卫星通信基础知识(六)卫星天线的方位 仰角 极化角

合集下载

卫星方位角计算

卫星方位角计算

卫星方位角计算
摘要:
1.卫星方位角的概念
2.计算卫星方位角的方法
3.利用球面三角形解法计算卫星方位角
4.卫星天线安装公式
5.结语
正文:
卫星方位角是指卫星所在的方向与地面观察者视线方向之间的夹角,通常用于卫星通信、导航和天文观测等领域。

计算卫星方位角有助于我们更好地调整卫星天线的指向,以接收到更强的信号。

那么,如何计算卫星的方位角呢?下面我们就来分享一下这方面的知识。

首先,计算卫星方位角的方法主要有两种:一种是利用地球的半径、你所在位置及卫星高度位置,根据勾股定理和三角函数来计算;另一种是利用球面三角形解法。

这里我们主要介绍第二种方法。

球面三角形解法的具体步骤如下:
1.在手机上下载一个指南针软件,打开指南针软件,获取当前的地理坐标(经度和纬度)。

2.根据公式ha = sin(lat) 和hc = cos(lat) 计算出卫星高度角ha 和地球半径与卫星高度的比值hc。

3.利用公式arctg(ha/hc) 计算出卫星方位角。

另外,根据卫星天线安装公式,我们还可以计算出仰角和极化角。

卫星天线安装主要调整三个角度,按先后次序分别为仰角、方位角、高频头极化角。

其中,仰角计算公式为:
elarctg[(cos(lat)cos(lon)-0.1513)/(1-cos(lat)cos(lon))]
极化角x 的计算公式为:x = (卫星经度- 接收地经度) / 180
通过以上方法,我们就可以计算出卫星的方位角,从而更好地调整卫星天线的指向,接收到更强的信号。

卫星接收站接收天线方位角

卫星接收站接收天线方位角

卫星接收站接收天线方位角、仰角、极化角的计算公式1、卫星接收天线的方位角:ξϕsin 1tg tg A z -= (1) 2、卫星接收天线的仰角:ϕξφξ221cos cos 115127.0cos cos --=-tg EL (2)3、极化角:ξϕϕξξϕξϕαtg tg a tg a a tgP sin )cos cos (1cos cos 2sin 121-≅-⋅+--=-- (3) 其中接收点的纬度为ξ ,接收点的经度为R φ,同步卫星的经度为S φ ,相对经度为S R φφϕ-=。

同时当0>ϕ,表示卫星在接收点的西南方向上,当0=ϕ时表示卫星在接收地点的正南方向,当0<ϕ时表示卫星在接收点的东南方向上。

通常地球的半径为6738km ,同步卫星的高度为35786km ,当以地球半径为单位长度,同步卫星轨道的相对半径a 为:6018.6)637835786(1=+=a 公式(1)中:正南︒=0z A ,正西为︒=90z A ,正东为︒-=90z A 。

