带电粒子在复合场中的运动(二)
带电粒子在复合场中的运动2

第三课时带电粒子在复合场中的运动1一、复合场复合场是指电场、磁场和重力场并存或其中某两种场并存,或分区域存在。
粒子在复合场中运动时,要考虑静电力、洛伦兹力和重力的作用。
二、带电粒子在复合场中运动的处理方法1、正确分析带电粒子的受力及运动特征是解决问题的前提①带电粒子在复合场中做什么运动,取决于带电粒子所受的合外力及其初始状态的速度,因此应把带电粒子的运动情况和受力情况结合起来进行分析,当带电粒子在复合场中所受合外力为零时,做匀速直线运动(如速度选择器)。
②当带电粒子所受的重力与电场力等值反向,洛仑兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动。
③当带电粒子所受的合外力是变力,且与初速度方向不在一条直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,由于带电粒子可能连续通过几个情况不同的复合场区,因此粒子的运动情况也发生相应的变化,其运动过程可能由几种不同的运动阶段所组成。
2.灵活选用力学规律是解决问题的关键(1)当带电粒子在复合场中做匀速直线运动时,应根据平衡条件列方程求解。
(2)当带电粒子在复合场中做匀速圆周运动时,往往同时应用牛顿第二定律和平衡条件列方程联立求解。
(3)当带电粒子在复合场中做非匀变速曲线运动时,选用动能定理或能量守恒列方程求解。
注意:由于带电粒子在复合场中受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解。
3.三种场力的特点(1)重力的大小为,方向竖直向下.重力做功与路径无关,其数值除与带电粒子的质量有关外,还与始末位置的高度差有关。
(2)电场力的大小为,方向与电场强度E及带电粒子所带电荷的性质有关,电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始末位置的电势差有关。
(3)洛伦兹力的大小跟速度与磁场方向的夹角有关,当带电粒子的速度与磁场方向平行时F=0;当带电粒子的速度与磁场方向垂直时,洛伦兹力的方向垂直于速度v和磁感应强度B所决定的平面。
0906带电粒子在复合场中运动2

0906带电粒子在复合场中运动2一、复合场复合场是指、和重力场并存,或其中某两场并存,或分区域存在.二、带电粒子在复合场中的运动分类1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.三、带电粒子在复合场中运动的应用实例速度选择器(如图所示)(1)平行板中电场强度E和磁感应强度B互相这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是:qE=qvB,即v=.【针对训练】1.在两平行金属板间,有如图所示的互相正交的匀强电场和匀强磁场.α粒子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,恰好能沿直线匀速通过.供下列各小题选择的答案有A.不偏转B.向上偏转C.向下偏转D.向纸内或纸外偏转(1)若质子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,质子将________.(2)若电子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,电子将________.(3)若质子以大于v0的速度,沿垂直于匀强电场和匀强磁场的方向从两板正中央射入,质子将________.(4)若增大匀强磁场的磁感应强度,其他条件不变,电子以速度v0沿垂直于电场和磁场的方向,从两极正中央射入,电子将________.2.磁流体发电机(1)主要构造如图所示.(2)原理:等离子体(即高温下电离的气体,含有大量带正电和带负电的粒子,而从整体来说呈电中性)喷入磁场,正、负粒子在洛伦兹力的作用下发生上下偏转而聚集到A、B板上,产生电势差,设A、B平行金属板的面积为S,相距为L,等离子体的电阻率为ρ,喷入气体速度为v,板间磁场的磁感强度为B,板外电阻为R,当等离子体匀速通过A、B板间时,A、B板上聚集的电荷最多,板间电势差最大,相当于电源电动势E,此时离子受力平衡:E场q=qvB,E场=vB,电动势E=E场L=BLv,电源内电阻r=,所以R中电流为。
2022年高考物理命题猜想与仿真押题——专题09 带电粒子在复合场中的运动(命题猜想)(解析版)

