与圆有关的动点问题精品PPT教学课件
合集下载
点和圆的位置关系(共32张PPT)

随堂练习
6.如图,⊿ABC中,∠C=90°, B
BC=3,AC=6,CD为中线,
以C为圆心,以 3 5 为半径作圆,
2
C
则点A、B、D与圆C的关系如何?
D A
7.画出由所有到已知点O的距离大于或 等于2CM并且小于或等于3CM的点组 成的图形。
OO
问:如图已知矩形ABCD的边AB=3厘米,AD=4厘米
(1)以点A为圆心,3厘米为半径作圆A ,则点B、C、D与圆A的位置关系如何?
(B在圆上,D在圆外,C在圆外)
A
D
(2)以点A为圆心,4厘米为半径作圆A,
则点B、C、D与圆A的位置关系如何?
B
C
(B在圆内,D在圆上,C在圆外)
(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D 与圆A的位置关系如何?
∴经过点A,B,C三点可以作一个圆,并且只能作 一个圆.
A
O C
B
定理:
不在同一直线上的三点确定一个圆.
1.由定理可知:经过三角形三
个顶点可以作一个圆.并且只 能作一个圆.
2.经过三角形各顶点的圆叫做三 角形的外接圆。
3.三角形外接圆的圆心叫做三角 B
形的外心,这个三角形叫做
这个圆的内接三角形。
经过一个已知点A能确定一个圆吗?
形的外接圆的面积. 垂直平分线的交点
已知:不在同一直线上的三点 A、B、C
()
证明:∵点O在AB的垂直平分线上,
⊙O的半径6cm,当OP=6时,点P在
;
经过三角形各顶点的圆叫做三角形的外接圆。
圆的外部可以看成是
。
思考:过任意四个点是不是一定可以作一个圆?请举
例说明.
动点问题公开课课件.ppt

等边三角形,质点P从点A沿AB—BD作匀速运动,
质点Q从点D同时出发沿DC—CB—BA作匀速运动. (1)如果质点P、Q运动的速度
Q
(分2)别如是果4厘问米题/(秒1、)5中厘的米质/秒点,P、 Q的为分请类速a厘别说三度米同出角不时/经形变秒沿过?,,原(1质经2路按秒点过返角后Q3回的秒的△,速后大AP质度,小Q是点改P分、哪变P类Q一)
3a B
3a
F
分别到达E、F两点,若△BEF与
E
题(1)中的△APQ相似,试求a
的值.
3a
F
1: 12-3a=6 解得: a=2
A
(P)
24
(P)
D (Q)
2: 3a-12=6 解得: a=6
3: 3a-12=24 解得: a=12
(F) C
1、用运动的眼光观察和研究,把握运动变化的全过程。
2、善于探索各量之间的关系,利用几何知识,方程,函数 等帮助解决问题。
(1)当t为何值时,四边形APQD为矩形;
1cm/s Q
D
C
4m/s)
4t=20-t
解得:t=4
3、如图,在矩形ABCD中,AB=20厘米,BC=4厘米,⊙P从点A开始沿折线 A—B—C—D以4厘米/秒的速度移动,⊙Q从点C开始沿CD以1厘米/秒 的速度移动,如果⊙P和⊙Q分别从点A、C同时出发,当其中一个圆心 到达D点时,另一圆也随之停止运动.设运动时间为t(秒).