通常接收天线方位角用下式比表示:180sin 1+=-ξϕtg tg A z (4) 此时方位角以正北方向为基准。

广州从化市广播电视台所在的地理位置为:东经113.58度,北纬23.56度。

如果没有指南针,可以通过自己的影子判断自己影子先找出东西方向,然后再确定南北方向,上午影子向西,下午影子向东。

卫星仰角和极化如图1和图2所示。

从化市广播电视台接收天线方位参数如表一所示。

表一从化接收卫星节目天线方位参数表中星6B卫星(东经11.5度)节目接收技术参数。

卫星接收天线调整的三个参数

卫星接收天线调整的三个参数

卫星广播电视从模拟到数字,从C波段到Ku波段,从传输到直播的发展非常迅速,我国有线电视的信源多数来自于卫星。

利用卫星传送技术进行覆盖是我国广播电视传输的一个重要组成部分,如村村通广播电视工程中利用卫星信号进行覆盖的就占了很大的比例。

为此,卫星接收是广电机构技术人员所必须掌握的一门技术。

要进行卫星接收,关键点是卫星接收天线的定位,它包括:天线的方位角、仰角和馈源的极化角这三大参数。

1、方位角从地球的北极到南极的等分线称为经线(0-180度),把地球分为东方西方,偏东的经线称为东经,偏西方的经线称为西经。

从地球的东到西的等分线称纬线(0-90度),把地球分为南北半球,以赤道为界(赤道的纬度为0),北半球的纬线称北纬,南半球的纬线称南纬。

我国处于北半球的东方,约在东经75-135度,北纬18-55度之间。

所有的广播电视卫星都分布在地球赤道上空35786.6公里的高空同步轨道的不同经度上,平时我们惯称多少度的卫星,这个度指的是地球的经线,卫星在地球上的投影称为星下点,它是位于赤道上,经度与卫星经度相同的地方。

如亚太6号卫星的星下点是位于赤道上的东经134度的位置,我们在寻星时,如果你所在的地方(北半球)的经度大于星下点的经度,那么天线的方位角必定时正南(以正南为基准)偏西,反过来,如果你所在的位置的经度小于星下点的经度,那么天线的方位角是正南偏东。

卫星天线的方位角计算公式是:A=arctg{tg(ψs-ψg)/sinθ}----------(1)公式(1)中的ψg是接收站经度,ψs为卫星的经度,θ为接收站的纬度。

图1是卫星的方位角示意图。

方位角的调整方法很简单,首先用指南针找到正南方,天线方向正对正南方,如果计算的角度A是负值,则天线向正南偏西转动A度,如果A是正值,则天线向正南偏东方向转动A度。

即可完成方位角的调整。

2、仰角仰角是接收站所在地的地平面水平线于天线中心线所形成的角度,如图2所示。

仰角的计算公式是:.-----------------⑵仰角的调整最好是用量角器加上一个垂针作成的仰角调整专用工具进行调整。

卫星通信站天线对星及极化调整程序

卫星通信站天线对星及极化调整程序

卫星通信站天线对星及极化调整程序中海油卫星通信站天线对星及极化调整程序一、准备工作1、熟悉天线的方位、俯仰、极化调整装置的使用方法2、熟悉LNB、ODU的使用方法3、熟悉频谱仪操作方法及使用安全要求4、根据当地经纬度,计算天线对卫星的方位角、俯仰角和极化角假定:卫星经度为θs(东经为正),地面站经度为θe(东经为正),地面站纬度为φe(北纬为正),则有:(1)方位角AZ(以正北为基准,顺时针)计算公式如下:AZ = 180 - AZ b:地面站在卫星星下点西北;AZ = 180 + AZ b:地面站在卫星星下点东北;AZ = 360 - AZ b:地面站在卫星星下点东南;AZ = AZ b:地面站在卫星星下点西南。

其中:AZ b = tg-1(tg(|θe-θs|)/sin(φe))(2)俯仰角EL(以地面站地平面为基准)计算公式如下:EL = tg-1((β- α)/SQR(1 - β*β))其中:α= 0.1512,β= cos(φe) * cos(θe-θs)(3)极化角POL(顺时针)计算公式如下:POL = tg-1(sin(θe - θs)/tg(φe))5、调整天线初始位置状态俯仰调整到计算值,精度应控制在1度左右(直接关系到对星需要的时间);方位调整到计算值,大致准确即可(由于地磁影响,指南针的指向角度不准);接收极化按水平设置,极化角粗略对准即可。

二、天线对星1、连接图和信标频点(1)利用LNB对星SINOSAT-1 C频段信标频率为4193MHz;一般情况下,C频段LNB的本振为5150MHz,因此SINOSAT-1 C频段信标在LNB输出中对应的频点为957MHz。

注意:频谱仪输入中不能有直流信号!在测试电缆接入频谱仪输入前需用万用表测试,确认无直流信号。

(2)利用ODU对星(IF Rx Out不能有直流分量)SINOSAT-1 C频段信标频率为4193MHz;将ODU中心频率设置为4190MHz,因此SINOSAT-1 C频段信标在70MHz中频输出中对应的频点为73MHz。

