广西大学固体物理
固体物理黄昆第一章

元激发的能量与寿命
元激发的能量与晶体的振动频率或量子数有关,可以通过量子力学公式计算。
元激发的寿命取决于其与周围环境的相互作用,以及能量的耗散机制。在某些条件下,元激发的寿命 可以很长,使得它们在某些物理过程中起到关键的作用。例如,在超导材料中,声子与电子相互作用 导致电子配对,从而实现超导态。
05
完美晶体
理想状态下,晶体中的原子或 分子应完全规则排列。
线缺陷
晶体中原子或分子的排列出现 中断,形成一条线上的缺陷。
形成原因
晶体缺陷的形成与温度、压力、 杂质等因素有关。
晶体缺陷对物理性质的影响
01
光学性质
晶体缺陷可以影响光的折射、反射 和吸收等性质。
热学性质
晶体缺陷可以影响热导率、热膨胀 等性质。
黄昆的贡献与影响
贡献
黄昆是中国固体物理学领域的奠基人之一,他在固体物理学的多个领域做出了卓越的贡献,包括晶体结构、晶体 振动、相变等方面。
影响
黄昆的学术成果不仅对中国固体物理学的发展产生了深远影响,也对全球固体物理学的发展产生了重要影响。他 的学术思想和方法论对后来的科研工作者提供了宝贵的启示和借鉴。
揭示了声子在固体中的传播特性
通过声子理论,黄昆揭示了声子在固体中的传播特性,包括声速、衰 减等,为理解材料的力学性质和热学性质提供了重要的理论依据。
黄昆的极化子理论
01
提出极化子的概念
黄昆在极化子理论中,提出了极化子 的概念,即某些固体中由于晶格振动 和电子运动的耦合而形成的元激发。
02
发展了极化子的计算 方法
02
元激发与量子力学中的粒子不同,它是一种波动现象,具有 波粒二象性。
03
元激发是晶体中能量的传递和转换机制,是理解固体物理中 许多现象的基础。
本科专业培养计划-物理学专业

物理学专业本科培养计划(2017年9月修订)物理学一、培养目标立足广西,服务全国,辐射东盟,面向世界,培养德智体美全面发展,具有宽厚扎实的数学基础、物理学理论基础,掌握实验方法和技能,受到基础研究或应用研究训练,具有社会责任感、法治意识、创新精神、实践能力和国际视野的“五有领军型人才”。
本专业培养物理学及相关学科的高端人才,学生毕业后能继续攻读物理学类及相关高新技术学科、交叉学科等学科领域的硕士研究生,或到科研部门、教育部门和企事业单位等从事科研、教学和高新技术研发、管理等工作。
二、培养标准及要求本专业的培养标准分知识、能力和素质等三方面:A.知识:学生应具有广泛的自然科学与必要的人文社会科学领域知识积累,系统掌握物理学基本理论。
A1人文科学知识:学生应掌握一定的人文社会科学领域的基本常识。
学习文学、史学、哲学、艺术、经济等方面的知识。
熟练掌握一门外语,可运用其进行基本的沟通和交流。
A2自然科学基础知识:学生应系统掌握与物理学相关的哲学、数学、电子技术等自然科学基础知识以及计算机技术。
掌握科学的思维方法、基本分析方法和技能。
A3 物理学核心基础知识:系统掌握力学、热学、电磁学、光学、原子物理学、理论力学、电动力学、热力学-统计物理学、量子力学基本理论知识,为后续学习和研究打下坚实的基础。
A4物理学相关专业知识:学生在系统掌握物理理论的基础上,应有选择性地学习特定领域的专业化理论知识,对粒子天体物理、能源物理和光电物理等某个特定领域专业知识的熟练和精通。
A5物理学领域前沿知识:学生应了解和把握本领域的发展状况和经济社会需求。
B.能力:学生应当具有较强的学习能力、较强的分析判断解决问题能力、能熟练地将所学知识应用于太阳能产品、无损检测技术、光电子技术和核相关技术等项目的设计开发,并具有良好的创新意识。
B1信息获取能力和学习能力:学生应当具有较强的从网络、书本、媒体获得知识的能力,以及终身学习,自我提高的能力。
《固体物理》复习大纲