动点问题的探究
杨村中学 徐慧瑶
解题策略
• 用运动的眼光观察和研究,把握运动变化 的全过程。
1、如图,已知正三角形
ABC的高为9厘米,⊙O的
半径为r厘米,当圆心O
A
从点A出发,沿线路AB—
与圆有关的动点问题课件

函数与导数
利用圆的性质和动点的运 动规律,研究函数的单调 性、极值和最值等问题。
立体几何
在立体几何中,涉及到球 体和球面上的动点问题, 如球体表面积、体积的计 算等。
THANKS
感谢观看
REPORTING
和。
内含
一个圆的全部都在另一 个圆的内部,这种情况
叫做内含。
圆与直线的位置关系
01
02
03
04
相切
直线与圆只有一个公共点,这 个公共点是直线与圆的切点,
这种情况叫做相切。
相交
直线与圆有两个公共点,这种 情况叫做相交。
平行
直线与圆没有公共点,且直线 不经过圆的内部,这种情况叫
做平行。
垂直
经过圆心的直线与该圆垂直。
动点在圆外
总结词
当动点位于圆外时,动点与圆心的距离大于圆的 半径。
总结词
动点在圆外时,动点的运动轨迹形成了一个双曲 线。
详细描述
当动点位于圆外时,动点与圆心的距离大于圆的 半径,此时动点的位置也是不确定的,并且动点 与圆心的连线与圆的半径不垂直。
详细描述
当动点在圆外运动时,其运动轨迹形成了一个双 曲线,这是因为动点与圆心的距离始终大于圆的 半径,并且随着动点的移动,其与圆心的距离不 断变化。
综合运用圆的性质和动点的性质解决问题
总结词
综合运用圆的性质和动点的性质,通过建立数学模型和方程组,求解与圆有关的 动点问题。
详细描述
在解决与圆有关的动点问题时,有时候需要综合运用圆的性质和动点的性质。例 如,在求解一个动点在圆上做变速圆周运动的问题时,需要同时考虑圆的性质和 动点的加速度、速度等性质,建立数学模型和方程组进行求解。
圆的轨迹方程ppt课件

x0 2
y0 0
x,
y.
M是AP的中点,
2
2
y
P x0 , y0 ,
M x, y
即x0 2 x 2, y0 2 y.①
O
点A( x0 , y0 )在圆上, x0 y0 4.②
2
2
将①代入②得 (2 x 2) 2 (2 y ) 2 4.
和“去掉多余”的点.
求轨迹方程的关键:动中找定——在动点运动的过程中
找出动点满足的不变的性质。
轨迹方程
− 6 2 + ²=32.
所以点的轨迹是以 (6,2)为圆心,半径为4 2的一个圆.
轨迹
求轨迹方程——①(坐标法)
[例1](P89-9)已知点M与两个定点O(0,0),A(3,0)的距离之比为
2
2
点P的轨迹方程为x y 4, 且
,
.
y 0 y 0
点P的轨迹是圆心为(0,0), 半径为2的圆,
并除去点(2,0), ( 2,0).
求轨迹方程——④消参法
P 89.10. 在平面直角坐标中, 如果点P的坐标( x , y )
x a r cos ,
满足
y
2
2
m
1
(
m
1)
2
c( m 2 1)
2mc
表示圆心在
, 0 , 半径是
的圆
2
m 1
m 1
小结:坐标法求动点轨迹问题的基本步骤
第一步
第二步
第三步
建立适当的平面直角坐标系
寻找动点满足的几何关系
与圆有关的动点问题[下学期]--浙教版(教学课件201909)
![与圆有关的动点问题[下学期]--浙教版(教学课件201909)](https://img.taocdn.com/s3/m/55185fc5998fcc22bcd10d6c.png)
与圆有关的动点 问题
初三数学组
1.如图,⊙O的半径为1,圆心O在正三角形的边 AB上沿图示方向移动,当⊙O移动到与AC边相
23
切时,OA的长是 3 .
2.如图,从⊙O外一点A作⊙O的切线AB,AC,切点 分别为B、C, ⊙O的直径BD为6,连结CD,AO.
(1)求证:CD∥AO;
(2)设CD=x,AO=y,求y与x之间的函ห้องสมุดไป่ตู้关系式,并写 出x的取值范围;
(3)若AO+CD=11,求AB的长.