卫星天线仰角、方位角、极化角参数

卫星天线仰角、方位角、极化角参数

安庆部分卫星接收仰角、方位角、极化角参数(近似值)
接收地经度117.0 接收地纬度30.5
注:
方位角——正北为0度(也就是正南为180度),顺时针为增加(由南向西)。

仰角——水平为0度,向上增加。

偏馈天线实际仰角(铅垂线与长轴的夹角)正装时等于卫星仰角减去角度差(偏焦角)。

倒装时等于卫星仰角加上角度差(偏焦角)。

极化角——就是高频头相对于标准位置(C头,以高频头0刻度平行于地面(3点钟方向)为0度或者高频头0刻度垂直于地面(6点钟方向)为0度,ku头,0刻度对应高频头上的F头朝指向时间4:30位置(见下图),对于KU波段弯头来讲,把
弯头长边与地面垂直规定为极化角0度。

)所旋转的角度,顺时针为正,逆时针为负。

极化角只是个理论值,实际操作时还要进行细调。

中卫偏馈偏焦角
S035 0.35m 中卫天线偏焦角 24.62度
S040 0.40m 中卫天线偏焦角 24.62度
S046 0.46m 中卫天线偏焦角 24.62度
S055 0.50m 中卫天线偏焦角 24.62度
S060 0.60m 中卫天线偏焦角 22.75度
S065 0.65m 中卫天线偏焦角 24.62度
S075 0.75m 中卫天线偏焦角 22.75度
S080 0.80m 中卫天线偏焦角 24.62度
S085 0.85m 中卫天线偏焦角 24.62度
S090 0.90m 中卫天线偏焦角 24.62度
S100 1.00m 中卫天线偏焦角 24.62度。

卫星天线方位角、仰角和极化角

卫星天线方位角、仰角和极化角

卫星天线⽅位⾓、仰⾓和极化⾓1、⽅位⾓:通常我们通过计算软件或在资料中得到的结果应该是以正南⽅向为标准,将卫星天线的指向偏东或偏西调整⼀个⾓度,该⾓度即是所谓的⽅位⾓。

⾄于到底是偏东还是偏西,取决于接收地与欲接收卫星之间的经度关系,以我们所在的北半球为例,若接收地经度⼤于欲接收卫星经度,则⽅位⾓应向南偏西转过某个⾓度;反之,则应向东转过某个⾓度。

正南⽅向⽤指南针来测定,但是由于地理南极和地磁场南极并⾮完全重合,所以选好⽅位⾓之后还得做⼀些修正才有可能接收到最强的卫星信号。

2、仰⾓:是天线轴线与⽔平⾯之间的夹⾓。

正馈天线的轴线很明确,是⾼频头所在位置与天线中⼼的连线;偏馈天线的轴线就没那么明确了,我仔细观察了偏馈天线的结构和形状,得出结论:轴线应该与⽀撑KU头的L型杆基本平⾏。

后来我照此结论去调节偏馈天线的仰⾓,结果调了两天也收不到76.5的亚太2R。

⼀直调到怀疑⾼频头是不是坏了,都准备再邮购⼀个新的⾼频头了,但是在那天下午,我突发奇想,想利⽤太阳光来检查⼀下偏馈天线的焦点位置,于是将L型杆对准太阳(调节天线位置,使得L型杆的在地⾯上的影⼦汇聚成⼀点),结果发现被天线反射的太阳光并没有会聚于⾼频头所在位置,⽽是在其上⽅⼀点的位置(⽤⼿在该位置可以接受到会聚的太阳光线,也可以据此来判定天线的聚焦性能),然后将天线仰⾓减⼩,使得光线会聚点正好在⾼频头所在位置,测量刚才两个不同位置下L型杆与⽔平⾯之间的夹⾓相差有⼗度左右。