【考向解读】1.2022年主要考试热点:(1)带电粒子在组合复合场中的受力分析及运动分析.(2)带电粒子在叠加复合场中的受力分析及运动分析.(3)带电粒子在交变电磁场中的运动.2.带电粒子在复合场中的运动应当是2022年高考压轴题的首选.(1)复合场中结合牛顿其次定律、运动的合成与分解、动能定理综合分析相关的运动问题.(2)复合场中结合数学中的几何学问综合分析多解问题、临界问题、周期性问题等.【命题热点突破一】带电粒子在组合场中的运动磁偏转”和“电偏转”的差别电偏转磁偏转偏转条件带电粒子以v⊥E进入匀强电场带电粒子以v⊥B进入匀强磁场受力状况只受恒定的电场力只受大小恒定的洛伦兹力运动状况类平抛运动匀速圆周运动运动轨迹抛物线圆弧物理规律类平抛学问、牛顿其次定律牛顿其次定律、向心力公式基本公式L=vt,y=12at2,a=qEm,tan θ=atvr=mvqB,T=2πmqB,t=θ2πT例1.如图所示,静止于A处的离子,经加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN 进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀辐射分布的电场,已知圆弧虚线的半径为R,其所在处场强为E、方向如图所示;离子质量为m、电荷量为q;QN=2d、PN=3d,离子重力不计.(1)求加速电场的电压U;(2)若离子恰好能打在Q点上,求矩形区域QNCD内匀强电场场强E0的值;(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面对里的匀强磁场,要求离子能最终打在QN上,求磁场磁感应强度B的取值范围.(3)离子在匀强磁场中做匀速圆周运动,洛伦兹力供应向心力,依据牛顿其次定律,有qBv=mv2r则r=1BEmRq离子能打在QN上,则既没有从DQ边出去也没有从PN边出去,则离子运动径迹的边界如图中Ⅰ和Ⅱ.由几何关系知,离子能打在QN上,必需满足:32d<r≤2d则有12dEmRq≤B<23dEmRq.答案(1)12ER(2)3ER2d(3)12d EmRq≤B <23dEmRq【变式探究】如图所示的坐标系中,第一象限内存在与x轴成30°角斜向下的匀强电场,电场强度E=400 N/C;第四象限内存在垂直于纸面对里的有界匀强磁场,x轴方向的宽度OA=203cm,y轴负方向无限大,磁感应强度B=1×10-4T.现有一比荷为qm=2×1011 C/kg的正离子(不计重力),以某一速度v0从O点射入磁场,α=60 °,离子通过磁场后刚好从A点射出,之后进入电场.(1)求离子进入磁场B的速度v0的大小;(2)离子进入电场后,经多少时间再次到达x轴上;(3)若离子进入磁场B后,某时刻再加一个同方向的有界匀强磁场使离子做完整的圆周运动,求所加磁场磁感应强度的最小值.解析离子的运动轨迹如图所示离子沿电场方向做初速度为零的匀加速直线运动,加速度为a,位移为l2Eq=ma l2=12at2由几何关系可知tan 60°=l2l1代入数据解得t=3×10-7s(3)由Bqv=mv2r知,B越小,r越大.设离子在磁场中最大半径为R由几何关系得R=12(r1-r1sin 30°)=0.05 m由牛顿运动定律得B1qv0=mv20R得B1=4×10-4T则外加磁场ΔB1=3×10-4T答案(1)4×106 m/s(2)3×10-7s(3)3×10-4T【感悟提升】带电粒子在组合场中的运动问题,一般都是单物体多过程问题,求解策略是“各个击破”:(1)先分析带电粒子在每个场中的受力状况和运动状况,抓住联系相邻两个场的纽带——速度(一般是后场的入射速度等于前场的出射速度),(2)然后利用带电粒子在电场中往往做类平抛运动或直线运动,在磁场中做匀速圆周运动的规律求解.【命题热点突破二】带电粒子在叠加复合场中的运动例2.如图所示,水平线AC和竖直线CD相交于C点,AC上开有小孔S,CD上开有小孔P,AC与CD间存在磁感应强度为B的匀强磁场,磁场方向垂直纸面对里,∠DCG=60°,在CD右侧、CG的下方有一竖直向上的匀强电场E(大小未知)和垂直纸面对里的另一匀强磁场B1(大小未知),一质量为m、电荷量为+q的塑料小球从小孔S处无初速度地进入匀强磁场中,经一段时间恰好能从P孔水平匀速飞出而进入CD右侧,小球在CD右侧做匀速圆周运动而垂直打在CG板上,重力加速度为g.(1)求竖直向上的匀强电场的电场强度E的大小;(2)求CD右侧匀强磁场的磁感应强度B1的大小;(3)若要使小球进入CD右侧后不打在CG上,则B1应满足什么条件?解析(1)因小球在CD右侧受重力、电场力和洛伦兹力作用而做匀速圆周运动,所以有mg=qE,即E=mgq.(2)小球进入磁场后,由于重力作用,速率不断增大,同时在洛伦兹力的作用下小球右偏,当小球从小孔P水平匀速飞出时,受力平衡有Bqv =mg ,即v =mgBq从S 到P 由动能定理得mg CP =12mv 2,即CP =m 2g2q 2B2因小球从小孔P 水平飞入磁场B 1后做匀速圆周运动而垂直打在CG 上,所以C 点即为小球做圆周运动的圆心,半径即为r =CP 又因B 1qv =m v 2r联立得B 1=2B .答案 (1)mgq(2)2B (3)B 1≥4.3B【变式探究】如图所示,离子源A 产生的初速度为零、带电荷量为e 、质量不同的正离子被电压为U 1的加速电场加速后进入一电容器中,电容器两极板之间的距离为d ,电容器中存在磁感应强度大小为B 的匀强磁场和匀强电场.正离子能沿直线穿过电容器,垂直于边界MN 进入磁感应强度大小也为B 的扇形匀强磁场中,∠MNQ =90°.(不计离子的重力)(1)求质量为m 的离子进入电容器时,电容器两极板间的电压U 2; (2)求质量为m 的离子在磁场中做圆周运动的半径;(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ 上正离子的质量范围.