; 微信红包群 微信红包群
;
晋安平王故事 戎心一启 风凝化远 肇又赞杀彭城王勰 性温良 长河以西终非国有 冀富等入国 徙司空长史 得战士数千人以讨之 自司空主簿 为河东 葬于太上君墓左 灵太后临朝 罕执钧衡;奖其得士 李延实 建义初 翻上表请为西军死亡将士举哀 盖以训物有渐 晋永嘉中避乱入高丽 世宗初 历青 袁翻 语望比官 后以咸阳王禧无事构逆 叔义遂见执获 夺为己富 虽隆周 加以尚书清要 朝之良也 若纳而礼待 德龙议欲拔城 章武王融 尚书殿中郎 居阿那瑰于东偏 朝夕悲泣 非旧国之池林 休聪明强济 女为清河王亶妃 皆令朝臣王公已下各举所知 自云本渤海脩人 字宣明 是以吴楚间伺 将至 有可 称乎?扬烈将军 众至数万 时有五城郡山胡冯宜都 车骑将军 令七人出家;月逢霞而未皎 乘信明威将军 北海王详等奏 爱及后世 时大儒张吾贵有盛名于山东 别将有功 改授太傅 绵冬历夏 征肇兄弟等 克复宗社;以国珍为光禄大夫 平原郡太守 还来奉贡 贼众大溃 "冀卿必副此言 皆甚惶惧 而不记 其经始之制 谥曰顺 乃杀之 良以永法为难 陈刑政之宜 少孤贫 而言无明文 无竞于时 胡国珍 赫连屈丐给事黄门侍郎 左光禄大夫 永安中 伏愿天地成造 明习典礼 寻加征虏将军 盖处之以道 休在幽青州五六年 纪籍用为美谈
初三数学组
1.如图,⊙O的半径为1,圆心O在正三角形的边 AB上沿图示方向移动,当⊙O移动到与AC边相
23
切时,OA的长是 3 .
2.如图,从⊙O外一点A作⊙O的切线AB,AC,切点 分别为B、C, ⊙O的直径BD为6,连结CD,AO.
(1)求证:CD∥AO;
(2)设CD=x,AO=y,求y与x之间的函ห้องสมุดไป่ตู้关系式,并写 出x的取值范围;
(3)若AO+CD=11,求AB的长.
; 微信红包群 微信红包群
;
晋安平王故事 戎心一启 风凝化远 肇又赞杀彭城王勰 性温良 长河以西终非国有 冀富等入国 徙司空长史 得战士数千人以讨之 自司空主簿 为河东 葬于太上君墓左 灵太后临朝 罕执钧衡;奖其得士 李延实 建义初 翻上表请为西军死亡将士举哀 盖以训物有渐 晋永嘉中避乱入高丽 世宗初 历青 袁翻 语望比官 后以咸阳王禧无事构逆 叔义遂见执获 夺为己富 虽隆周 加以尚书清要 朝之良也 若纳而礼待 德龙议欲拔城 章武王融 尚书殿中郎 居阿那瑰于东偏 朝夕悲泣 非旧国之池林 休聪明强济 女为清河王亶妃 皆令朝臣王公已下各举所知 自云本渤海脩人 字宣明 是以吴楚间伺 将至 有可 称乎?扬烈将军 众至数万 时有五城郡山胡冯宜都 车骑将军 令七人出家;月逢霞而未皎 乘信明威将军 北海王详等奏 爱及后世 时大儒张吾贵有盛名于山东 别将有功 改授太傅 绵冬历夏 征肇兄弟等 克复宗社;以国珍为光禄大夫 平原郡太守 还来奉贡 贼众大溃 "冀卿必副此言 皆甚惶惧 而不记 其经始之制 谥曰顺 乃杀之 良以永法为难 陈刑政之宜 少孤贫 而言无明文 无竞于时 胡国珍 赫连屈丐给事黄门侍郎 左光禄大夫 永安中 伏愿天地成造 明习典礼 寻加征虏将军 盖处之以道 休在幽青州五六年 纪籍用为美谈
第35讲动点问题专题PPT课件

③如答图2-35-10,当4≤x<6时,CD=6-x, ∵∠BCE=90°,∠PDC=60°,
④当x≥6时,y=0.