«固体物理»复习大纲招生专业:凝聚态物理/材料物理与化学固体物理学的基本内容(专题除外), 主要有:晶体结构, 晶体结合, 晶格振动和晶体热学性质, 晶体的缺陷, 金属电子论和能带理论.主要参考书目: 1. 黄昆, 韩汝琦, 固体物理学, 高教出版社2. 陆栋, 蒋平, 徐至中, 固体物理学, 上海科技出版社3. 朱建国, 郑文琛等, 固体物理学, 科学出版社«新型功能材料»复习大纲招生专业:材料物理与化学/光学工程一、复习大纲1,材料、新材料的重要性;2,材料科学、材料工程、材料科学与工程的学科形成与学科内涵;3,材料科学与工程的“四要素”的内容;“四要素”间的相互关系(用图来表示);“四要素”在材料研究中的作用;(要求能结合具体材料事例予以说明)4,如何理解材料、特别是新材料是社会现代化的物质基础与先导;5,怎样区分结构材料和功能材料?新型功能材料的内涵是什么?6,了解新型功能材料中相关科学名词的解释,并能给出适当的例子,如:信息材料;光电功能材料;能源材料;高性能陶瓷;纳米材料;晶体材料;人工晶体(材料);压电材料;铁电材料;复合材料;梯度材料;智能材料与结构;材料设计;环境材料;低维材料;生物材料;非线形光学材料;光子晶体;半导体超晶格;等等;7,注意了解材料检测评价新技术的发展;注意了解材料的成分测定、结构测定、形貌观测的方法;材料无损检测评价新技术的发展概况;8,能结合具体的材料对象,给出材料的成分分析、原子价态分析、结构(含微结构)分析、形貌分析等所采用的主要技术,以及利用这些技术所得出的主要结果;9,对若干常用的分析技术,包括:X射线衍射分析(XRD),原子力显微镜分析(AFM),扫描电子显微镜分析(SEM),透射电子显微镜分析(TEM),俄歇电子能谱分析,X射线光电子能谱分析(XPS),核磁共振谱分析,等,能结合具体事例,阐述它们在材料物化结构分析中的作用和能解决的具体问题;10,材料科学技术是一门多学科交叉的前沿综合性学科;材料科学技术的学科内涵极为丰富;当代材料科学技术正在飞速发展,其主要发展趋势可以归纳为8个方面。
固体物理

与刚体滑移不同, 与刚体滑移不同,位错的移动只需邻近原子作很小距离的 弹性位移就能实现,而晶体其它区域的原子仍处在正常位置, 弹性位移就能实现,而晶体其它区域的原子仍处在正常位置, 就能实现 临界切应力大为减小, 因此滑移所需的临界切应力大为减小 如图所示。 因此滑移所需的临界切应力大为减小,如图所示。
3-2 位错
1926年弗兰克尔利用理想晶体模型,假定塑性变形时滑移面 年弗兰克尔利用理想晶体模型, 年弗兰克尔利用理想晶体模型 两侧晶体像刚体一样,所有原子同步平移,如图 所示。 两侧晶体像刚体一样,所有原子同步平移,如图12-3所示。应用 所示 胡克定律估计理论切变强度τ 的数量级为1, 胡克定律估计理论切变强度 m= G·(x/d),x/d的数量级为 ,因此 , 的数量级为 估计理论切变强度与实验结果相差4~5个数量级,即使采用更完 个数量级, 估计理论切变强度与实验结果相差 个数量级 善的模型估计τ 也应为G的几十分子一 与实际应力相差3~4个数 的几十分子一, 善的模型估计 m也应为 的几十分子一,与实际应力相差 个数 量级。 量级。
位错是晶体内部存在的一种线缺陷, 位错是晶体内部存在的一种线缺陷,是滑移晶体与未滑 移晶体的交界线。 移晶体的交界线。 位错的观察比较困难。但是, 位错的观察比较困难。但是, 可用类似金相显微术看到位错线 在表面的露头,如图 ( ) 在表面的露头,如图3-1(b)并 可通过逐层腐蚀、 可通过逐层腐蚀、观察和追踪位 错的延续轨迹, 错的延续轨迹,从而表明其是一 种线型缺陷。 种线型缺陷。
位错密度:单位体积晶体中所包含的位错线的总长度。 位错密度:单位体积晶体中所包含的位错线的总长度。 ●充分退火的金属材料中,位错密度一形的金属中,位错密度可达1010~1012/cm2。 剧烈冷变形的金属中,位错密度可达 ●经精心控制生长的纯金属单晶位错密度可低于103/cm2。 经精心控制生长的纯金属单晶位错密度可低于
固体物理 第二章 结合能

