 子程序的应用。 (3) 学习用FFT 对连续信号和时域离散信号进行谱分析的方法, 了解可能出现的分析误差及其原因, 以便在实际中正确应用FFT 。 ● 实验步骤 (1) 复习DFT 的定义、 性质和用DFT 作谱分析的有关内容。 (2) 复习FFT 算法原理与编程思想, 并对照DIT-FFT 运算流图和程序框图, 读懂本实验提供的FFT 子程序。 (3) 编制信号产生子程序, 产生以下典型信号供谱分析用: (4) 编写主程序。 下图给出了主程序框图, 供参考。 本实验提供FFT 子程序和通用绘图子程序。 (5) 按实验内容要求, 上机实验, 并写出实验报告。 1423()()1,03()8470403()3470 x n R n n n x n n n n n x n n n =?+≤≤? =-≤≤?? ?-≤≤?? =-≤≤???456()cos 4 ()sin 8 ()cos8cos16cos20x n n x n n x n t t t π π πππ===++

●实验内容 (1) 对2 中所给出的信号逐个进行谱分析。 (2) 令x(n)=x4(n)+x5(n),用FFT计算8 点和16 点离散傅里叶变换, X(k)=DFT[x(n)] (3) 令x(n)=x4(n)+jx5(n),重复(2)。 ●实验报告要求 (1) 简述实验原理及目的。 (2) 结合实验中所得给定典型序列幅频特性曲线,与理论结果比较,并分析说明误差产生的原因以及用FFT作谱分析时有关参数的选择方法。 (3) 总结实验所得主要结论。 (4) 简要回答思考题。 Matlab代码: 对六个所给信号进行谱分析的主程序(对信号进行64点的FFT变换): clc;clear all; N=64; x1=Signal_x1(N);

数字信号处理上机实验答案(全)1

第十章 上机实验 数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。 实验一 系统响应及系统稳定性。 实验二 时域采样与频域采样。 实验三 用FFT 对信号作频谱分析。 实验四 IIR 数字滤波器设计及软件实现。 实验五 FIR 数字滤波器设计与软件实现 实验六 应用实验——数字信号处理在双音多频拨号系统中的应用 任课教师根据教学进度,安排学生上机进行实验。建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。学习完第六章进行;实验五在学习完第七章后进行。实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。 10.1 实验一: 系统响应及系统稳定性 1.实验目的 (1)掌握 求系统响应的方法。 (2)掌握时域离散系统的时域特性。 (3)分析、观察及检验系统的稳定性。 2.实验原理与方法 在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。 系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。 系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。或者系统的单位脉冲响应满足绝对可和的条件。系统的稳定性由其差分方程的系数决定。 实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。系统的稳态输出是指当∞→n 时,系统的输出。如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n 的加大,幅度趋于稳定,达到稳态输出。 注意在以下实验中均假设系统的初始状态为零。 3.实验内容及步骤 (1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter 函数或conv 函数求解系统输出响应的主程序。程序中要有绘制信号波形的功能。 (2)给定一个低通滤波器的差分方程为

数字信号处理实验报告实验三(DOC)

物理与电子信息工程学院 实验报告 实验课程名称:数字信号处理 实验名称:用FFT对信号作频谱分析班级:1012341 姓名:严娅 学号:101234153 成绩:_______ 实验时间:2012年12月6日

一、实验目的 学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT。 二、实验原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D和分析误差。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是N/ 2π,因此要求D 2π。可以根据此式选择FFT的变换区间N。误差主要来自于/ N≤ 用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时离散谱的包络才能逼近于连续谱,因此N要适当选择大一些。 周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。 对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。 三、实验步骤及内容 (1)对以下序列进行谱分析。

?????≤≤-≤≤-=?? ???≤≤-≤≤+==其它n n n n n n x 其它n n n n n n x n R n x ,074, 330,4)(,074, 830, 1)() ()(3241 这些都是时域离散非周期信号,选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。 (2)对以下周期序列进行谱分析。 4()cos 4x n n π= 5()cos(/4)cos(/8)x n n n ππ=+ 这些是时域离散周期信号,选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。 (3)对模拟周期信号进行谱分析 6()cos8cos16cos20x t t t t πππ=++ 这是时域连续周期信号,选择采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。分别打印其幅频特性,并进行分析和讨论。 四、实验程序清单 %第10章实验3程序exp3.m % 用FFT 对信号作频谱分析

数字信号处理实验一.