⾄此⽅才恍然⼤悟原先为什么找不到那该死的亚太2R了:我所在地接收该星的仰⾓应为30度,那么L型杆与⽔平⾯之间的夹⾓应该调成20度左右(我是这样调节的:在L型杆上拴⼀根下挂重物的细绳,⽤量⾓器测量该线与L型杆之间的夹⾓θ,则L型杆与⽔平⾯之间的夹⾓必为90-θ,即只要调节θ,使之等于70度就可以了),⽽我将L型杆与⽔平⾯之间的夹⾓调成30度,然后作正负5度左右的调整,当然就找不到星星了!将该⾓度修正之后,在计算好的⽅位⾓附近适当调整,表明信号质量的红条⼦马上就窜了出来!那时候的感觉怎⼀个“爽”字了得!3、极化⾓:⽬前我们所能收视的卫星信号⼤多采⽤所谓的线极化⽅式传送,可以在同⼀个转发器中传送两个相互垂直且互不影响的两个信号,通常这两个⽅向为⽔平(H)和垂直(V)两个⽅向,由于位于⾚道上空的卫星经度与接收地经度⼀般并不相同,所以卫星发出的⽔平或垂直极化波到达接收地后极化⽅向会发⽣变化,所变化的⾓度即是所谓的极化⾓。

如何确定卫星与测试点的俯仰角和方位角

如何确定卫星与测试点的俯仰角和方位角

如何获得卫星与测试点的俯仰角和方位角有三种方法可以获得卫星与测试点的俯仰角和方位角,其中直接读取数据中的信息有两种,通过数据中的信息计算有一种。

1.读取GPGSV数据指令为LOG GPGSV ONTIME 1例如:$GPGSV,2,1,06,28,82,238,49,17,53,305,50,20,43,116,50,11,43,056,50*7C $GPGSV,2,2,06,32,35,080,48,04,23,230,45*79数据中蓝色代表卫星号,红色代表俯仰角,绿色代表方位角。

具体的数据格式请参照下表:2.读取SATVIS数据指令为LOG SATVIS ONTIME 60例如:<SATVIS COM1 0 76.5 FINESTEERING 1513 272077.000 00040000 0947 3642 < TRUE FALSE 7< 17 0 0 71.1347.8 720.617 719.356< 28 0 0 57.0181.5 -1874.298 -1875.559< 20 0 0 48.076.9 -591.419 -592.680< 4 0 0 45.5249.0 2192.136 2190.875< 32 0 0 29.252.3 -1985.402 -1986.663< 11 0 0 21.264.6 -3102.636 -3103.897< 23 0 0 1.2115.2 2588.193 2586.933数据中蓝色代表卫星号,红色代表俯仰角,绿色代表方位角。

具体的数据格式请参照下表:3.通过数据中的信息进行计算指令为LOG BESTXYZ ONTIME 1LOG SATXYZ ONTIME 1例如:<BESTXYZ COM1 0 83.5 FINESTEERING 1513 272785.000 00040000 d821 3642 < SOL_COMPUTED SINGLE -2166839.0014 4384040.0267 4080997.99124.2704 3.3025 4.3042 SOL_COMPUTED DOPPLER_VELOCITY -0.0308 0.0189 -0.0124 0.5104 0.3947 0.5144 "" 0.150 0.000 0.000 6 6 0 0 0 06 0 03<SATXYZ COM1 0 81.0 FINESTEERING 1513 272822.000 00040000 6f3c 3642< 0.0 6< 28-11534560.6580 23408579.8568 4255605.9156-7117.646 2.386038882 3.086231912 0.000000000 0.000000000< 17-7655434.6591 14439413.9155 20947672.8627 13089.835 1.235725435 2.484500779 0.000000000 0.000000000< 42958513.2593 23372639.8273 11764032.7987-87236.283 2.174883806 3.100838347 0.000000000 0.000000000< 20-18412943.8591 5780312.3787 18108029.413828283.500 2.3168298533.315148824 0.000000000 0.000000000< 32-15706563.3029 -3614801.9453 21488522.653991503.250 4.244883448 5.435087008 0.000000000 0.000000000< 11-20999759.2172 -5287129.9073 15397541.23213364.668 0.195702243 8.084112836 0.000000000 0.000000000蓝色为卫星号,红色为各个卫星的XYZ坐标值,绿色为被测点XYZ坐标值。

