线代期末考试试卷(2009-2010)
2009-2010第二学期线性代数期末B卷答案

第 1 页 共 5 页上 海 海 事 大 学 试 卷2009 — 2010 学年第二学期期末考试试题答案《 线 性 代 数 》(B 卷)班级 学号 姓名 总分一、填空题(共9题10空,每空3分,共30分)请将正确答案写在题目后面的横线上。
1.()734=A , ()111=B ,则A B T = 。
⎪⎪⎪⎭⎫⎝⎛734734734 2.设21,αα是n 维向量,令1212ααβ-=,212ααβ+=,213ααβ-=,则向量组321,,βββ的线性相关性是 。
答案 线性相关3.已知实二次型),,(321x x x f = 31212322212232x x x x x x x ++++λ是正定二次型,则参数λ的取值范围为答案 <<-λ315315 4. 设3351110243152113------=D ,D 的),(j i 元的代数余子式记作ij A ,则3231A A += 答案 245.设3阶矩阵A 的特征值为2,3,λ. 若行列式48|2|-=A ,则λ= . 答案λ=-1.6.已知()1,1,1,2,()a a ,,1,2,()a ,1,2,3,()1,2,3,4线性相关,并且1≠a ,a = .--------------------------------------------------------------------------------------装订线------------------------------------------------------------------------------------第 2 页 共 5 页答案 1/27.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=x A 10100002与⎪⎪⎪⎭⎫ ⎝⎛-=10000002y B 相似,则_________,==y x 。
答案 1,0==y x8.要使矩阵⎪⎪⎪⎭⎫ ⎝⎛---=43211211t A 的秩最小,则__________=t 。
同济大学线性代数B期末试卷-含参考答案

同济大学课程考核试卷(B 卷)2009—2010学年第一学期命题教师签名: 审核教师签名:课号:122010 课名:线性代数B 考试考查:考试此卷选为:期中考试( )、期终考试( )、重考( √ )试卷(注意:本试卷共七大题,三大张,满分100分.考试时间为 分钟.要求写出解题过程,否则不予计分) 一、填空题(每空3分,共24分)1.已知4阶方阵为()2131,,,A αααβ=, ()1232,2,,B αααβ=, 且 4A =-,2B =-,则行列式 =+B A 6 。
2. 设行列式1131100021034512D =,j i A 是D 中元素j i a 的代数余子式,则=+2414A A -9 .3. 已知矩阵222222a A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,伴随矩阵0≠*A ,且0=*x A 有非零解,则 C .(A) 2=a ; (B ) 2=a 或4-=a ; (C) 4-=a ; (D) 2≠a 且4-≠a .4. 向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ,,, 21线性表示, 则以下结论中不能成立的是 B(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α(1)j s ≤≤,向量组s j ββα,,,2线性相关; (C) 向量组s ααα,,,21与向量组s βββ,,, 21等价. 5. 已知3阶矩阵A 与B 相似且010100001A -⎛⎫⎪= ⎪⎪-⎝⎭, 则201222B A -=300030001⎛⎫- ⎪ ⎪ ⎪⎝⎭. 6. 设0η是非齐次线性方程组Ax b =的特解,12,,,s ξξξ是齐次方程组0Ax =的基础解系,则以下命题中错误的是 B(A) 001020,,,,s ηηξηξηξ---是Ax b =的一组线性无关解向量;(B) 0122s ηξξξ++++是Ax b =的解;(C) Ax b =的每个解均可表为001020,,,,s ηηξηξηξ+++的线性组合.7. 设4阶矩阵A 有一个特征值为2-且满足5T AA E =,||0A >,则其伴随矩阵*A 的一个特征值为 _________8. 已知实二次型2221,231231323(,)2624f x x x x x x ax x x x =++++正定,则常数a 的取值范围为22a -<<.二、(10分)设矩阵A 的伴随矩阵*110011102A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,且0A >, E BA ABA 311+=--。