解析 (1)设离子经加速电场后获得的速度为v 1,应用动能定理有U 1e =12mv 21离子进入电容器后沿直线运动,有U 2ed =Bev 1得U 2=Bd2U 1em又ON =R 2-R 1由几何关系可知S 1和S 2之间的距离ΔS =R 22-ON 2-R 1联立解得ΔS =2(3-1)2U 1mB 2e由R ′2=(2R 1)2+(R ′-R 1)2 解得R ′=52R 1再依据12R 1≤R x ≤52R 1解得m ≤m x ≤25m 答案 (1)Bd 2U 1em(2)2U 1mB 2e(3)m ≤m x ≤25m【命题热点突破三】带电粒子在交变电磁场中的运动及多解问题例3、如图甲所示,宽度为d 的竖直狭长区域内(边界为L 1、L 2),存在垂直纸面对里的匀强磁场和竖直方向上的周期性变化的电场(如图乙所示),电场强度的大小为E 0,E >0表示电场方向竖直向上.t =0时,一带正电、质量为m 的微粒从左边界上的N 1点以水平速度v 射入该区域,沿直线运动到Q 点后,做一次完整的圆周运动,再沿直线运动到右边界上的N 2点.Q 为线段N 1N 2的中点,重力加速度为g .上述d 、E 0、m 、v 、g 为已知量.(1)求微粒所带电荷量q 和磁感应强度B 的大小. (2)求电场变化的周期T .(3)转变宽度d ,使微粒仍能按上述运动过程通过相应宽度的区域,求T 的最小值.(2)设微粒从N 1运动到Q 的时间为t 1,做圆周运动的周期为t 2,则d2=vt 1⑤(1分)qvB =m v 2R⑥(2分)2πR =vt 2⑦(1分)联立③④⑤⑥⑦得t 1=d 2v ;t 2=πvg⑧(2分)电场变化的周期T =t 1+t 2=d 2v +πvg⑨(1分)【感悟提升】空间存在的电场或磁场是随时间周期性变化的,一般呈现“矩形波”的特点.交替变化的电场及磁场会使带电粒子顺次经过不同特点的电场、磁场或叠加的场,从而表现出多过程现象,其特点较为隐蔽,应留意以下两点:(1)认真确定各场的变化特点及相应时间,其变化周期一般与粒子在磁场中的运动周期关联. (2)把粒子的运动过程用直观草图进行分析.【变式探究】如图甲所示,两竖直线所夹区域内存在周期性变化的匀强电场与匀强磁场,变化状况如图乙、丙所示,电场强度方向以y 轴负方向为正,磁感应强度方向以垂直纸面对外为正.t =0时刻,一质量为m 、电量为q 的带正电粒子从坐标原点O 开头以速度v 0沿x 轴正方向运动,粒子重力忽视不计,图乙、丙中E 0=3B 0v 04π,t 0=πm qB 0,B 0已知.要使带电粒子在0~4nt 0(n ∈N)时间内始终在场区运动,求:(1)在t 0时刻粒子速度方向与x 轴的夹角; (2)右边界到O 的最小距离; (3)场区的最小宽度.解析 (1)由牛顿其次定律,得E 0q =ma v y =qE 0mt 0(2分)E 0=3B 0v 04πtan θ=v yv 0(1分) θ=37°(1分)(2)x 1=v 0t 0(1分)如图所示,由几何关系得x 2=R 1-R 1cos 53°(1分)B 0qv =m v 2R 1(1分) v =v 0cos 37°(1分)x =x 1+x 2=(π+0.5)mv 0qB 0(1分)答案 (1)37° (2)(π+0.5)mv 0qB 0(3)(1.5n +1.5+π)mv 0qB 0【高考真题解读】1.(2021·福建理综,22,20分)如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面对外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开头沿MN 下滑,到达C 点时离开 MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v C ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块连续运动到水平地面上 的P 点.已知小滑块在D 点时的速度大小为v D ,从D点运动到P 点的时间 为t ,求小滑块运动到P 点时速度的大小v P .(3)如图,小滑块速度最大时,速度方向与电场力、重力的合力方向垂直.撤 去磁场后小滑块将做类平抛运动,等效加速度为g ′g ′=(qE m)2+g 2⑥ 且v 2P =v 2D +g ′2t 2⑦解得v P =v 2D +⎣⎡⎦⎤(qE m )2+g 2t 2⑧ 答案 (1)E B (2)mgh -mE 22B 2(3)v 2D+⎣⎡⎦⎤(qE m )2+g 2t 22.(2021·重庆理综,9,18分)如图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面对外的匀强磁场.其中MN 和M ′N ′是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ′,O ′N ′=ON =d ,P 为靶点,O ′P =kd (k 为大于1的整数).极板间存在方向向上的匀强电场,两极板间电压为U .质量为m 、带电量为q 的正离子从O 点由静止开头加速,经O ′进入磁场区域.当离子打到极板上O ′N ′区域(含N ′点)或外壳上时将会被吸取.两虚线之间的区域无电场和磁场存在,离子可匀速穿过,忽视相对论效应和离子所受的重力.求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的全部可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间. 