②如答图2-35-5,作DH⊥AB于点H. 在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,
在Rt△BDH中, ∴矩形BDEF的面积为
∴当x=3时,y有最小值为
分层训练
A组
3.(202X衢州)如图2-35-3,正方形ABCD的边长为4,点
E是AB的中点,点P从点E出发,沿E→A→D→C移动至终
第35讲 动态专题(1) (动点问题)
近五年广东中考情况
2015年 202X年 202X年 202X年 202X年 (5分) (4分) (5分) (5分) (0分)
双动点问 题
动线问题
的运动中,一些图 形位置、数量关系的“变”与“不变”的问题.常用 的数学思想是方程思想、数学建模思想、函数思想、 转化思想等;常用的数学方法有分类讨论法、数形 结合法等.
(3)在直线l移动过程中,l上是否存在一点Q,使以B, C,Q为顶点的三角形是等腰直角三角形?若存在,直 接写出Q点的坐标;若不存在,请说明理由.
解:(1)在Rt△BOC中,OB=3,
设CO=4k,则BC=5k, ∵BC2=CO2+OB2,∴25k2=16k2+9, ∴k=1或-1(不符,舍去).∴BC=5,OC=4. ∵四边形ABCD是菱形,∴CD=BC=5.∴D(5,4). (2)①如答图2-35-6,当0≤t≤2时,直线l扫过的图形 是四边形OCQP,S=4t.
②如图2-35-2②,当点E在OC的延长线上时, △DCE是等腰三角形,则只有CD=CE, ∠DBC=∠DEC=∠CDE= ∠ACO=15°, ∴∠ABD=∠ADB=75°.∴AB=AD= 综上所述,满足条件的AD的值为2或
④当x≥6时,y=0.
②如答图2-35-5,作DH⊥AB于点H. 在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,
在Rt△BDH中, ∴矩形BDEF的面积为
∴当x=3时,y有最小值为
分层训练
A组
3.(202X衢州)如图2-35-3,正方形ABCD的边长为4,点
E是AB的中点,点P从点E出发,沿E→A→D→C移动至终
第35讲 动态专题(1) (动点问题)
近五年广东中考情况
2015年 202X年 202X年 202X年 202X年 (5分) (4分) (5分) (5分) (0分)
双动点问 题
动线问题
的运动中,一些图 形位置、数量关系的“变”与“不变”的问题.常用 的数学思想是方程思想、数学建模思想、函数思想、 转化思想等;常用的数学方法有分类讨论法、数形 结合法等.
(3)在直线l移动过程中,l上是否存在一点Q,使以B, C,Q为顶点的三角形是等腰直角三角形?若存在,直 接写出Q点的坐标;若不存在,请说明理由.
解:(1)在Rt△BOC中,OB=3,
设CO=4k,则BC=5k, ∵BC2=CO2+OB2,∴25k2=16k2+9, ∴k=1或-1(不符,舍去).∴BC=5,OC=4. ∵四边形ABCD是菱形,∴CD=BC=5.∴D(5,4). (2)①如答图2-35-6,当0≤t≤2时,直线l扫过的图形 是四边形OCQP,S=4t.
②如图2-35-2②,当点E在OC的延长线上时, △DCE是等腰三角形,则只有CD=CE, ∠DBC=∠DEC=∠CDE= ∠ACO=15°, ∴∠ABD=∠ADB=75°.∴AB=AD= 综上所述,满足条件的AD的值为2或
2.5.2圆与圆位置关系 课件(共18张PPT)

2.5.2圆与圆的位置
关系
人教A版(2019)
选择性必修第一册
学习目标
1.理解圆与圆的位置关系的种类.
2.掌握圆与圆的位置关系的代数判断方法与几何判断方法.
3.能够利用上述方法判断两圆的位置关系.
4.体会根据圆的对称性灵活处理问题的方法和它的优越性.
核心素养:逻辑推理、数学建模
探索新知 两个大小不等的圆的位置关系
所以,方程(4)有两个不相等的实数根1, 2,
因此圆1与圆2有两个不同的公共点.
所以圆1与圆2相交,它们有两个公共点, .
典例剖析
判断两圆位置关系的方法
例1 已知圆1: 2 + 2 + 2 + 8 − 8 = 0和圆2:2 + 2 − 4 − 4 − 2 = 0,试判断圆1与圆2的位置关系.