线性代数期末考试试题及答案

2005 -2006 学年第一学期一.填空题(每小题3分,共15分)1.()013121221110⎛⎫ ⎪-=- ⎪⎝⎭()15202. 若n 阶方阵A 的秩 r n <, 则A = 0 .3.设0=x A ,A 是5阶方阵,且=)(A R 3, 则基础解系中含 2 个解向量.4.若3阶矩阵A 的特征值为2,2,3,则=A 12 .5.设21,λλ是对称阵A 的两个不同的特征值,21,p p 是对应的特征向量,则=],[21p p0 . 二.选择题(每小题3分,共15分)1.若A 为3阶方阵,且2=A ,则2A -=( C ). A.-4 B.4 C.-16 D.162.设B A ,为n 阶方阵,满足等式O AB =,则必有( B ).A.O A =或O B = B.0=A 或0=B C. O B A =+ D.0=+B A3.设n 元线性方程组b x A=,且n b A R A R ==),()( ,则该方程组( B )A.有无穷多解 B.有唯一解 C.无解 D.不确定 4.设P 为正交矩阵,则P 的列向量( A ) A .组成单位正交向量组 B. 都是单位向量 C. 两两正交 D. 必含零向量 5.若二次型()f '=x x Ax 为正定, 则对应系数矩阵A 的特征值( A )A.都大于0; B.都大于等于0; C.可能正也可能负 D.都小于0三.(8分)计算行列式2111121111211112D =的值. 解.21234314211111111111121112110100555112111210010111211120001r r D r r r r r r r r -=+++-=- 四.(8分)设⎪⎪⎭⎫ ⎝⎛=100210321A ,求1-A .解:⎪⎪⎪⎭⎫ ⎝⎛=100 010 001 100210321) (E A ⎪⎪⎪⎭⎫ ⎝⎛---100 010 021 100210101221r r 1323100 121010 0122001 001r r r r -⎛⎫+ ⎪- ⎪-⎝⎭⎪⎪⎪⎭⎫ ⎝⎛--=-1002101211A (或用伴随矩阵)五.(8分)求齐次线性方程组⎪⎩⎪⎨⎧=+--=-+-=+--03203 0432143214321x x x x x x x x x x x x 的基础解系及通解.解:⎪⎪⎪⎭⎫ ⎝⎛------=321131111111A ⎪⎪⎪⎭⎫ ⎝⎛----→210042001111⎪⎪⎪⎭⎫⎝⎛---→000021001111通解方程组⎩⎨⎧=-=--02043421x x x x x ,基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00111ξ ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=12012ξ ,通解为2211ξξ k k +,(21,k k 为任意常数)六.(8分)已知向量⎪⎪⎪⎭⎫ ⎝⎛=32111α ,⎪⎪⎪⎭⎫ ⎝⎛-=11112α ,⎪⎪⎪⎭⎫⎝⎛=53313α ,求向量组的秩及一个极大线性无关组,并把其余向量用极大线性无关组表示.解:()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==513312311111,,321ααα A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→220110220111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→000000110111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→000000110201 极大无关组21,αα,且2132ααα-=.七.(10分)讨论λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=++2321321321)1( )1(0)1( λλλλλx x x x x x x x x(1) 有唯一解; (2) 无解; (3) 有无穷多解.