固体物理第二章 23
固体物理第二章
17
固体物理第二章
18
3
典型的共价键是氢分子的共价键,两个氢原子 的价电子,围绕着两个氢原子核运动,形成 电子云。在两个氢核之间,为两个氢核所共 有。实际上,共价键的现代理论正是由氢分 子的量子理论开始的。 设想有原子A 和 B ,它们表示互为近邻的一对 原子。当它们是自由原子时,各有一个价电 子,归一化的波函数分别用 A 、 B 表示,即:
这一四体问题迄今还不能严格求解,需作近 似处理,常用的比较成功的做法是分子轨道 法 (Molecular Orbital Method) 。忽略电子 - 电 子间相互作用,且假定 : (r1 , r2 ) 1 (r ) 2 (r )
固体物理第二章 20
2 2 2 2 1 2 VA1 VA 2 VB1 VB 2 V12 2m 2m
* H dr
* H aa * A H A dr B H B dr 0
* H ab * A H B dr B H A dr 0
* dr
2 2C ( H aa H ab )
+态波函数是对称的,可填充两个自旋相反的电子, +态的能量亦低于自由氢原子1s态的能量。较多出现
固体物理第二章 3
2-1 结合力的普遍性质与结合能
研究组成晶体的原子结构和它们之间的结合力与结 合力的性质,是固体物理中最基本、最重要的问题 之一。 不同的晶体具有不同的结合力类型,但它们的结合力 在定性上具有共同的普遍性质。 在晶体中,粒子的相互作用可分为吸引作用和排斥作 用两类。当粒子间距离较远时(大于几个A),吸引作 用为主;当距离较近时 ( 小于平均粒子间距),排斥 作用为主;当距离适当时,二者相等,相互抵消, 使晶体中的粒子处于平衡状态。 首先研究处于基态的两个相同的原子由相距无穷远处 移到一起时能量和结合能变化的情形。
固体物理教学大纲

课程编号:011908 总学分:3学分固体物理(Solid-State Physics)课程性质:学科大类基础课适用专业:应用物理学专业学时分配:课程总学时:48学时。
其中:理论课学时:46学时(含演示学时);实验学时:0学时;上机学时:0学时;习题课学时:2学时。
先行、后续课程情况:先行课:高等数学、热力学与统计物理,;后续课:量子力学,原子物理。
教材:《固体物理学》,黄昆,韩汝琦,高等教育出版社参考书目:《固体物理学》,陆栋,上海科学技术出版社《固体物理基础》,阎守胜,北京大学出版社《固体物理简明教程》,蒋平,徐至中,复旦大学出版社一、课程的目的与任务固体物理学是应用物理和物理类各专业的一门必修基础课程,是继四大力学之后的一门基础且关键的课程,它的主要内容是研究固体的结构及组成粒子(原子、离子、电子等)之间的相互作用与运动规律,阐明固体的性能和用途,尤其以固态电子论和固体的能带理论为主要内容。
通过固体物理学的整个教学过程,使学生理解晶体结构的基本描述,固体电子论和能带理论,以及实际晶体中的缺陷、杂质、表面和界面对材料性质的影响等,掌握周期性结构的固体材料的常规性质和研究方法,了解固体物理领域的一些新进展,为以后的专业课学习打好基础。
二、课程的基本要求教学内容的基本要求分三级:掌握、理解、了解。
掌握:属于较高要求。
对于要求掌握的内容(包括定理、定律、原理等的内容、物理意义及适用条件)都应比较透彻明了,并能熟练地用以分析和计算有关问题,对于能由基本定律导出的定理要求会推导。
理解:属于一般要求。
对于要求理解的内容(包括定理、定律、原理等的内容、物理意义及适用条件)都应明了,并能用以分析和计算有关问题。
对于能由基本定律导出的定理不要求会推导。
了解:属于较低要求。
对于要求了解的内容,应该知道所涉及问题的现象和有关实验,并能对它们进行定性解释,还应知道与问题直接有关的物理量和公式等的物理意义。
三、课程教学内容绪论:了解固体的分类和固体物理学的研究内容;了解固体物理学的发展历史;了解固体物理学的研究方法。