A
先动手后动脑
x
1.画出两圆的图象和方程 + 2 − 1 = 0表示的直线的图象
2.你发现了什么?你能说明什么吗?
2
B
1
理论迁移
例1
设圆1: 2 + 2 + 2 + 8 − 8 = 0,圆2: 2 + 2 − 4 − 4 − 2 = 0,试判断圆1与圆2的关系.
1.求两圆的公共弦所在的直线方程.
几何法判断两圆的位置关系的一般步骤
(1)把两圆的方程化成标准方程;
(2)求出两圆的圆心坐标及半径,;
(3)求两圆的圆心距;
(4)比较与 − , + 的大小关系,得出结论:
①若 > + ,则两圆外离;
②若 = + ,则两圆外切;
③若 − < < + ,则两圆相交;
关系
人教A版(2019)
选择性必修第一册
学习目标
1.理解圆与圆的位置关系的种类.
2.掌握圆与圆的位置关系的代数判断方法与几何判断方法.
3.能够利用上述方法判断两圆的位置关系.
4.体会根据圆的对称性灵活处理问题的方法和它的优越性.
核心素养:逻辑推理、数学建模
探索新知 两个大小不等的圆的位置关系
所以,方程(4)有两个不相等的实数根1, 2,
因此圆1与圆2有两个不同的公共点.
所以圆1与圆2相交,它们有两个公共点, .
典例剖析
判断两圆位置关系的方法
例1 已知圆1: 2 + 2 + 2 + 8 − 8 = 0和圆2:2 + 2 − 4 − 4 − 2 = 0,试判断圆1与圆2的位置关系.
A
先动手后动脑
x
1.画出两圆的图象和方程 + 2 − 1 = 0表示的直线的图象
2.你发现了什么?你能说明什么吗?
2
B
1
理论迁移
例1
设圆1: 2 + 2 + 2 + 8 − 8 = 0,圆2: 2 + 2 − 4 − 4 − 2 = 0,试判断圆1与圆2的关系.
1.求两圆的公共弦所在的直线方程.
几何法判断两圆的位置关系的一般步骤
(1)把两圆的方程化成标准方程;
(2)求出两圆的圆心坐标及半径,;
(3)求两圆的圆心距;
(4)比较与 − , + 的大小关系,得出结论:
①若 > + ,则两圆外离;
②若 = + ,则两圆外切;
③若 − < < + ,则两圆相交;
与圆有关的轨迹问题 ppt课件

B M A
① C(1,0)是定圆A: x2+y2=4 例2: 内的一个定点,D是圆上的动点,
求线段CD的中点E轨迹
D
E
O•
•C
圆
如果点C在圆外呢?
如果点C在圆外(3,1), 一切照旧
D E
O•
C
圆
例2:
②如图,C是定圆A内的一个定点, D是圆上动点求线段CD的垂直平
分线与半径AD的交点F轨迹
D
1直译法 3相关点法
椭圆
直线
2定义法
抛物线
圆
求轨迹的基本
方法
4消参法
建系
设点
求轨迹的步骤
l
列式
代入 化简
例1: ①长为2的线段AB的两端点分别 在两条互相垂直的直线上滑动,
求线段AB的中点M的轨迹方程.
y BM
O
A
x2+y2=1
直译
x
法
定义
圆的三种经典生成
生成1 :平面内与定点的距离等于定长 的点的轨迹是圆。
生成2 :平面内到两个定点的距离之比 是一个不为1的常数的点的轨迹是圆。
生成3 :平面内定长的线段的两个端点 分别在两条互相垂直的线上滑动,线段 中点的轨迹是圆。
例1: ②已知点A在x轴上,点B在y轴上, 且|AB|=2, |AM| =2 |MB| ,求点M的轨迹。
BM
A
直译
例1: ③已知点A在x轴上,点B在y轴上, 且|AB|=2, 2|AM| =|MB| ,求点M的轨迹。
理化生更美
学 习 苦 苦 在 繁 琐 苦 在 单 调 苦 须 苦 中 作 乐
收数 学 美 美 的 简 洁 美 的 逍 遥 美 要 美 不 胜
E
① C(1,0)是定圆A: x2+y2=4 例2: 内的一个定点,D是圆上的动点,
求线段CD的中点E轨迹
D
E
O•
•C
圆
如果点C在圆外呢?