天线方位角俯仰角以及指向计算

天线方位角俯仰角以及指向计算
已知双轴定位机构转角求反射线的空间指向比较容易,而根据反射线的空间指向计算机构转角则可以归结为一个非线性方程求解问题,无法得到方程的解析解,只能通过数值方法得到数值近似解。
取如图1所示坐标系, 为焦点坐标系, 为定位机构转动坐标系, 为抛物面反射中心固联坐标系,图中h为初始时天线反射中心在焦点坐标系 下到yz平面的高度,Bc为入射线AC与yz平面的夹角, f为反射抛物面的焦距。则在 坐标系下,反射抛物面方程为: ,B的坐标为:
因此,星载天线的指向精度是非常重要的。要保证星载天线的指向精度,首先就是要确保星载天线驱动机构在地指向精度分析的正确性,只有这样才能对接下来的在轨指向精度分析和指向误差补偿进行分析。星载天线驱动机构的末端位姿误差主要来源于机构的结构参数误差和热变形误差,这些误差是驱动机构指向误差最原始的根源,由于受实际生产加工装配能力和空间环境的限制,这些引起末端指向误差的零部件结构参数误差是必须进行合理控制的,引起结构参数变化的热影响因素是必须加以考虑的,只有这样才能使在轨天线驱动机构指向精度动态分析和误差补偿都得到较理想的结果。纵观整个星载天线驱动机构末端位姿误差的分析,提出源于结构参数误差和热变形误差引起的星载天线驱动机构末端位姿误差的研究是必要的。
波束指向计算定位机构转角
据几何光学原理可知,如图2所示的直线BC、CD、BA、CA共面,设反射线CD的反向延长线与BA交于E点。
设平面图形中的夹角如图2所示,则向量BA已知,向量CD的单位向量已知,有
由平面三角几何有:
上式是单变量H的非线性超越函数,可变形为:
上述非线性方程可由非线性方程的数值解法求得,这样将从指向角到定位机构转角的双变量变换转化为以H为单变量的非线性方程求根问题,可以证明方程( 15)在[ 0, 45)范围内有唯一根。从而点 ( , , )、点C( , , )的坐标可由三角形的正弦定理通过下式求:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卫星通信基础知识(六)卫星天线的方位仰角极化角
要进行卫星接收,关键点是卫星接收天线的定位,它包括:天线的方位角、仰角和馈源的极化角这三大参数。

1、方位角
从地球的北极到南极的等分线称为经线(0-180度),把地球分为东方西方,偏东的经线称为东经,偏西方的经线称为西经。

从地球的东到西的等分线称纬线(0-90度),把地球分为南北半球,以赤道为界(赤道的纬度为0),北半球的纬线称北纬,南半球的纬线称南纬。

我国处于北半球的东方,约在东经75-135度,北纬18-55度之间。

所有的广播电视卫星都分布在地球赤道上空35786.6公里的高空同步轨道的不同经度上,平时我们惯称多少度的卫星,这个度指的是地球的经线。

卫星在地球上的投影称为星下点,它是位于赤道上,经度与卫星经度相同的地方。

如亚太6号卫星的星下点是位于赤道上的东经134度的位置。

我们在寻星时,如果你所在的地方(北半球)的经度大于星下点的经度,那么天线的方位角必定时正南(以正南为基准)偏西,反过来,如果你所在的位置的经度小于星下点的经度,那么天线的方位角是正南偏东。


卫星天线的方位角计算公式是:
A=arctg{tg(ψs-ψg)/sinθ}----------(1)
公式(1)中的ψg是接收站经度,ψs为卫星的经度,θ为接收站的纬度。