广西大学2020年《普通物理(836)》考试大纲与参考书目

广西大学2020年《普通物理(836)》考试大纲与参考书目考试性质自命题考试考试方式和考试时间闭卷试卷结构考试题型(1)选择题,(2)填空题,(3)计算题考试内容一、课程性质和目的:本课程使学生对物理学所研究的各种运动形式以及它们之间的联系,有比较全面系统的认识;对大学物理课中的基本理论、基本知识能够正确地理解,并具有初步应用的能力。
二、课程考试内容第一部分、力学1、质点动力学:牛顿运动定律的应用,动量守恒定律的理解和应用,机械能守恒定律及应用。
难点:变力作用下质点动力学基本问题,变力做功的计算,机械能守恒定律的应用。
2、刚体力学基础:刚体定轴转动定律的应用,角动量,角动量守恒定律的应用。
难点:转动惯量的理解,刚体定轴转动定律的应用,角动量的理解,角动量守恒定律的条件和应用。
3、振动和波动:简谐振动的特征及简谐振动方程;平面简谐波函数。
难点:相位的理解,旋转矢量法的理解和应用;波函数的表示及物理意义。
第二部分、电磁学1、静电场:叠加原理求电场强度,静电场的高斯定理及应用,电势及电势的计算,静电场的环路定理,简单电容器电容的计算,介质中的高斯定理,电容器储存的静电能难点:叠加原理求电场强度的数学处理,用高斯定理求对称分布电场的场强,介质中的高斯定理。
2、稳恒磁场:毕奥—萨伐尔定律及计算,安培环路定理及其应用,安培定律及应用,磁力矩,磁介质中的安培环路定理。
难点:毕奥—萨伐尔定律应用中的数学处理,磁介质中的安培环路定理及应用。
3、变化的电磁场:法拉第电磁感应定律及应用,动生电动势及计算,磁场能量。
难点:动生电动势及计算,感生电场的性质,自感和互感的理解第三部分、光学杨氏双缝干涉,薄膜干涉;夫琅和费单缝衍射条纹分布规律,衍射光栅;马吕斯定律、布儒斯特定律。
难点:光程差和相位差的关系;半波带法的理解,光栅衍射条纹的分布规律,缺级的判断。
第四部分、热学1、气体分子动理论:理想气体的压强公式,理想气体的内能,能量按自由度均分定理,麦克斯韦速率函数及分布曲线,三种统计速率,气体分子平均碰撞频率与平均自由程。
固体物理学教学大纲

《固体物理学》教学大纲(适用于本科物理学专业)课程编码:140613040学时:64学分:4开课学期:第七学期课程类型:专业必修课先修课程:理论力学,电动力学,热力学与统计物理,量子力学教学手段:多媒体一、教学目的与任务:本课程是物理学专业本科生的专业选修课。
通过本课程的学习,使学生了解固体物理学发展的基本情况,以及固体物理学对于近代物理和近代科技的发展起的作用,培养学生的科学素质和科学精神;了解固体物理所研究的基本内容和固体物理研究前沿领域的概况,培养学生的现代意识和科学远见;掌握固体物理学的基本概念和基本规律,培养掌握科学知识的方法;掌握应用固体物理学理论分析和处理问题的手段和方法,培养科学研究的方法。
二、课程的基本内容:1.晶体的结构2.固体的结合3.晶格振动与晶体的热学性质4.能带理论5.晶体中电子在电场和磁场中的运动6.金属电子论三、课程的教学要求:(1)掌握晶体的空间点阵,晶体基矢的表达,倒易点阵,晶面、晶向的概念以及正点阵和倒易点阵的关系。
(2)掌握晶体的结合类型和结合性质。
(3)掌握一维晶体振动模式的色散关系,晶格振动的量子化、声子的概念。
爱因斯坦模型和德拜模型解释固体的比热性质。
(4)掌握自由电子气的概念,自由电子气的费密能量,布洛赫波以及自由电子模型。
(5)掌握布里渊区的概念以及近自由电子近似和紧束缚近似方法计算能带的理论。
(6)了解晶体的对称操作类型,了解非谐效应,确定振动谱的实验方法以及晶格的自由能。
(7)了解金属中电子气的热容量,金属、半导体、绝缘体以及空穴的概念。
四、课程学时分配:第一章晶体结构(8学时)【教学目的】通过本章的教学,使学生了解晶格结构的一些实例;理解和掌握晶体结构的周期性特征及其描述方法;理解和掌握晶体结构的对称性特征及其描述方法;理解和掌握倒格子的定义及其与正格子的关系。