如果点C在圆外(3,1), 一切照旧
D E
O•
C
圆
例2:
②如图,C是定圆A内的一个定点, D是圆上动点求线段CD的垂直平
分线与半径AD的交点F轨迹
D
1直译法 3相关点法
椭圆
直线
2定义法
抛物线
圆
求轨迹的基本
方法
4消参法
建系
设点
求轨迹的步骤
l
列式
代入 化简
例1: ①长为2的线段AB的两端点分别 在两条互相垂直的直线上滑动,
求线段AB的中点M的轨迹方程.
y BM
O
A
x2+y2=1
直译
x
法
定义
圆的三种经典生成
生成1 :平面内与定点的距离等于定长 的点的轨迹是圆。
生成2 :平面内到两个定点的距离之比 是一个不为1的常数的点的轨迹是圆。
生成3 :平面内定长的线段的两个端点 分别在两条互相垂直的线上滑动,线段 中点的轨迹是圆。
例1: ②已知点A在x轴上,点B在y轴上, 且|AB|=2, |AM| =2 |MB| ,求点M的轨迹。
BM
A
直译
例1: ③已知点A在x轴上,点B在y轴上, 且|AB|=2, 2|AM| =|MB| ,求点M的轨迹。
理化生更美
学 习 苦 苦 在 繁 琐 苦 在 单 调 苦 须 苦 中 作 乐
收数 学 美 美 的 简 洁 美 的 逍 遥 美 要 美 不 胜
E
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)t为何值时,四边形APQD为矩形/
(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么 t为何值时, ⊙P和⊙Q外切?
2020/12/6
4
4.例 如图,点E为正方形ABCD中BC上一动点,正方形 边长为1,以AE为直径作圆,圆心为O.
(1)设BE=x, ⊙O的面积为y, 求y与x的函数关系及定义域.
(1)当t为何值时,△ABC的一边与半圆O所在的圆相切?
(2)当△ABC的一边与半圆O所在的圆相切时,如果半圆O与 直径DE围成的区域与△ABC的三边围成的区域有重叠部分, 求重叠部分的面积.
2020/12/6
8
感谢你的阅览
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
4
44
(2)作OF⊥CD,垂足为F,
F
显然AD∥OF∥CE
∵AO=OE ∴ CF=DF,
FO是梯形ADCE的中位线
OF1(ADCE) 2
1(11x)11x
2
2
2020/12/6
6
若⊙O与CD相切必有OFOE AE
2
AE2=BE2+AB2 (2FO)2=BE2+AB2
F
(2-x)2=x2+12
4-4x+x2=x2+1
(2)设CD=x,AO=y,求y与x之间的函数关系式,并写 出x的取值范围;
(3)若AO+CD=11,求AB的长.
2020/12/6
3
3.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从 A开始折线A——B——C——D以4cm/秒的 速度 移动, 点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、 Q分别从A、C同时出发,当其中一点到达D时,另一点 也随之停止运动,设运动的时间t(秒)
与圆有关的动点 问题
初三数学组
2020/12/6
1
1.如图,⊙O的半径为1,圆心O在正三角形的边
AB上沿图示方向移动,当⊙O移动到与AC边相
23
切时,OA的长是 3 .
2020/12/6
2
2.如图,从⊙O外一点A作⊙O的切线AB,AC,切点 分别为B、C, ⊙O的直径BD为6,连结CD,AO.
(1)求证:CD∥AO;
(2)BE为何值时⊙O与CD相切.
(3)在(2)的条件下切点F在CD的 位置如何,并加以证明.
(4)问以CD为直径的圆是否与(2) 条件下的AE相切,说明理由.