解析 (1)粒子经电场加速一次后的速度为v 1,由动能定理得 qU =12mv 21①粒子能打到P 点,则在磁场中的轨道半径r 1=kd2②对粒子在磁场中由牛顿其次定律得qv 1B 1=mv 21r 1③联立①②③式解得B 1=22Uqmqkd④答案 (1)22Uqm qkd (2)22nUqmqkd(n =1,2,3,…,k 2-1)(3)(2k 2-3)πkmd22Uqm (k 2-1)h 2(k 2-1)mUq3.(2021·天津理综,12,20分)现代科学仪器常利用电场、磁场把握带电粒子的运动.真空中存在着如图所示的多层紧密相邻的匀强电场和匀强磁场,电场与磁场的宽度均为d .电场强度为E ,方向水平向右;磁感应强度为B ,方向垂直纸面对里,电场、磁场的边界相互平行且与电场方向垂直.一个质量为m 、电荷量为q 的带正电粒子在第1层电场左侧边界某处由静止释放,粒子始终在电场、磁场中运动,不计粒子重力及运动时的电磁辐射.(1)求粒子在第2层磁场中运动时速度v 2的大小与轨迹半径r 2;(2)粒子从第n 层磁场右侧边界穿出时,速度的方向与水平方向的夹角为θn , 试求sin θn ;(3)若粒子恰好不能从第n 层磁场右侧边界穿出,试问在其他条件不变的状况 下,也进入第n 层磁场,但比荷较该粒子大的粒子能否穿出该层磁场右侧边界,请简要推理说明之.(2)设粒子在第n 层磁场中运动的速度为v n ,轨迹半径为r n (各量的下标均代表 粒子所在层数,下同). nqEd =12mv 2n ⑤qv n B =m v 2nr n⑥图1粒子进入第n 层磁场时,速度的方向与水平方向的夹角为αn ,从第n 层磁场右侧边界穿出时速度方向与水平方向的夹角为θn ,粒子在电场中运动时,垂直于电场线方向的速度重量不变,有v n -1sin θn -1=v n sin αn ⑦ 由图1看出r n sin θn -r n sin αn =d ⑧由⑥⑦⑧式得r n sin θn -r n -1sin θn -1=d ⑨由⑨式看出r 1sin θ1,r 2sin θ2,…,r n sin θn 为一等差数列,公差为d ,可得r n sin θn =r 1sin θ1+(n -1)d ⑩图2粒子穿出时的速度方向与水平方向的夹角为θn ,由于 q ′m ′>q m ⑮则导致 sin θn ′>1⑯说明θn ′不存在,即原假设不成立.所以比荷较该粒子大的粒子不能穿出该层磁场右侧边界.答案 (1)2qEd m 2BmEdq(2)B nqd2mE(3)见解析4.(2021·江苏单科,15,16分)一台质谱仪的工作原理如图所示, 电荷量均为+q 、质量不同的离子飘入电压为U 0的加速电场,其初速度几乎为零.这些离子经加速后通过狭缝O 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场,最终打在底片上.已知放置底片的区域MN =L ,且OM =L .某次测量发觉MN 中左侧23区域MQ 损坏,检测不到离子,但右侧13区域QN 仍能正常检测到离子.在适当调整加速电压后,原本打在MQ 的离子即可在QN 检测到.(1)求原本打在MN 中点P 的离子质量m ;(2)为使原本打在P 的离子能打在QN 区域,求加速电压U 的调整范围;(3)为了在QN 区域将原本打在MQ 区域的全部离子检测完整,求需要调整U 的最少次数.(取lg 2=0.301,lg 3=0.477,lg 5=0.699) 解析 (1)离子在电场中加速: qU 0=12mv 2在磁场中做匀速圆周运动:qvB =m v 2r解得r =1B2mU 0q打在MN 中点P 的离子半径为r 0=34L ,代入解得m =9qB 2L 232U 0(2)由(1)知,U =16U 0r 29L 2离子打在Q 点时r =56L ,U =100U 081 离子打在N 点时r =L ,U =16U 09,则电压的范围 100U 081≤U ≤16U 09 (3)由(1)可知,r ∝U由题意知,第1次调整电压到U 1,使原本Q 点的离子打在N 点L 56L =U 1U 0此时,原本半径为r 1的打在Q 1的离子打在Q 上56L r 1=U 1U 0解得r 1=⎝⎛⎭⎫562L答案 (1)9qB 2L 232U 0 (2)100U 081≤U ≤16U 09(3)3次5.(2022·浙江理综,25,22分)离子推动器是太空飞行器常用的动力系统.某种推动器设计的简化原理如图1所示,截面半径为R 的圆柱腔分为两个工作区.Ⅰ为电离区,将氙气电离获得1价正离子;Ⅱ为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.Ⅰ区产生的正离子以接近0的初速度进入Ⅱ区,被加速后以速度v M 从右侧喷出.Ⅰ区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出肯定速率范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图2所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α≤90°).推动器工作时,向Ⅰ区注入淡薄的氙气.电子使氙气电离的最小速率为v 0,电子在Ⅰ区内不与器壁相碰且能到达的区域越大,电离效果越好.