解:法1 )3(1111111112+-=+++=λλλλλA(1) 当0≠λ且3-≠λ时,有0≠A ,方程组有惟一解;(2)当3-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=93 0 112121211A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→600033300211,3)(2)(=<=A R A R ,所以无解;(3)当0=λ时,⎥⎥⎦⎤⎢⎢⎣⎡→000000000111A , 1)()(==A R A R ,方程组有无穷多解.法2⎪⎪⎪⎭⎫⎝⎛--+→⎪⎪⎪⎭⎫ ⎝⎛+++=220001111111110111λλλλλλλλλλλλA ⎪⎪⎪⎭⎫⎝⎛+---+→2)2(000111λλλλλλλλ⎪⎪⎪⎭⎫⎝⎛++--+→)1()3(0000111λλλλλλλλ八.(8分)用配方法将二次型31232221321422),,(x x x x x x x x f +--=化为标准形,并求可逆的线性变换.(或上届题?)解:232223312132162)44(),,(x x x x x x x x x f --++=232223162)2(x x x x --+=,令⎪⎩⎪⎨⎧==+=33223112x y x y x x y ,即⎪⎩⎪⎨⎧==-=3322311 2y x y x y y x ,所以⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛321321100010201y y y x x x , 变换矩阵,100010201⎪⎪⎪⎭⎫ ⎝⎛-=C .01≠=C 标准形23222162y y y f --= .九.(10分)求矩阵⎪⎪⎪⎭⎫⎝⎛=400032020A 的特征值与最大特征值所对应的特征向量.解:)1()4(2+--=-λλλE A ,特征值.1,4321-===λλλ当421==λλ时,解0)4(=-x E A 得⎪⎪⎪⎭⎫ ⎝⎛=0211ξ ,⎪⎪⎪⎭⎫⎝⎛=1002ξ ,A 的对应于421==λλ的全体特征向量为2221ξξη k k +=, 0(2221≠+k k ).十.(每小题5分,共10分)1. 设向量组321,,ααα线性无关,讨论向量组112123,,αααααα+++的线性相关性.解:令112123123()()0,k k k αααααα+++++= 即123123233()()0k k k k k k ααα+++++=因为321,,ααα 线性无关,所以有123223 000k k k k k k ++=⎧⎪+=⎨⎪=⎩,由于方程组只有零解,故112123,,αααααα+++线性无关。
广州大学2009-2010(6)线性代数期末考试卷试题及解答2

广州大学2009-2010(6)线性代数期末考试卷试题及解答2第一篇:广州大学2009-2010 (6)线性代数期末考试卷试题及解答2 《线性代数》客观题100题一.填充题1456xx展开后,x2的系数为______.x321.行列式23A⎫⎪,则C=____.⎝BO⎭3.设α,β,γ为3维列向量,已知3阶行列式|4γ-α,β-2γ,2α|=40,则行列式2.设A是m阶方阵,B是n阶方阵,且A=a, B=b, C= ⎛O|α,β,γ|=______.12301bbbb23432-1-1cccc2344126dddd234 4.设|A|=415a,则4A41+3A42+2A43+A44=______.5.行列式aaa234=_______________________________________________.a000⎫⎛1-a⎪-11-aa00 ⎪-11-aa0⎪=____________________________.6.五阶行列式det 0 ⎪00-11-aa ⎪000-11-a⎪⎝⎭⎛a 0 7.n阶行列式det M0 b⎝b0Λ00⎫⎪abΛ00⎪MMMM⎪=____________.⎪00Λab⎪00Λ0a⎪⎭T8.设向量α=(1,2),β=(2,1),矩阵A=αβ,则An=____________.⎛1 9.设A=2 2⎝21-22⎫⎪-2,则A2n+1=____________.⎪1⎪⎭10.设A=⎛3⎝22⎫n+1n⎪,则A-5A=____________.3⎭⎛1 111.设矩阵A=0 ⎝0110000220⎫⎪0⎪,则An=____________________.0⎪⎪2⎭*-112.设A,B均为n阶矩阵,A=2,B=-3,则2AB⎛2 413.已知A*=6 ⎝800=______.0⎫⎪200⎪,则A-1=____________________.420⎪⎪641⎭⎛10⎫-1T-1*-114.设矩阵A的逆矩阵A=⎪,则(A)=_________,(A)=_________.⎝11⎭⎛1 15.设A=2 3⎝0240⎫⎪0,则(A*)-1=________________.⎪5⎪⎭1aαα,T16.