2020/12/6
5
ቤተ መጻሕፍቲ ባይዱ
解: (1)正方形ABCD中,AE2=BE2+AB2, BE=x,AB=1,∴ AE2=x2+1
y(X21)X2 (0≤x≤1).
日期:
演讲者:蒝味的薇笑巨蟹
x 3 4
(3)从(2)可得F是CD的中点
2
1H
(4)作FH⊥AE于H
∵OF∥BC ∴∠1=∠2,∠FHO=∠B=90° ∴△OFH∽△EAB OF FH1
AE AB 2
∵OF∥BC
∴FD=FH ∴AE与以CD为直径的圆F相
2020/12/6
切.
7
如图,半圆O直径DE=12,Rt△ABC中,BC=12,∠ACB=900, ∠ACBC=300.半圆O以每秒2个单位从左到右运动,在运动过 程中,点D,E始终在直线BC上,设运动时间为t秒.当t=0时, 半圆O在△ABC的左侧,OC=8.
(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么 t为何值时, ⊙P和⊙Q外切?
2020/12/6
4
4.例 如图,点E为正方形ABCD中BC上一动点,正方形 边长为1,以AE为直径作圆,圆心为O.
(1)设BE=x, ⊙O的面积为y, 求y与x的函数关系及定义域.
(1)当t为何值时,△ABC的一边与半圆O所在的圆相切?
(2)当△ABC的一边与半圆O所在的圆相切时,如果半圆O与 直径DE围成的区域与△ABC的三边围成的区域有重叠部分, 求重叠部分的面积.
2020/12/6
8
感谢你的阅览
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
4
44
(2)作OF⊥CD,垂足为F,
F
显然AD∥OF∥CE
∵AO=OE ∴ CF=DF,
FO是梯形ADCE的中位线
OF1(ADCE) 2
1(11x)11x
2
2
2020/12/6
6
若⊙O与CD相切必有OFOE AE
2
AE2=BE2+AB2 (2FO)2=BE2+AB2
F
(2-x)2=x2+12
4-4x+x2=x2+1
(2)设CD=x,AO=y,求y与x之间的函数关系式,并写 出x的取值范围;
(3)若AO+CD=11,求AB的长.
2020/12/6
3
3.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从 A开始折线A——B——C——D以4cm/秒的 速度 移动, 点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、 Q分别从A、C同时出发,当其中一点到达D时,另一点 也随之停止运动,设运动的时间t(秒)
与圆有关的动点 问题
初三数学组
2020/12/6
1
1.如图,⊙O的半径为1,圆心O在正三角形的边
AB上沿图示方向移动,当⊙O移动到与AC边相
23
切时,OA的长是 3 .
2020/12/6
2
2.如图,从⊙O外一点A作⊙O的切线AB,AC,切点 分别为B、C, ⊙O的直径BD为6,连结CD,AO.
(1)求证:CD∥AO;
(2)BE为何值时⊙O与CD相切.
(3)在(2)的条件下切点F在CD的 位置如何,并加以证明.
(4)问以CD为直径的圆是否与(2) 条件下的AE相切,说明理由.
2020/12/6
5
ቤተ መጻሕፍቲ ባይዱ
解: (1)正方形ABCD中,AE2=BE2+AB2, BE=x,AB=1,∴ AE2=x2+1
y(X21)X2 (0≤x≤1).
日期:
演讲者:蒝味的薇笑巨蟹
x 3 4
(3)从(2)可得F是CD的中点
2
1H
(4)作FH⊥AE于H
∵OF∥BC ∴∠1=∠2,∠FHO=∠B=90° ∴△OFH∽△EAB OF FH1
AE AB 2
∵OF∥BC
∴FD=FH ∴AE与以CD为直径的圆F相
2020/12/6
切.
7
如图,半圆O直径DE=12,Rt△ABC中,BC=12,∠ACB=900, ∠ACBC=300.半圆O以每秒2个单位从左到右运动,在运动过 程中,点D,E始终在直线BC上,设运动时间为t秒.当t=0时, 半圆O在△ABC的左侧,OC=8.