实验一离散傅里叶变换的性质 一、实验目的 1、掌握离散傅里叶变换的性质,包括线性特性、时移特性、频移特性、对称性和循环卷积等性质; 2、通过编程验证傅里叶变换的性质,加强对傅里叶变换性质的认识。二、实验原理和方法 1. 线性特性 1212DFT[((]((ax n bx n aX k bX k +=+ 2. 时移特性 DFT[(](DFT[(]( km km x n m W X k x n m W X k ?+=?= 3. 频移特性 ((nl N IDFT X k l IDFT X k W +=???????? 4. 对称性 设由x(n开拓成的周期序列为 (p x n 则(((p pe po x n x n x n =+ 偶序列(((*1 2 pe p p x n x n x N n ??= +???奇序列(((*12 po p p x n x n x N n ??=

????将(pe x n 和(po x n 截取主周期,分别得 (((pet pe N x n x n R n = (((pot po N x n x n R n = 则(((((p N pet pot x n x n R n x n x n ==+ x(n序列的实部和虚部的离散立叶变换 ({} (Re pet DFT x n X k =???? ({} (Im pot DFT j x n X k =???? [][] (((((((((((arg (arg (R R R I I I X k X k X N k X k X k X N k X k X k X N k X k X N k X k X k ?=?=?=?=?=??=??=?=?? 5. 循环卷积 (3123121 (((((x n x n x n X k X k X k N =?= ?有限长序列线性卷积与循环卷积的关系 X1(n和x2(n的线性卷积: 11 31 2 1 2 0(((((N m m x n x m x n m x m x n ?∞=?∞

数字信号处理实验八

实验报告 实验名称:FIR数字滤波器设计及应用 课程名称____数字信号处理________ 院系部:电气与电子工程专业班级:信息1002 学生姓名:王萌学号: 11012000219同组人:实验台号: 指导教师:范杰清成绩: 实验日期: 华北电力大学

一、实验目的 加深理解 FIR 数字滤波器的时域特性和频域特性,掌握FIR 数字 滤波器的设计原理与设计方法,以及FIR 数字滤波器的应用。 二、 实验原理 FIR 数字滤波器可以设计成具有线性相位,在数据通信、图像处理、 语音信号处理等实际应用领域得到广泛应用。 M 阶FIR 数字滤波器的系统函数为: FIR 数字滤波器的单位脉冲响应h [k ]是长度为M +1的有限长因果序列。当满足对称条件时,该FIR 数字滤波器具有线性相位。FIR 数字滤波器设计方法主要有窗口法、频率取样法及优化设计法。 MATLAB 中提供的常用FIR 数字滤波器设计函数有: fir1 窗函数法设计FIR 数字滤波器(低通、高通、带通、 带阻、多频带滤波器) fir2 频率取样法设计FIR 数字滤波器:任意频率响应 firls FIR 数字滤波器设计:指定频率响应 firrcos 升余弦型 FIR 数字滤波器设计 intfilt 内插FIR 数字滤波器设计 kaiserord 凯塞(Kaiser)窗函数设计法的阶数估计 firpm Parks-McClellan 算法实现FIR 数字滤波器优化设计 firpmord Parks-McClellan 数字滤波器的阶数选择 cremez 复系数非线性相位FIR 等波纹滤波器设计 1、 窗口法设计FIR 数字滤波器 fir1函数可以很容易地实现FIR 数字滤波器窗口法设计。 可设计低通、高通、带通、带阻滤波器、多频带滤波器。 k M k z k h z H -=∑=][)(0