图1是卫星的方位角示意图。


方位角的调整方法很简单,首先用指南针找到正南方,天线方向正对正南方,如果计算的角度A是负值,则天线向正南偏西转动A度,如果A是正值,则天线向正南偏东方向转动A度。

即可完成方位角的调整。

2、仰角
仰角是接收站所在地的地平面水平线于天线中心线所形成的角度,
如图2所示。


仰角的计算公式是:

.-----------------⑵ 仰角的调整最好是用量角器加上一个垂针作成的仰角调整专用工具进行调整。


方位角和仰角的调整顺序是,先调整好仰角,在调整方位角。

3、极化角
国内或区域卫星一般都是线极化,线极化分为水平极化(以E‖表示)和垂直极化(以E⊥表示)。

地面接收天线极化的定义是以卫星接收点的地平面为基准,天线馈源(或极化器)矩形波导口窄边平行于地平面,则电场矢量平行于地平面,定义为水平极化;反之馈源矩形波导口窄边垂直于地平面定义为垂直极化如图3所示。

地面接收天线与卫星辐射电磁波必须满足极化匹配的条件,即水平-水平,垂直-垂直。

假定卫星波束中心与卫星同经度,那么与星下点同经度(但纬度不同)的非星下点接收天线能很好地与卫星辐射电磁波匹配,而与星下点不同经度的非星下点接收天线的极化必须旋转一个角度(即极化角,这个极化角也等于星下点的接收天线所在的地平面与非星下点的接收天线所在的地平面之间的交角)才能与卫星电波相匹配。

如图4所示
地面接收天线的极化角P可用下式计算: P = arctg[sin(ψs-ψg)/tgθ]
------------------------------- (3) 从公式可以看出极化角是卫星与接收站经度差及接收站纬度的函数。

相同经度的接收站, p值为0;相同纬度的地球站,经度差越大,p绝对越值大,这从直观上也容易理解。

如果波束中心与星下点的经度不同,以上式计算将存在误差,但公式(1)可作为接收站极化调整的理论基础依据。

如果卫星波束中心与卫星经度不同甚至相差较大,那么只需将公式(3)中的卫星经度ψs换成波束中心的经度ψc就可以了。

当然计算结果也只是一个理论值,实际的极化角由具体调整来确定。

P = arctg [sin (ψc -ψg ) / tgθ] -------------------------------- (4)
ψc:波束中心的经度。


一般实际的极化角在公式3和4两个计算结果之间,更接近公式(3)的计算结果。

3-1、极化调整
3-1-1 极化干扰分析 卫星电视系统产生极化不匹配主要原因是接收站天线极化匹配不良(极化角调整不准)。

单极化系统,极化不匹配会产生极化损耗使接收信号降低。

对于双极化系统,多个转发器所使用的下行频率可能是有相同的,为此不同的转发器之间的信号是依靠不同的极化进行隔离的,所以极化如不匹配不仅产生极化损耗,还会产生两个极化系统之间的同频正交极化干扰,这种一个极化系统的信号对另一个极化系统信号的干扰体现为噪声的增加,使接收信号载噪比大大降低,严重时有明显干扰,甚至无法收看。

下面来分析一下这种极化干扰的产生原因,以亚洲卫星二号为例,见图5所示。

从图中可看出,3A转发器和3B转发器所使用的下行频率有部分是相同的。

亚洲卫星二号的 3B转发器有5个SCPC数字电视载波,每个载波输出功率回退3dB(转发器辐射总功率的0.707倍),下行极化方式是水平极化,用ELRP‖表示其地面信号的电场强度(或电平);3A转发器只有一个MCPC (香港STAR TV)数字电视载波,无输出功率回退,下行极化方式是垂直极化,用EIRP⊥表示其地面信号的电场强度(或电平)。

则得到下式: E IRP⊥= EIRP‖+ 3dB E IRP⊥/ EIRP‖=1/0.707=1.414
所以有E⊥≈1.414E‖
假定使用单极化接收天线,准备接收水平极化的“江西卫视”,而馈源未作调整,极化匹配处于标准的水平极化状态,接收地点是南昌,根据计算极化角P1=-28°。