设n 维向量α=(a,0,Λ,0,a)T,a<0,若A=E-ααT的逆矩阵为B=E+则a=______.17.设矩阵A满足A2+A-4E=O,则(A-E)-1=____________.⎛1 -218.设A=0 ⎝003-40005-60⎫⎪0⎪,且B=(E+A)-1(E-A),则(E+B)-1=________.0⎪⎪7⎭⎛1 *19.设矩阵A,B满足ABA=2BA-8E,其中A=0 0⎝0-200⎫⎪0,则B=______.⎪1⎪⎭20.设A,B为可逆矩阵,X=⎛1 21.若矩阵 0 -1⎝242⎛O⎝BA⎫-1⎪为分块矩阵,则X=____________.O⎭3⎫⎪4的秩为2,则a=______.⎪a⎪⎭22.设ai≠0, bi≠0(i=1,2,⎛a1b1 abΛ)n,矩阵A=21 Mab⎝n1a1b2a2b2M anb2ΛΛΛa1bn⎫a2bn⎪⎪,则矩阵A的秩M⎪anbn⎪⎭r(A)=______.⎛1 23.已知4⨯3矩阵A的秩R(A)=2,而B=0 4⎝0302⎫⎪0,则R(AB)=______.⎪5⎪⎭24.设A=⎛1⎝1-11⎫T⎪,则行列式AA=______.23⎭25.若α1,α2,α3都是线性方程组Ax=b的解向量,则A(2α1-5α2+3α3)=______.⎧x1+3x2+2x3=0⎪26.当a=______时, 齐次方程组⎨x1-2x2+3x3=0有非零解.⎪2x+x+ax=023⎩1⎛1 27.设A=4 3⎝2t-1-2⎫⎪3,B是3阶非零矩阵,且AB=O,则t=______.⎪1⎪⎭28.线性方程组x1+x2+x3+x4+x5=0的基础解系含有______个解向量.29.设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组Ax=0的通解为____________________.⎧a11x1+a12x2+a13x3+a14x4=0T30.已知⎨的基础解系为(bi1,bi2,bi3,bi4)(i=1,2),则⎩a21x1+a22x2+a23x3+a24x4=0⎧b11x1+b12x2+b13x3+b14x4=0的基础解系为________________________.⎨⎩b21x1+b22x2+b23x3+b24x4=0⎛1 31.已知矩阵A=2 3⎝2353474595⎫⎪6,则秩R(A)=______,齐次线性方程组Ax=0⎪11⎪⎭的解空间的维数等于______.32.设向量组(1,1,1),(1,2,3),(2,3,a)线性相关,则a=______.TTT33.已知三维线性空间的一组基底为α1=(1,1,0),α2=(1,0,1),α3=(0,1,1),向量β=(2,0,0)在上述基底下的坐标是____________.34.从R2的基α1=⎪,α2=⎝0⎭⎛1⎫⎛1⎫⎛1⎫⎛1⎫β=,β=到基1⎪⎪2 ⎪的过渡矩阵为__________.-1⎝⎭⎝1⎭⎝2⎭T35.设向量α=(1,2,2)T,A为三阶正交矩阵,则长度||Aα||=______.36.已知向量α=(1,1,1)与β=(1,2,a)正交,则a=______.37.向量α=(1,2,2,3)与β=(3,1,5,1)的夹角θ=______.38.设A=(aij)3⨯3是实正交矩阵,且a11=1,b=(1,0,0)T,则线性方程组Ax=b的解是____________________.39.设A是3阶矩阵,它的3个特征值互不相等,并且矩阵A的行列式A=0,则矩阵A的秩R(A)=______.40.若2阶方阵A满足A2-5A+6E=O,且A的两个特征值不相等, 则|A|=____.41.设2阶方阵A≠O满足A2=3A,则A有一特征值λ=____,且(A-I)-1=____.42.设3阶方阵A的特征值为1,2,3,则|6E-A|=______.43.设3阶矩阵A的特征值为1,2,2,则行列式|4A-1-E|=______.44.设A为n阶矩阵,A≠0,若A有特征值λ,则(A*)2+E必有特征值______.45.设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为______.⎛1 46.设矩阵A=2 3⎝210-2⎫⎪2,α=(a,1,1)T。
2009-2010学年线代B期末试卷答案

同济大学课程考核试卷(A 卷) 2009—2010学年第一学期课名:线性代数B 考试考查:考试一、填空题(每空3分,共24分)1、设1α、2α、3α均为3维列向量,已知矩阵123(,,)A ααα=,()123123123927,248B ααααααααα=++++++,3,且1A =,那么B = -12.解:由矩阵之间的关系,我们可以得到1321941278B A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,对等式两边取行列式,有 1321941278B A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦。