数字信号处理 实验一

数字信号处理实验一 序列的绘图 一、实验目的: 1.了解MATLAB的实验环境; 2.充分熟悉subplot函数的使用; 3.能够画出单位脉冲序列及单位阶跃序列的图形; 4.能够画出矩形序列及正弦序列的图形。 二、实验步骤: 1.打开MATLAB,了解三个区域(工作区、命令区、历史记录区)的作用; 2.用help查找subplot函数的使用情况; 3.编辑并生成函数impseq.m(单位脉冲序列) function [x,n] = impseq(n0,n1,n2) % 产生 x(n) = delta(n-n0); n1 <= n,n0 <= n2 % [x,n] = impseq(n0,n1,n2) if ((n0 < n1) | (n0 > n2) | (n1 > n2)) error('参数必须满足 n1 <= n0 <= n2') end n = [n1:n2]; %x = [zeros(1,(n0-n1)), 1, zeros(1,(n2-n0))]; x = [(n-n0) == 0]; 以及函数stepseq.m(单位阶跃序列) function [x,n] = stepseq(n0,n1,n2) % 产生 x(n) = u(n-n0); n1 <= n0 <= n2 % [x,n] = stepseq(n0,n1,n2) if ((n0 < n1) | (n0 > n2) | (n1 > n2)) error('参数必须满足n1 <= n0 <= n2') end n = [n1:n2]; %x = [zeros(1,(n0-n1)), ones(1,(n2-n0+1))]; x = [(n-n0) >= 0]; 主函数test1.m n=[-5:5];

数字信号处理实验4

电子科技大学 数字信号处理实现技术 实验报告 组员: 指导教师: 日期:2014-04-11

实验四:DFT 一、实验目的 1.了解DFT 的原理; 2.了解使用Matlab 语言实现DFT 的方法; 3.了解在DSP 中DFT 的设计及编程方法; 4.熟悉对FFT 的调试方法。 二、实验内容 1. DFT 的基本原理与结构 离散傅里叶变换(DFT ),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT )频域的采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT ,也应当将其看作经过周期延拓成为周期信号再作变换。 1)主值区间与主值序列 我们知道周期序列实际上只有有限个序列值有意义,因此它的许多特性可推广到有限长序列上。 一个有限长序列 x(n),长为N , 为了引用周期序列的概念,假定一个周期序列 ,它由长度为 N 的有限长序列 x(n) 延拓而成,它们的关系: ? ∑-∞-∞=-= =π πωωωω ωπd e e X n x e n x e X n j j n n j j )(21)()()(??? ?????? ?-≤≤=+=∑∞ -∞ =n N n n x n x rN n x n x r 其它01 0)(~)()()(~???? ??-≤≤=n N n n x n x 其余010)()(~ ) (~ n x

2.实验主要内容 1)用C产生input信号,cosine和sine表,并存为数据文件。 2)编写汇编程序实现DFT,加载数据文件,通过plot观察结果modul。 三、实验结果及分析 1 采样点数为64的正弦信号分析 1.1由matlab产生的频率为23.87MHz,采样点数为64的正弦信号: 1.2频率为23.87MHz,采样点数为64的正弦信号经过DFT变化后的信号: 1.3 在DSP仿真软件上实现的DFT变换,plot图如下:

数字信号处理上机实验(第三版)

数字信号处理实验(Matlab) 实验一: 系统响应及系统稳定性 %实验1:系统响应及系统稳定性 close all;clear all %======内容1:调用filter解差分方程,由系统对u(n)的响应判断稳定性====== A=[1,-0.9];B=[0.05,0.05]; %系统差分方程系数向量B和A x1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号x1(n)=R8(n) x2n=ones(1,128); %产生信号x2(n)=u(n) hn=impz(B,A,58); %求系统单位脉冲响应h(n) subplot(2,2,1);y='h(n)';tstem(hn,y); %调用函数tstem绘图 title('(a)系统单位脉冲响应h(n)');box on y1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n) subplot(2,2,2);y='y1(n)';tstem(y1n,y); title('(b)系统对R8(n)的响应y1(n)');box on y2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n) subplot(2,2,4);y='y2(n)';tstem(y2n,y); title('(c)系统对u(n)的响应y2(n)');box on %===内容2:调用conv函数计算卷积============================ x1n=[1 1 1 1 1 1 1 1 ]; %产生信号x1(n)=R8(n) h1n=[ones(1,10) zeros(1,10)]; h2n=[1 2.5 2.5 1 zeros(1,10)];

相关文档
最新文档