从图6的极化干扰分析中得知,卫星水平极化波耦合到馈源水平极化端口的主极化分量为E‖_0=E‖cosp1,卫星垂直极化波偶合到馈源水平极化端口的反极化分量为E⊥_0=E⊥cos(90-p1)。

忽略所有其它噪声的干扰,则水平极化的载噪比是: (C/N) = 20lg|(E‖cosP1) / [E⊥cos(90-P1)]|
= 20lg|E‖cos(-28) / [1.414E‖cos(90+28)]|=2.5db
显然此数值明显低于数字卫星接收机的门限,也就是说上述状态下根本收不到“江西卫视”节目。

3-2 极化角的调整 调整极化角之前,先计算理论值,其值有三种情况:P>0,P=0, P<0,对应的极化角调整方向是,当P=0时,接收站与卫星同经度,其极化为理想的水平(或垂直)极化;当P>0,此时接收天线的方位角是南偏东,前馈天线馈源顺时针旋转(站在天线的前),后馈天线逆时针旋转(站在天线的后);当P<0,此时接收天线的方位角是南偏西,前馈天线馈源逆时针旋转,后馈天线顺时针旋转。


在实际的极化角调整中,可分二步走:
a.粗调:先按计算所得的仰角、方位角和极化角调整天线指向及馈源旋转角度,使仰角、方位角最佳并锁定天线指向。


b.细调:用频谱仪分析仪、AGC电压或卫星接收机中的信号强度指示条等方法精确调整。


由于频谱仪价格高,所以在实际操作中都使用方便简单的AGC电压法和卫星接收机中的信号强度指示条法。


3-2-1 AGC电压调整法 AGC(自动增益控制)电压调整法是利用卫星接收机输出的AGC电压来调整接收天线的极化匹配。

该法无需昂贵仪器,只要带有AGC电压输出的卫星接收机和万用表即可,适合普通用户。


调整步骤如下:设高频头为单极化(水平极化)的。

首先把天线馈源(或极化器)矩形波导口窄边平行于地平面,并将接收机设置相应的频道和参数,使之能收到电视信号(水平极化的信号),缓慢旋转馈源,旋转的方向和角度以计算值P为基准,找到AGC电压的最大点,此即为极化最佳匹配位置,锁定馈源,极化调整即告结束。


极化调整好以后,图像清淅、稳定、无干扰,声音悦耳、无噪声,某一端口只能接收某种极化的节目。

极化匹配不好的系统最常见现象是:图像噪波多,出现大面积色块画面时更明显,有不稳定的短白线干扰,或两种不同极化的节目在一个端口上均能收到。

AGC电压调整法一般用在模拟卫星电视的场合。

3-2-2 信号强度调整法 当接收数字卫星电视,因为数字卫星接收机绝大多数没有AGC电压输出端口,所以AGC电压调整法受到限制。


信号强度调整法是利用卫星接收机自带的信号检测功能来完成,无需任何仪器。


自带的信号检测功能的接收机,当进入安装调试功能界面时,会显示两条指示条。

一条称为信号强度指示条,其值用%来表示,另一条称为信号质量指示条(称为C/N指示条更贴切些),其值也是用%来表示。

信号强度指示条用来表示接收机与馈源链路的好坏情况,与是否接收到信号无关,此指示条可用来检测接收机与馈源的连接是否正常和馈源是否有故障。

信号质量指示条使用来表示接收到的信号的好坏,它是作天线调试的主要参考依据。

信号质量指示条根据信号的强弱分别用红色、黄色、绿色表示,随着信号的逐步增强,除指示条的值不断变大外,指示条颜色也从红到黄再到绿变化,当指示条的颜色为黄色时表示接收机以锁定信号,即信号电平已达门限值,当颜色变绿时,表示已能顺利地解码出图像。

相关文档
最新文档