所以得到-12B =2、 设分块矩阵A O C O B ⎛⎫=⎪⎝⎭, ,A B 均为方阵,则下列命题中正确的个数为4.(A).若,A B 均可逆, 则C 也可逆. (B).若,A B 均为对称阵, 则C 也为对称阵. (C).若,A B 均为正交阵, 则C 也为正交阵. (D).若,A B 均可对角化, 则C 也可对角化. 解:A. 若,A B 均可逆,说明,A B 的行列式都不为0,则我们可以根据拉普拉斯定理求出C的行列式为A B ,所以可知C 的行列式也不为0,即C 可逆.B .若,A B 均为对称阵,则有,TTA AB B ==,对矩阵C 取转置,根据对角阵性质有T TT A O A O C C O B O B ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,所以C 也是对称阵。
C .若,A B 均为正交阵, 则有,T T A A E B B E ==,固T T TT T A O A O A A O C C E O B O B O B B ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。
所以C 也为正交阵. D .若,A B 均可对角化,则有-1-112,A P P B Q Q =Λ=Λ,则-1-111-1-122=O P O P P O P O C O O Q OQ Q O Q Λ⎛⎫⎛⎫Λ⎛⎫⎛⎫= ⎪ ⎪ ⎪⎪ΛΛ⎝⎭⎝⎭⎝⎭⎝⎭,令P O M O Q ⎛⎫= ⎪⎝⎭,则原式可看成-1-111-12P P O C M M OQ Q ⎛⎫Λ==Λ ⎪Λ⎝⎭ 固以上4个全对(考试里出现全对的情况还是第一次见)3、设2341345145617891D =,则D 的第一列上所有元素的代数余子式之和为0. 解:直接利用代数余子式性质,求113411451015611891D == 4、设向量组(I):12,,,r ααα 可由向量组(II):12,,,s βββ 线性表示,则D 成立.(注:此题单选)(A).当r s <时,向量组(II )必线性相关 (B).当r s >时,向量组(II )必线性相关(C).当r s <时,向量组(I )必线性相关 (D).当r s >时,向量组(I )必线性相关解:直接分析,举反例,A 反例1201,,,10200r r ααα⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,(), ()12100,,,0103001s s βββ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦ ,;B 反例()12100,,,0103001s s βββ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦ ,,121000,,,010040011r r ααα⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦ ,();C 反例1201,,,10200r r ααα⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦ ,(),()12100,,,0103001s s βββ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,;D.正确,这个很显然。
2009-2010 同济大学线代期末考试第一学期_线代期末试题

同济大学课程考核试卷 2009 — 2010学年第一学期命题教师签名: 审核教师签名:课号: 课名:线性代数 考试考查:此卷选为:期中考试( )、期终考试( )、重考( )试卷年级 专业(注意:本试卷共七大题,三大张,满分100分.考试时间为 分钟。
要求写出解题过程,否则不予计分)一、填空题(每空3分,共24分)1、设1α、2α、3α均为3维列向量,已知矩阵 123(,,)A ααα=,()123123123927,248B ααααααααα=++++++,3,且1A =,那么B = 。
2. 设分块矩阵A O C O B ⎛⎫= ⎪⎝⎭, ,A B 均为方阵,则下列命题中正确的个数为 。
(A). 若,A B 均可逆, 则C 也可逆. (B). 若,A B 均为对称阵, 则C 也为对称阵. (C). 若,A B 均为正交阵, 则C 也为正交阵. (D). 若,A B 均可对角化, 则C 也可对角化.3、设2341345145617891D =,则D 的第一列上所有元素的代数余子式之和为 。