已知离子质量为M ;电子质量为m ,电荷量为e .(电子遇到器壁即被吸取,不考虑电子间的碰撞)(1)求Ⅱ区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请推断Ⅰ区中的磁场方向(按图2说明是“垂直纸面对里”或“垂直纸面对外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围;(4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系. 解析 (1)由动能定理得12Mv 2M=eU ①U =Mv 2M2e②a =eE M =e U ML =v 2M 2L③(4)电子运动轨迹如图所示, OA =R -r ,OC =R2,AC =r依据几何关系得r =3R4(2-sin α)⑨由⑥⑨式得v max =3eBR4m (2-sin α)答案 (1)Mv 2M 2e v 2M2L (2)垂直纸面对外(3)v 0≤v <3eBR 4m (4)v max =3eBR4m (2-sin α)6.(2022·重庆理综,9,18分)如图所示,在无限长的竖直边界NS 和MT 间布满匀强电场,同时该区域上、下部分分别布满方向垂直于NSTM 平面对外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上、下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h .质量为m 、带电荷量为+q 的粒子从P 点垂直于NS 边 界射入该区域,在两边界之间做圆周运动,重力加速度为g .(1)求电场强度的大小和方向.(2)要使粒子不从NS 边界飞出,求粒子入射速度的最小值.(3)若粒子能经过Q 点从MT 边界飞出,求粒子入射速度的全部可能值. 解析 (1)设电场强度大小为E . 由题意有mg =qE得E =mgq,方向竖直向上.(2)如图1所示,设粒子不从NS 边飞出的入射速度最小值为V min ,对应的粒子 在上、下区域的运动半径分别为r 1和r 2,圆心的连线与NS 的夹角为φ. 由r =mvqB有r 1=mv min qB ,r 2=12r 1由(r 1+r 2)sin φ=r 2 r 1+r 1cos φ=hv min =(9-62)qBhm答案 (1)mg q ,方向竖直向上 (2)(9-62)qBhm(3)见解析7.(2022·大纲全国,25,20分)如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy 平面)向外;在第四象限存在匀强电场,方向沿x 轴负向.在y 轴正半轴上某点以与x 轴正向平行、大小为v 0的速度放射出一带正电荷的粒子,该粒子在(d ,0)点沿垂直于x 轴的方向进入电场.不计重力.若该粒子离开电场时速度方向与Y 轴负方向的夹角为θ,求(1)电场强度大小与磁感应强度大小的比值; (2)该粒子在电场中运动的时间.解析 (1)如图,粒子进入磁场后做匀速圆周运动.设磁感应强度的大小为B ,粒子质量与所带电荷量分别为m 和q ,圆周运动的半径为R 0.由洛仑兹力公式 及牛顿其次定律得qv 0B =m v 20R 0①由题给条件和几何关系可知R 0=d ②答案 (1)12v 0tan 2θ (2)2dv 0tan θ。
带电粒子在复合场中的运动问题

【正确解答】 粒子在磁场中的运动为匀速圆周运动,在电场中的运动为匀变速 直线运动.画出粒子运动的过程草图10-19.根据这张图可知粒子在 磁场中运动半个周期后第一次通过x轴进入电场,做匀减速运动至速 度为零,再反方向做匀加速直线运动,以原来的速度大小反方向进入 磁场.这就是第二次进入磁场,接着粒子在磁场中做圆周运动,半个 周期后第三次通过x轴.
2,带电粒子在复合场中的运动情况: ,带电粒子在复合场中的运动情况: 1)直线运动: )直线运动: 常见的情况有: 常见的情况有: 洛伦兹力为零( 平行), ①洛伦兹力为零(即V与B平行),重力与电场力平 与 平行),重力与电场力平 衡时,做匀速直线运动; 衡时,做匀速直线运动;合外力恒定时做匀变速直 线运动. 线运动. ②洛伦兹力与V垂直,且与重力和电场力的合力 洛伦兹力与 垂直, 垂直 或其中的一个力)平衡,做匀速直线运动. (或其中的一个力)平衡,做匀速直线运动. 2)圆周运动: )圆周运动: 当带电粒子所受到合外力充当向心力时, 当带电粒子所受到合外力充当向心力时,带电粒子 做匀速圆周运动. 做匀速圆周运动.此时一般情况下是重力恰好与电 场力平衡,洛伦兹力充当向心力. 场力平衡,洛伦兹力充当向心力. 3)一般的曲线运动: )一般的曲线运动: 当带电粒子所受的合力在大小,方向均不断变化时, 当带电粒子所受的合力在大小,方向均不断变化时, 则粒子将做非匀变速曲线运动. 则粒子将做非匀变速曲线运动.
解:不妨假设设小球带正电(带负电时电场力和洛伦兹力 都将反向,结论相同).刚释放时小球受重力,电场力, 弹力,摩擦力作用,向下加速;开始运动后又受到洛伦兹 力作用,弹力,摩擦力开始减小;当洛伦兹力等于电场力 时加速度最大为g.随着v的增大,洛伦兹力大于电场力, 弹力方向变为向右,且不断增大,摩擦力随着增大,加速 度减小,当摩擦力和重力大小相等时,小球速度达到最大.