【重点难点】重点:晶体结构的周期性特征及其描述方法、晶体结构的对称性特征及其描述方法、倒格子及其与正格子的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小欧制作:晶体:是由离子,原子或分子(统称为粒子)有规律的排列而成的,具有周期性和对称性非晶体:有序度仅限于几个原子,不具有长程有序性和对称性点阵:格点的总体称为点阵晶格:晶体中微粒重心,周期性的排列所组成的骨架,称为晶格格点:微粒重心所处的位置称为晶格的格点(或结点)晶体的周期性和对称性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质称为晶体结构的周期性。
晶体的对称性指晶体经过某些对称操作后,仍能恢复原状的特性。
(有轴对称,面对称,体心对称即点对称)密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数配位数:可用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度固体物理学元胞:选取体积最小的晶胞,称为元胞:格点只在顶角,内部和面上都不包含其他格点,整个元胞只含有一个格点:元胞的三边的平移矢量称为基本平移矢量(或者基矢);突出反映晶体结构的周期性元胞:体积通常较固体物理学元胞大;格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数,点阵常数或晶胞常数;突出反映晶体的周期性和对称性。
布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合而且每个格点周围的情况都一样复式格子:晶体由两种或者两种以上的原子构成,而且每种原子都各自构成一种相同的布拉菲格子,这些布拉菲格子相互错开一段距离,相互套购而形成的格子称为复式格子,复式格子是由若干相同的布拉菲格子相互位移套购而成的声子:晶格简谐振动的能量化,以hvl 来增减其能量,hvl就称为晶格振动能量的量子叫声子非简谐效应:在晶格振动势能中考虑了δ2以上δ高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导点缺陷的分类:晶体点缺陷:①本征热缺陷:弗伦克尔缺陷,肖脱基缺陷②杂质缺陷:置换型,填隙型③色心④极化子布里渊区:在空间中倒格矢的中垂线把空间分成许多不同的区域,在同一区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区爱因斯坦模型在低温下与实验存在偏差的根源是什么?答:按照爱因斯坦温度的定义,爱因斯坦模型的格波的频率大约为1013Hz,属于光学支频率,但光学格波在低温时对热容的贡献非常小,低温下对热容贡献大的主要是长声学格波,也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源。
陶瓷中晶界对材料性能有很大的影响,试举例说明晶界的作用答:晶界是一种面缺陷,是周期性中断的区域,存在较高界面能和应力,且电荷不平衡,故晶界是缺陷富集区域,易吸附或产生各种热缺陷和杂质缺陷,与体内微观粒子(如电子)相比,晶界微观粒子所处的能量状态有明显差异,称为晶界态。
在半导体陶瓷,通常可以通过组成,制备工艺的控制,使晶界中产生不同起源的受主态能级,在晶界产生能级势垒,显著影响电子的输出行为,使陶瓷产生一系列的电功能特性(如PTC特性,压敏特性,大电容特性等)。
这种晶界效应在半导体陶瓷的发展中得到了充分的体现和应用。