4、设向量组(I):12,,,r ααα可由向量组(II):12,,,s βββ线性表示,则 成立。
(注:此题单选)(A).当r s <时,向量组(II )必线性相关 (B).当r s >时,向量组(II )必线性相关 (C).当r s <时,向量组(I )必线性相关(D).当r s >时,向量组(I )必线性相关5、已知方阵A 满足223A A O +=, 则()1A E -+= 。
6、当矩阵A 满足下面条件中的 时,推理“若AB O =, 则B O =”可成立。
(注:此题可多选)(A).A 可逆 (B).A 为列满秩(即A 的秩等于A 的列数) (C).A 的列向量组线性无关 (D).A O ≠7、设矩阵,A B 分别为3维线性空间V 中的线性变换T 在某两组基下的矩阵,已知1,2-为A 的特征值,B 的所有对角元的和为5, 则矩阵B 的全部特征值为 。
2009年10月全国自考线性代数(经管类)真题和参考答案

2009年10月全国自考线性代数(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A.-2B.-1C.1D.2答案:B2.A.AB.BC.CD.D答案:C3.A.AB.BC.CD.D答案:A4.A.AB.BC.CD.D答案:A5.A.AB.BC.CD.D答案:B6.A.A2 自考资料,自考白皮书2009年10月全国自考线性代数(经管类)真题参考答案3B.BC.CD.D答案:C7.A.AB.BC.CD.D答案:D8.下列矩阵中不是初等矩阵的为()A.AB.BC.CD.D答案:D9.A.1B.2C.3D.4答案:B10.4A.AB.BC.CD.D答案:D二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1.图中空白出应为:___答案:22.图中空白出应为:___答案:3.图中空白出应为:___ 自考资料,自考白皮书2009年10月全国自考线性代数(经管类)真题参考答案5答案:4.图中空白出应为:___9.图中空白出应为:___答案:5.图中空白出应为:___答案:16.图中空白出应为:___答案:27.图中空白出应为:___答案:-18.图中空白出应为:___答案:246 自考资料,自考白皮书72009年10月全国自考线性代数(经管类)真题参考答案8答案:-110.图中空白出应为:___答案:-3<a <1三、计算题(本大题共6小题,每小题9分,共54分)1.答案:2. 自考资料,自考白皮书2009年10月全国自考线性代数(经管类)真题参考答案9答案:3.答案:4.答案:5.答案:10 自考资料,自考白皮书2009年10月全国自考线性代数(经管类)真题参考答案116.答案:四、证明题(本题6分)1.12 自考资料,自考白皮书2009年10月全国自考线性代数(经管类)真题参考答案13答案:。
《线性代数》国际09-10A期末试卷

云南财经大学20020099至20201010学年第二学期《线性代数》课程期末考试试卷(A )(试)得分一二三四五六七八总分复核人阅卷人6小题,每小题2分,共12分,对的打√,错的打×).若≠A O ,则||0≠A ;().设A 为n 阶矩阵,则T ||||=A A ;().当向量组中向量的维数大于向量的个数时向量组必线性相关;().设A 为n 阶矩阵,且||0=A ,则A 中必有一列向量可由其它列向量线性表示;).设A 为m n ×矩阵,r()r =A ,则当r n =时非齐次方程组=Ax b 有唯一解;().设1λ,2λ是矩阵A 的特征值,1α,2α分别是A 的对应于1λ,2λ的特征向量,12≠λλ,则1α,2α必不成比例.()6小题,每小题2分,共12分).若排列38i 7j 625为奇排列,则i =;.已知1P AP B −=,且||0B ≠,则||||A B =;.设A 为三阶矩阵,且||2A =,*A 为A 的伴随矩阵,则行列式1*32|A A −−=;.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次为5,3,-7,4,则D =;5.若向量组T 1(1,11)α=,,T 2(1,2,3)=α,T 3(1,3)=,αt 线性相关,则t 的取值满足;6.设A 为n 阶方阵,且齐次线性方程组AX =O 有非零解,则A 必有一个特征值为.三、单项选择题(本大题共6小题,每小题2分,共12分)1.设D 为n 阶行列式,则D 为零的充分必要条件是();(A )D 中有两行(列)的对应元素成比例;(B )D 中有一行(列)的所有元素均为零;(C )D 中有一行(列)的所有元素均为可化零;(D )D 中有一行(列)的所有元素的代数余子式均为零.2.