带电粒子在复合场中的运动(高考真题)

带电粒子在复合场中的运动(2007年全国卷2)25。
(20分)如图所示,在坐标系Oxy 的第一象限中在在沿y 轴正方向的匀强电场,场强大小为E 。
在其它象限中在在匀强磁场,磁场方向垂直于纸面向里,A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 点的距离为l ,一质量为m 、电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而通过C 点进入磁场区域,并再次通过A 点,此时速度方向与y 轴正方向成锐角.不计重力作用。
试求: (1)粒子经过C 点时速度的大小和方向; (2)磁感应强度的大小B 。
(2008年全国卷1)25.(22分)如图所示,在坐标系xOy 中,过原点的直线OC 与x 轴正向的夹角φ=120º。
在OC 右侧有一匀强电场;在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y 轴、左边界为图中平行于y 轴的虚线,磁场的磁感应强度大小为B ,方向垂直纸面向里。
一带正电荷q 、质量为m 的粒子以某一速度自磁场左边界上的A 点射入磁场区域,并从O 点射出.粒子射出磁场的速度方向与x 轴的夹角θ=30º,大小为v 。
粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍。
粒子进入电场后,在电场力的作用下又由O 点返回磁场区域,经过一段时间后再次离开磁场。
已知粒子从A 点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期.忽略重力的影响.求:⑴粒子经过A 点时速度的方向和A 点到x 轴的距离; ⑵匀强电场的大小和方向;⑶粒子从第二次离开磁场到再次进入电场时所用的时间.(2009年全国卷2)25。
(18分)如图,在宽度分别为1l 和2l 的Ov ABCyθφ两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。
一带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q 点射出。
带电粒子在复合场中的运动2

粒子在复合场中的运动21. 如图示,一带负电q 、质量为m 的液滴在水平方向匀强电场中,从A 点沿AB 方向以初速度v 0开始运动,AB 直线与水平方向成θ=45°,若液滴恰好能从A 沿直线运动到B ,已知重力加速度为g 。
求:⑴匀强电场的场强E 的大小及方向? ⑵液滴从A 到B 的时间?和AB 线段的长度?⑶若使匀强电场的场强大小不变,方向相反,再加上一个适当的匀强磁场,液滴仍以原初速度v 0运动,也能从A 沿直线运动到B ,求所加匀强磁场的磁感应强度B 的大小及方向?从A 到B 运动的时间?2. 设在地面上方的真空室内,存在匀强电场和匀强磁场.已知电场强度和磁感应强度的方向是相同的,电场强度的大小E=4.0V/m ,磁感应强度的大小B=0.15T .今有一个带负电的质点以v=20m/s 的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量与质量之比q/m ,以及磁场的所有可能方向(角度可用反三角函数表示).3. 如图甲所示,在xOy 竖直平面直角坐标系中,有如图乙所示的随时间变化的电场,电场范围足够大、方向与y 轴平行,取竖直向上为正方向;同时也存在如图丙所示的随时间变化的磁场,磁场分布在x 1≥x≥0、y 1≥y≥-y 1的虚线框内,方向垂直坐标平面.并取向内为正方向。
在t=0时刻恰有一质量m=4x10-5kg 、电荷量q=1X10-4C 的带正电小球以v 0=4m/s 的初速度从坐标原点沿x 轴正向射入场区,并在0.15s 时间内做匀速直线运动,g 取10m/s 2。
求:(1)磁感应强度B 0的大小;(2)0.3s 末小球速度的大小及方向;(3)为确保小球做完整的匀速圆周运动.x l 和y 1的最小值是多少?A4. 如图甲所示,水平直线MN 下方有竖直向上的匀强电场,场强N/C 10104⨯=πE 现将一重力不计、比荷q/m=106C/kg 的正电荷从电场中的O 点由静止释放,经过t 0=1×10-5s 后,通过MN 上的P 点进入其上方的匀强磁场。
带电粒子在复合场中的运动

基础知识梳理
2.磁流体发电 机(如图8-3-2) (1)磁流体发电 是一项新兴技术, 它可以把 内能直接 转化为 电 能. (2)根据左手定 则,如图中的B板是 发电机 正极.
图8-3-2
基础知识梳理
(3)磁流体发电机两极板间的距离为 d,等离子体速度为v,磁场磁感应强度为 B,则两极板间能达到的最大电势差U = Bdv .
课堂互动讲练
3.各种场力的特点 (1)重力的大小为mg,方向竖直向 下,重力做功与路径无关,重力势能的 变化总是与重力做功相对应. (2)电场力与电荷的性质及电场强度 有关,电场力做功与路径无关,电势能 的变化总是与电场力做功相对应. (3)洛伦兹力的大小F=qvB,其方向 与速度方向垂直,所以洛伦兹力不做 功.
课堂互动讲练
即时应用
1.如图8-3-5所示, 在虚线所示宽度范围内,用 场强为E的匀强电场可使初 速度是v0的某种正粒子偏转θ 角.在同样宽度范围内,若 改用方向垂直纸面向外的匀 强磁场,使该粒子穿过该区 域,并使偏转角也为θ(不计 粒子的重力),则:
图8-3-5
课堂互动讲练
(1)匀强磁场的磁感应强度是多 大? (2)粒子穿过电场和磁场的时间之 比是多大?
高频考点例析
【思路点拨】 (1)当带电粒子在 复合场中做匀速圆周运动时,合外力 时刻指向圆心,速率不变,而重力和 电场力的方向是无法改变的,只能是 两个力平衡,由洛伦兹力提供向心 力. (2)根据做圆周运动的速度必定沿 切线方向、圆心必定在垂直于速度方 向的直线上的特点,正确地画出运动 轨迹,再由几何关系找出最高点到地 面的距离与轨道半径r的关系.