从能带理论的角度简述绝缘体,半导体,导体的导电或绝缘机制答:⑴在金属能带中,价带与导带迭合,价带中存在空能级或者价带全满但导带中有电子,故电子易迁移进入较高能量状态的空能级中,金属具有优异的导电性⑵在绝缘体的能带中,其价带全部填满,而导带全部为空能级,在价带与导带之间存在很宽的禁带(>3.0eV),因而电子难以由价带跃迁到导带中,绝缘体的导电性很差⑶半导体的能带结构与绝缘体相似,但其禁带较窄(<3.0eV),因而在外电场激发下(如热激发),电子可由价带跃进导带中而导电,如果在禁带中靠近导带(或价带)的位置引入附加能级(施主或受主)将显著提高半导体的导电性.画出钙钛矿的晶体结构,并指出它是由哪几种布拉菲格子组成的.答:此为钙钛矿结构(BaTiO3,SrTiO3等),A,B,O1,O2,O3各自组成5个简单立方布氏格子套购而成。
试从结合键的角度说明水在结冰是何以会膨胀?答:水结成冰,是从液态往固态转化,形成晶体结构,晶格与晶格之间是通过氢键结合,氢原子不但与一个氧原子结合成共价键O-H,而且还和另一个氧原子结合,但结合较弱,键较长,用O-H表示,氧原子本身则组成一个四面体。
经典的自由电子理论的要点,用其解释金属的电性能答:要点:金属晶体就是靠自由价电子和金属离子所形成的点阵间的相互作用而结合在一起的,这种相互作用称为金属键.⑴金属中存在大量可自由运动的电子,其行为类似理想气体⑵电子气体除与离子实碰撞瞬间外,其他时间可认为是自由的⑶电子←→电子之间的相互碰撞(作用)忽略不计⑷电子气体通过与离子实的碰撞而达到热平衡,电子运动速度分布服从M—B经典分布.在金属中的自由价电子的数目是较多的且基本上不随温度而变,所以当温度升高的时候,金属电导率的变化主要取决去电子运动的速度.因为晶格中的原子和离子不是静止的,它们在晶格的格点上作一定的振动,且随温度升高这种振动会加剧,证实这种振动对电子的流动起着阻碍作用,温度升高,阻碍作用加大,电子迁移率下降,电导率自然也下降了索莫非量子理论的成功之处答:金属中的电子不受任何其他外力的作用,彼此间也无相互作用,可把它看成是在一个长,宽,高,分别为a,b,c的方匣子中运动的自由离子,在金属内部每一个电子的势能是一个常数(或0),在边界处和边界外面的势能则为无穷大,所以可把金属中的电子看成是在具有一定深度势阱中运动的自由电子,把这样一个体系作为三维势箱中的平动子来考虑.成功之处:1解释了金属键的本质;2对电子的比热问题进行了较好的解释长光学支格波与长声学支格波本质上有何差异? 答:长光学支格波的特征是每个元胞内的不同原子做相对振动,振动频率较高,它包含了晶格振动频率最高的振动模式,长声学支格波的特征是元胞内的不同原子没有相对位移,元胞做整体运动,振动频率较低,它包含了晶格振动频率最低的振动模式,波速是一常数,任何晶体都存在声学支格波,但简单晶格(非复式格子)晶体不存在光学支格波. 从导电率的角度简述绝缘体,半导体,导体的导电或绝缘机制答:⑴从电导率角度讲,由于金属的可自由移动电子较多,所以电导率很大,并且电导率随着温度的升高而降低.⑵从电导率角度讲,由于绝缘体的可自由移动电子很少,所以电导率很小,并且电导率随着温度的升高而升高.按缺陷在空间分布的情况,对晶体的缺陷进行分类,并举例说明掺杂对材料结构和性能的影响答:①点缺陷:本征热缺陷(弗伦克尔缺陷,肖脱基缺陷),杂质缺陷(置换,填隙),色心,极化子.线缺陷:刃性位错,螺旋位错;面缺陷:小角晶界,晶界,堆积缺陷;体缺陷:孔洞,聚集,微裂纹②在Fe中掺杂C,使C聚集在晶界,提高Fe的韧性;在Si中掺杂微量P,B等元素能使Si成为半导体,电导率得到大幅度提高;在白宝石Al2O3晶体中掺杂Cr替代Al,可由白宝石变成红宝石,改变Al2O3晶体的光学特性简述石墨的结构特点,并说明其结构与性能的关系答:石墨晶体,是金刚石的同素异构体,组成石墨的一个碳原子以其最外层的三个价电子与其最近邻的三个原子组成共价键结合,这三个键几乎在同意平面上,使晶体呈层状;另一个价电子则较自由的在整个层中运动,具有金属键的性质,这是石墨具有较好导电本领的根源层与层之间又依靠分子晶体的瞬时偶极矩的互作用而结合,这又是石墨质地疏松的根源.简述离子晶体中缺陷对电导率有何影响? 