若n 阶矩阵A 满足2230A A I −−=,则矩阵A 可逆,且1A −=();(A )2A I −;(B )2I A −;(C )1(2)3A I −−;(D )1(2)3A I −.3.设矩阵111213212223313233A ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠a a a a a a a a a ,313233312122232111121311333B −⎛⎞⎜⎟=−⎜⎟⎜⎟−⎝⎠a a a a a a a a a a a a ,1103010001P −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,2001010100P ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,则B =();(A )21P AP ;(B )12AP P ;(C )12P AP ;(D )12P P A .4.设n 元齐次线性方程组Ax O =,r()3A =−n ,且1α,2α,3α是其3个线性无关的解,则方程组的基础解系是();(A )1α,2α,12+αα;(B )12−αα,23−αα,31−αα;(C )1α,12+αα,123++ααα;(D )123++ααα,12−αα.5.设n 阶方阵A ,B 满足AB O =,则必有();(A )A O =或B O =;(B )A B O +=;(C )|A |+|B |=0;(D )|A |=0或|B |=0.6.三阶矩阵A 的特征值为2−,1,3,I 为三阶单位矩阵,则||A I −=().(A )6−;(B )0;(C )2;(D )1−.四、(10分)已知行列式1040211206002412−−=−−D ,4j A (1,2,3,4=j )为D 的第四行第j 列元素的代数余子式,求41424344+++A A A A .五、(12分)设矩阵A ,B 为n 阶矩阵,且满足2A B I AB −=+,其中100031062A ⎛⎞⎜⎟=−⎜⎟⎜⎟−⎝⎠,I 为n 阶单位矩阵,求矩阵B .六、(16分)已知向量组T 1(2,1,3,0)α=,T 2(1,0,0,1)α=,T 3(0,1,0,1)α=,T 4(0,0,1,1)α=−.求此向量组的秩和一个极大无关组,并将其余向量用此极大无关组线性表示.七、(16分)用基础解系表示下列线性方程组的全部解12341234123412342122233224+−+=⎧⎪++−=⎪⎨+++=⎪⎪+++=⎩x x x x x x x x x x x x x x x x .八、(10分)设λ是n 阶矩阵A 的一个特征值,求证:2λ是2A 的一个特征值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 1 0 是一个 14 阶方阵,求 N 4 的 Jordan 标准型 J ,并求可逆矩阵 P ,使得 2、设 N = ... ... 1 0
P −1 N 4 P = J .
2
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
(1) ker d ( Α) = ker f ( Α) ∩ ker g ( Α) ; (2) ker m( Α) = ker f ( Α) + ker g ( Α).
2、 (本题 10 分)设 A = (aij ) 是 n 阶复矩阵, λ1 ,..., λn 是 A 的全部特征值.
证明: A 是正规矩阵当且仅当
f1 (α ) = f1 (α 2 ) , f 2 (α ) = f 2 (α1 ) .
4、 分) Ω = {1, 2,..., n} .用 C 表示定义域为 Ω 的所有复值函数组成的集合, (15 设 它是复数域上的线性空间.
Ω
定义 f ( x), g ( x) =
def
∑ f ( j ) g ( j ), ∀f ( x), g ( x) ∈ C
⊥
.
1
得分
评阅人
二、判断题: (共 5 题, 每题 3 分, 共 15 分,对的请打 “ √ ” ,错的请打 ” × ”)
1、若 2n + 1 正交方阵 Q 的行列式为 1,则至少有两个属于特征根 1 的特征向量. 2、复向量空间完全由线性变换 A 的根向量生成当且仅当 A 的所有特征根均相等.
( (
V2 = {α = (a1 , a2 , a3 , a4 ) a1 + a2 + a3 + a4 = 0} 是 R 4 的 两 个 子 空 间 , 写 出 一 组 V1 ∩ V2 的 基
底 .