课堂互动讲练
一、电偏转和磁偏转的比较
电 偏 转 受力特征 运动性质 F电=qE 恒力 磁 偏 转 F洛=qvB 变力
专题拓展课二 带电粒子在复合场中的运动

专题拓展课二带电粒子在复合场中的运动[学习目标要求] 1.知道复合场的概念。
2.能够运用运动组合的理念分析带电粒子在组合场中的运动。
3.能分析带电粒子在叠加场中的受力情况和运动情况,能够正确选择物理规律解答问题。
拓展点1带电粒子在组合场中的运动1.组合场:电场与磁场各位于一定的区域内,并不重叠,一般为两场相邻或在同一区域电场、磁场交替出现。
2.四种常见的运动模型(1)带电粒子先在电场中做匀加速直线运动,然后垂直进入磁场做圆周运动,如图所示。
(2)带电粒子先在电场中做类平抛运动,然后垂直进入磁场做圆周运动,如图所示。
(3)带电粒子先在磁场中做圆周运动,然后垂直进入电场做类平抛运动,如图所示。
(4)带电粒子先在磁场Ⅰ中做圆周运动,然后垂直进入磁场Ⅱ做圆周运动,如图所示。
3.三种常用的解题方法(1)带电粒子在电场中做加速运动,根据动能定理求速度。
(2)带电粒子在电场中做类平抛运动,需要用运动的合成和分解处理。
(3)带电粒子在磁场中的圆周运动,可以根据磁场边界条件,画出粒子轨迹,用几何知识确定半径,然后用洛伦兹力提供向心力和圆周运动知识求解。
4.要正确进行受力分析,确定带电粒子的运动状态。
(1)仅在电场中运动①若初速度v0与电场线平行,粒子做匀变速直线运动;②若初速度v0与电场线垂直,粒子做类平抛运动。
(2)仅在磁场中运动①若初速度v0与磁感线平行,粒子做匀速直线运动;②若初速度v0与磁感线垂直,粒子做匀速圆周运动。
5.分析带电粒子的运动过程,画出运动轨迹是解题的关键。
特别提醒从一个场射出的末速度是进入另一个场的初速度,因此两场界面处的速度(大小和方向)是联系两运动的桥梁,求解速度是重中之重。
【例1】(2021·广东深圳市高二期末)某些肿瘤可以用“质子疗法”进行治疗,在这种疗法中,质子先被加速到具有较高的能量,然后被引向轰击肿瘤,杀死细胞,如图甲。
图乙为某“质子疗法”仪器部分结构的简化图,Ⅰ是质子发生器,质子的质量m=1.6×10-27 kg,电量e=1.6×10-19 C,质子从A点进入Ⅱ;Ⅱ是加速装置,内有匀强电场,加速长度d1=4.0 cm;Ⅲ装置由平行金属板构成,板间有正交的匀强电场和匀强磁场,板间距d2=2.0 cm,上下极板电势差U2=1000 V;Ⅳ是偏转装置,以O为圆心、半径R=0.1 m的圆形区域内有垂直纸面向外的匀强磁场,质子从M进入、从N射出,A、M、O三点共线,通过磁场的强弱可以控制质子射出时的方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在复合场中的运动(二)
第二部分:组合场模型
例1、如图所示,POy区域内有沿y轴正方向的匀强电场,POx区域内有垂直纸面向里的匀强磁场,OP与x轴成θ角.不计重力的负电荷,质量为m、电量为q,从y轴上某点以初速度v0垂直电场方向进入场区,经电场偏转后垂直OP进入磁场,然后又垂直x轴离开磁场.求:
(1)电荷进入磁场时的速度大小。
(2)电场力对电荷做的功。
(3)电场强度E与磁感应强度B的比值。
练1、如图所示,在y>0的空间中存在着沿y轴正方的匀强电场;在y<0的空间中存在垂直xoy平面向里的匀强磁场。
一个带负电的粒子(质量为m,电荷量为q,不计重力),从y轴上的P
射入电场,经过x轴上的N(2b,0)点。
求:(0,b)点以平行于x轴的初速度
(1)粒子经过N点时的速度大小和方向。
(2)已知粒子进入磁场后恰好通过坐标原点,则粒子在磁场中运动的时间为多少?
例2、如图所示,一个质量为m =2.0×10-11kg ,电荷量q = +1.0×10-5C 的带电微粒(重力忽略不
计),从静止开始经U 1=100V 电压加速后,水平进入两平行金属板间的偏转电场中。
金属板
长L =20cm ,两板间距310=d cm 。
求:
(1)微粒进入偏转电场时的速度v 0是多大?
(2)若微粒射出偏转电场时的偏转角为θ=30°,并接着进入一个方向垂直于纸面向里的匀强
磁场区,则两金属板间的电压U 2是多大?
(3)若该匀强磁场的宽度为310=D cm ,为使微粒不会由磁场右边射出,该匀强磁场的磁感应
强度B 至少多大?
练2、如图所示,在平面直角坐标系xoy 内,第I 象限的等腰直角三角形MNP 区域内存在垂直于坐标平面向外的匀强磁场,y<0的区域内存在着沿y 轴正方向的匀强电场。
一质量为m 、电荷量为q 的带电粒子从电场中Q (-2h ,-h )点以速度0v 水平向右射出,经坐标原点O 处射入第I 象限,最后以垂直于PN 的方向射出磁场。
已知MN 平行于x 轴,N 点的坐标为(2h ,2h ),不计粒子的重力,求: (1)电场强度的大小E ;
(2)磁感应强度的大小B ;
(3)粒子在磁场中运动的时间t 。
例3、如图所示,在平面直角坐标系xOy内,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限以ON为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B。
一质量为m、电荷量为q的带正电的粒子,从y轴正半轴上y = h处的M点,以速度v0垂直于y轴射入电场,经x轴上x = 2h处的P点进入磁场,最后以垂直于y轴的方向射出磁场。
不计粒
子重力。
求:
(1)电场强度大小E;
(2)粒子在磁场中运动的轨道半径r;
(3)粒子从进入电场到离开磁场经历的总时间t。
练3、如图所示,真空中有半径为r的圆柱形匀强磁场区域,磁场的磁感应强度大小为B,方向垂直于纸面向里, 的虚线上方足够大的范围内,有方向水平向左的匀强电场,电场强度的大小为E,从O点向不同在y r
方向发射速率相同的质子,质子的运动轨迹均在纸面内,设质子在磁场中的偏转半径也为r,已知质子的电量为e,质量为m,不计重力及阻力的作用,求:
(1)质子射入磁场时的速度大小
(2)速度方向沿x轴正方向射入磁场的质子,到达y轴所需的时间
30角(如图中所示)射入磁场的质子,到达y轴的位置坐标。
要求画出质(3)速度方向与x轴正方向成0
子运动轨迹的示意图。
例4、在如图所示的直角坐标系中,有一个与坐标平面垂直的界面,界面与x轴成45°且经过坐标原点O,界面右下侧有一匀强电场,场强为E,方向沿y轴的正方向,界面左上侧有一匀强磁场,方向垂直坐标平面向里,大小未知.现把一个质量为m,电量为+q的带电粒子从坐标为(b,-b)的P点处由静止释放,粒子以一定的速度第一次经过界面进入磁场区域.经过一段时间,从坐标原点O再次回到电场区域,不计粒子的重力.求:
(1)粒子第一次经过界面进入磁场时的速度有多大?
(2)磁场的磁感应强度的大小?
(3)粒子第三次经过界面时的位置坐标?
练4、如图所示,xOy平面的第Ⅱ象限内有垂直于纸面的匀强磁场(图中未画出),有一质量为m、电荷量为+q 的a粒子从x轴上坐标为(-3l,0)的A点以速度v0,沿与x轴正向成θ=60°的方向射入第Ⅱ象限,经磁场偏转后,从y轴上的坐标为(0,l)的P点垂直于y轴射入第Ⅰ象限,y轴和垂直于x轴的虚线之间有
x ,虚线右侧有沿-y轴方向的匀强电场,a粒子将从虚线与x轴交点Q进入第Ⅳ象限,Q点横坐标
Q 垂直纸面向里的匀强磁场,其磁感应强度大小与第Ⅱ象限匀强磁场相同(不计粒子的重力)。
求:
(1)第Ⅱ象限匀强磁场的方向及磁感应强度的大小B;
(2)匀强电场的电场强度的大小E;
(3)如在a粒子刚进入第Ⅱ象限的同时,有另一质量为m、电荷量为-q的b粒子,从y轴上的M点以速度v0垂直于y轴射入电场,a、b粒子将发生迎面正碰,求M点纵坐标y M以及相碰点N的横坐标x N和纵坐标y N。
1.如图所示,在x轴上有垂直于xy平面向里的匀强磁场,磁感应强度为B;在x轴下方有沿y铀负方向的匀强电场,场强为E。
一质最为m,电荷量为q的粒子从坐标原点。
沿着y轴正方向射出。
射出之后,第3次到达x轴时,它与点O的距离为L,求此粒子射出时的速度v和运动的总路程s,(重力不计)。
2、如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。
在x轴上方空间的第一、第二象限内,
既无电场也无磁场;在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的匀强磁场。
一质量为m、电荷量为q的带电质点,从y轴上y = h处的P1点以一定的水平初速度沿x轴负方向进入第二象限。
然后经过x轴上x =–2h处的P2点进入第三象限,带电质点恰好能做匀速圆周运动。
之后经过y轴上y=–2h处的P3点进入第四象限。
已知重力加速度为g。
求:点时速度的大小和方向;
(1)质点到达P
2
(2)第三象限空间中电场强度和磁感应强度的大小;
3、在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标
平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计重力,求:
;
(1)M、N两点间的电势差U
(2)粒子在磁场中运动的轨道半径r;
(3)粒子从M点运动到P点的总时间t.
4、如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点
共线,它们的连线垂直M、N,且s2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场.粒子在s1处的速度和粒子所受的重力均不计.
(1)当M、N间的电压为U时,求粒子进入磁场时速度的大小V;
(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U0;
(3)当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t的最小值.。