答:由于离子晶体是正负离子在库仑力的作用下结合而成的,因而使离子晶体中点缺陷带有一定的电荷,这就引起离子晶体的点缺陷具有一般点缺陷没有的特性,理想的离子晶体是典型的绝缘体,满价带与空带之间有很宽的禁带,热激发几乎不可能把电子由满价带激发到空带上去,但实际上离子晶体都有一定的导电性,其电阻明显地依赖于温度和晶体的纯度.因为温度升高和掺杂都可能在晶体中产生缺陷,所以可以断定离子晶体的导电性与缺陷有关.从能带理论可以这样理解离子晶体的导电性:离子晶体中带点的点缺陷可以是束缚电子或空穴,形成一种不同于布洛赫的局域态.这种局域态的能级处于满带和空带的能隙中,且离空带的带地或者满带的带顶较近,从而可能通过热激发向空带提供电子或接受满带电子,使离子晶体表现出类似于半导体的导电特性.为什么组成晶体的粒子(分子,原子或离子)间的互作用力除吸引力还要排斥力?排斥力的来源是什么?答:电子云重叠——泡利不相容原理排斥力的来源:相邻的原子靠的很近,以至于它们内层闭合壳层的电子云发生重叠时,相邻的原子间使产生巨大排斥力,也就是说,原子间的排斥作用来自相邻原子内层闭合壳层电子云的重叠。
本征半导体的能带与绝缘体的能带有何异同?答:在低温下,本征半导体的能带与绝缘体的能带结构相同,但本征半导体的禁带较窄,禁带宽度通常小于2eV,由于禁带窄,本征半导体禁带下满带项的电子可以借助热激发,跃迁到禁带上面空带的底部,使得满带不满,空带不空,二者都对导电有贡献。
试述范德瓦尔斯力的起源和特点答:范德瓦尔斯力:是分子间微弱的相互作用力,主要由静电力(偶极子-偶极子相互作用)(极性分子之间),诱导力(偶极子-诱导偶极子相互作用)(极地分子和非极地分子之间),色散力(非极性分子的诱导偶极子-诱导偶极子的相互作用)之间的相互作用而结合;特点:①存在于所有分子间②作用范围在几个A内③没有方向性和饱和性④不同分子中,静电力,诱导力和色散力所占比例不同,一般色散力所占比例较大。
为什么形成一个肖特基缺陷所需能量比形成一个弗伦克尔缺陷所需能量低?答:形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子,因此形成一个肖特基缺陷所需的能量,可以看成晶体表面一个原子与其他原子的相互作用能,和晶体内部一个原子与其他原子的相互作用能的差值,形成一个弗伦克尔缺陷是,晶体内留下一个空位,多一个填隙原子,因此形成一个弗伦克尔缺陷所需的能量,可以看成晶体内部一个填隙原子与其他原子的相互作用能,和晶体内部一个原子与其他原子相互作用能的差值,填隙原子与相邻原子的距离非常小,它与其他原子的排斥力的相互作用能是负值,所以填隙原子与其它原子相互作用能的绝对值,比晶体表面一个原子与其他原子相互作用能的绝对值要小,也就是说形成一个肖特基缺陷所需能量比形成一个弗伦克尔所需能量要低。
为什么金属具有延展性而原子晶体和离子晶体却没有延展性?答:正离子间可流动的“电子海”,对原子移动时克服势垒起到“调剂”作用。
因此,原子间(主要是密置层间)比较容易相对位移,从而使金属有较好的延展性和可塑性。
原子晶体具有方向性和饱和性;离子晶体间相对位移出现同号相邻现象,产生斥力设晶体只有弗伦克尔缺陷,填隙原子的振动频率,空位附近原子的振动频率与无缺陷时原子的振动频率有什么异同?答:正常格点的原子脱离晶格位置变成填隙原子,同时原格点成为空位,这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗伦克尔缺陷,填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大,因为原子的振动频率与原子间力系数的开根数成正比,所以填隙原子的振动频率比正常格点原子的振动频率要高,空位附近原子与空位另一边原子的距离比正常格点原子间的距离大得多,它们之间的力系数比正常格点原子间的力系数小得多,所以空位附近原子的振动频率比正常格点原子的振动频率要低。