T T
年级:
2、设α = ( a1 ,..., an ) , β = (b1 ,..., bn ) 是两个非零的复向量,且 设 A = αβ T .则 A 的 Jordan 标准型为 .
华中师范大学 2009–2010 学年第一学期
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
期末考试试卷( 期末考试试卷(A 卷)
课程名称 高等代数与解析几何(三) 编号 83410005 任课教师 樊恽 题型 分值 得分 填空题 15 判断题 15 计算题 20 证明题 50 总分 100
学号:
学生姓名:
得分
评阅人
一、填空题: (共 5 题,每题 3 分,共 15 分)
1、设集合V1 = {α = (a1 , a2 , a3 , a4 ) a1 − a2 + a3 − a4 = 0} 和集合
) 量空间V 的线性变换,若有正整数 k ,使得 A = O, 则 A = O, (
4、设 A 为 n 阶实方阵且 A + E = O ,则 n 为奇数.
2
(
5、设 A 是 R 2 上的线性变换,在自然基下的方阵表示为 A =
1 −1 ,则 A 的不变子空间只能是 2 2
专业:
院(系) :
Α(ε1 − 2ε 2 ) = 3ε1 + 2ε 2 .A 在基底 ε 1,ε 2 下的矩阵为 Α(3ε1 − ε 2 ) = −ε1 + ε 2
.
T
5、设V = M n (C ) (所有 n 阶复方阵构成的线性空间) ,定义内积 A, B = tr ( A B ) ,则对角方阵所成子空间W 的正交补子空间W 为
∑∑ a
i =1 j =1
n
n
2
ij
= ∑ λi .
2 i =1
n
3
3、 分)设V 是复数域 C 上的 n 维线性空间, f j : V → C ( j = 1, 2 ) 是非零的线性函数, 且线性无关. 证 (15 明: 任意的α ∈V 都可表为α = α1 + α 2 ,使得
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
σ : CΩ → CΩ
f ( x) → f * ( x)
证明:σ 是 C 上的一个酉变换,并求σ 在 g1 ( x ), g 2 ( x ),..., g n ( x ) 下的矩阵.
Ω
4
( )
R 2 和 0. 得分 评阅人 三、计算题: (共 2 题,共 20 分)
1、设欧氏空间 V 的一组基 ei
{ } 的度量矩阵,即 A = (a )
3
ij 3×3
= ( ei , e j
)3×3 .
1 −1 2 A = −1 2 −1 . 2 −1 6
(1) 证明α1 = e1 + e2 是一个单位向量; (2) 若α1 与 β1 = e1 + e2 + ae3 正交,求 a 的值; (3) 把 β1 单位化.
j =1 Ω Ω
n
______
Ω
.
(1)证明上述二元函数是 C 上一个内积,从而 C 成为一个酉空间; (2)对于 k ∈ {1, 2,..., n} ,令 g k ( j ) =
2π i 1 kj ω , j ∈ Ω ,其中ω = e n . n Ω
证明: g1 ( x ), g 2 ( x ),..., g n ( x ) 构成酉空间 C 的一个标准正交基; (3) 对于 f ( x ) ∈ C Ω , 定义 Ω 上的一个函数 f * ( x ) , 使得 f * ( k ) 等于 (2) 中的标准正交基下的坐标的第 k 个 分量(按(2)中对应的顺序) ,令:
得 分
评阅人
四、证明题: (共 4 题,共 50 分)
1、 (本题 10 分) 设 A 是域 F 上的线性空间V 的一个线性变换.设 f (λ ), g (λ ) ∈ F [ λ ] ,
gcd( f (λ ), g (λ )) = d (λ ) ,[ f (λ ), g (λ )] = m(λ ) .([ , ]表示最小公倍式)证明:
∑a b = 0.
i =1 i i
n
1 0 0 −1 + 3i 3 、实数域上由矩阵 A = 0 ω 0 , ω = 的全体实系数多项式构成的线性空间中的维数 2 0 0 ω2
为 ,它的一组基为 . 4、设 ε 1,ε 2 是向量空间V 的一组基底, Α ∈ End (V ) 且 A 满足: