专题:类平抛运动

合集下载

高考物理一轮复习讲义抛体运动专题(三)斜抛运动类平抛运动平抛中的功与能

高考物理一轮复习讲义抛体运动专题(三)斜抛运动类平抛运动平抛中的功与能

斜抛运动、类平抛运动、平抛中的功与能一、斜抛运动1.定义:将物体以初速度v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动.2.性质:斜抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法二、类平抛运动1.类平抛运动的特点(1)有时物体的运动与平抛运动很相似,也是物体在某方向做匀速直线运动,在垂直匀速直线运动的方向上做初速度为零的匀加速直线运动。

对这种像平抛又不是平抛的运动,通常称为类平抛运动。

(2)受力特点:物体所受的合力为恒力,且与初速度的方向垂直。

(3)运动特点:在初速度v 0方向做匀速直线运动,在合外力方向做初速度为零的匀加速直线运动,加速度a =F 合m。

如图所示,将质量为m的小球从倾角为θ的光滑斜面上A点以速度v0水平抛出(v0的方向与CD平行),小球运动到B点的过程中做的就是类平抛运动。

2.类平抛运动与平抛运动的规律相类似,两者的区别(1)运动平面不同:类平抛运动→任意平面;平抛运动→竖直面。

(2)初速度方向不同:类平抛运动→任意方向;平抛运动→水平方向。

(3)加速度不同:类平抛运动→a=Fm,与初速度方向垂直;平抛运动→重力加速度g,竖直向下。

三、针对练习1、如图所示,从水平地面上的A、B两点分别斜抛出两小球,两小球均能垂直击中前方竖直墙面上的同一点P。

已知点P距地面的高度h=0.8 m,A、B两点距墙的距离分别为0.8 m 和0.4 m。

不计空气阻力,则从A、B两点抛出的两小球()A.从抛出到击中墙壁的时间之比为2∶1B.击中墙面的速率之比为1∶1C.抛出时的速率之比为17∶25D.抛出时速度方向与地面夹角的正切值之比为1∶22、甲、乙两个同学打乒乓球,某次动作中,甲同学持拍的拍面与水平方向成45°角,乙同学持拍的拍面与水平方向成30°角,如图所示.设乒乓球击打拍面时速度方向与拍面垂直,且乒乓球每次击打球拍前、后的速度大小相等,不计空气阻力,则乒乓球击打甲的球拍的速度v1与乒乓球击打乙的球拍的速度v2之比为()A.63B. 2 C.22D.333、如图所示,某同学在距离篮筐一定距离的地方起跳投篮,篮球在A点出手时与水平方向成60°角,速度大小为v0,在C点入框时速度与水平方向成45 角。

3.4专题:平抛运动的五种解法

3.4专题:平抛运动的五种解法

3.3:专题:平抛运动问题的五种解法|以分解速度为突破口求解平抛运动问题题型简述对于一个做平抛运动的物体来说,如果已知某一时刻的速度方向,从“分解速度”的角度来研究问题一般较为便捷。

方法突破以初速度v0做平抛运动的物体,经历时间t速度和水平方向的夹角为θ,由平抛运动的规律得:tan θ=v yv x=gtv0,从而得到初速度v0、时间t、偏转角θ之间的关系,进而求解。

[例1](2017·重庆江北中学模拟)如图所示,倾角为37°的斜面长l=1.9 m,在斜面底端正上方的O点将一小球以v0=3 m/s 的速度水平抛出,与此同时静止释放顶端的滑块,经过一段时间后,小球恰好能够以垂直斜面的方向在斜面P点处击中滑块。

(小球和滑块均可视为质点,重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8),求:(1)抛出点O离斜面底端的高度;(2)滑块与斜面间的动摩擦因数μ。

[答案](1)1.7 m(2)0.125[跟进训练]1.(2017·吉林实验中学模拟)如图所示,一小球从一半圆轨道左端A点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切点于B点。

O为半圆轨道圆心,半圆轨道半径为R,OB与水平方向夹角为60°,重力加速度为g,则小球抛出时的初速度为()A. 3gR2 B.3gR2 C.33gR2 D.3gR2解析:选C|以分解位移为突破口求解平抛运动问题题型对于做平抛运动的物体,如果知道它某一时刻的位移方向(如物体从简述 已知倾角的斜面上水平抛出后再落回斜面,斜面倾角就是它的位移与水平方向之间的夹角),则可以把位移沿水平方向和竖直方向进行分解,然后运用平抛运动的规律来研究问题。

方法突破以初速度v 0做平抛运动的物体,经历时间t 位移和水平方向的夹角为θ,由平抛运动的规律得:水平方向做匀速直线运动x =v 0t ,竖直方向做自由落体运动y =12gt 2,tan θ=yx,结合以上三个关系式求解。

类平抛运动知识点总结笔记

类平抛运动知识点总结笔记

类平抛运动知识点总结笔记一、基本概念1. 平抛运动的定义平抛运动是指一个物体在水平方向上做匀速直线运动的过程。

在平抛运动中,物体的运动轨迹是一个抛物线,而竖直方向上的运动是受到重力的影响而做匀变速直线运动。

2. 平抛运动的特点(1)水平速度恒定:在平抛运动中,物体在水平方向上的速度是恒定的,不受外力的影响;(2)竖直加速度恒定:在竖直方向上,物体受到重力的作用,因而竖直方向上的加速度恒定;(3)运动轨迹为抛物线:由于水平方向速度恒定、竖直方向加速度恒定,物体的运动轨迹为一个抛物线。

二、运动规律1. 水平方向的运动规律(1)速度:物体在水平方向上的速度是恒定的,可用以下公式表示:v = v0其中v表示物体的水平速度,v0表示物体的初始速度。

(2)位移:物体在水平方向上的位移可以用以下公式表示:x = v0t + 0.5at^2其中x表示物体在水平方向上的位移,t表示时间,a表示物体的水平加速度。

2. 竖直方向的运动规律(1)速度:物体在竖直方向上的速度可以用以下公式表示:v = v0 + gt其中v表示物体的竖直速度,v0表示物体的初始竖直速度,g表示重力加速度,t表示时间。

(2)位移:物体在竖直方向上的位移可以用以下公式表示:y = v0t + 0.5gt^2其中y表示物体在竖直方向上的位移。

3. 平抛运动轨迹方程由于平抛运动是在水平和竖直方向上同时进行的,所以物体的轨迹可以用以下方程表示:y = xtanθ - (gx^2) / (2v0^2cos^2θ)其中y表示物体在竖直方向上的位移,x表示物体在水平方向上的位移,θ表示抛出角度,v0表示初始速度,g表示重力加速度。

三、应用实例1. 投掷运动当我们往前抛一个物体时,它会在空中做平抛运动。

我们可以利用平抛运动的规律来分析物体的飞行轨迹和落点位置,从而提高投掷的准确性。

2. 炮弹射击在军事领域,炮弹的射击轨迹是一个重要的考量因素。

利用平抛运动的规律,可以精确计算炮弹的射击角度和发射速度,从而达到精确打击目标的目的。

平抛运动:平抛(类平抛)运动基本规律的理解及应用

平抛运动:平抛(类平抛)运动基本规律的理解及应用
第四章 曲线运动 万有引力与航天
平抛运动基本规律的理解及应用
一、平抛运动的几个基本规律
1.飞行时间:t= 2gh,大小取决
v0
于下落高度 h,与初速度 v0 无关.
2.水平射程:x=v0t=v0 2gh,与初 h 速度 v0 和下落高度 h 有关.
3.落地速度:v= vx2+v2y= v20+2gh,
v 与 v0 的夹角 tan θ=vy /vx=
2gh,大 v0
小与初速度 v0 和下落高度 h 有关.
x=?
速度的 改变量△v
t=? vx=v0 θ
vy v=?
4.速度改变量:因为平抛运动的 加速度为恒定的重力加速度g,所 以做平抛运动的物体在任意相等 时间间隔Δt内的速度改变量Δv= gΔt相同,方向恒为竖直向下,如 图所示.
球员在球门中心正前方距离球门s处
高高跃起,将足球顶入球门的左下方
死角(图中P点)。球员顶球点的高度 h
为h,足球做平抛运动(足球可看成质
L/2
点,忽略空气阻力),则( )
s
A.足球位移的大小 x= L42+s2 B.足球初速度的大小 v0= 2gh(L42+s2)
注意分析足球的空间 位置及运动特征
C.足球末速度的大小 v= 2gh(L42+s2)+4gh
D.足球初速度的方向与球门线夹角的正切值 tan θ=2Ls
转解析
【备选】(多选)某物体做平抛运动时,
它的速度方向与水平方向的夹角为θ,
其正切值tan θ随时间t变化的图象如图
所示,(g取10 m/s2)则(
).
A.第1 s物体下落的高度为5 m
B.第1 s物体下落的高度为10 m
C.物体的初速度为5 m/s

类平抛运动

类平抛运动

类平抛运动类平抛运动是物理学中的一种基本运动形式,当物体受到初速度和重力作用时,会经过一条抛物线轨迹运动。

在该过程中,物体的速度和高度都会随着时间的推移而发生变化,因此该运动也是一种变速运动。

在实际生活中,类平抛运动是非常常见的一种现象,比如投掷运动员投掷铅球或投掷短跑运动员完成起跑等都是类平抛运动的例子。

接下来,我们将通过力学和物理的角度来探讨类平抛运动的基本规律和特征。

一、定义和基本概念类平抛运动是指一个物体在平面内的抛体运动。

此时物体的运动轨迹为抛物线,初速度和重力是物体做功的主要力。

类平抛运动与匀速直线运动、匀变速直线运动以及简谐运动等是物理学中最基本的一些运动形式之一。

基本概念如下:1. 初速度:物体在运动开始时的速度;2. 初位置:物体在运动开始时所处的位置;3. 加速度:物体在运动过程中速度发生变化的大小和方向;4. 重力:物体受到向下作用的引力;5. 时间:物体运动所经历的时间;6. 抛体运动:物体沿着抛物线运动的运动形式。

二、类平抛运动的基本规律在类平抛运动中,物体的运动轨迹为抛物线形,其基本规律包括:1. 匀速直线运动:物体在水平方向上的速度恒定,保持匀速直线运动;2. 加速度:物体在竖直方向上受到重力的作用,速度会不断增加,因此竖直方向的加速度为重力加速度g;3. 抛体运动:整个运动过程中物体沿着一个抛物线形的轨迹做运动,轨迹曲线的形状由初速度的大小和方向以及重力的作用于物体上的时间决定;4. 水平运动:竖直方向上的运动是纯粹的自由落体运动,与水平方向上的运动是完全独立的,因此物体在水平方向上的运动是均匀的;5. 时间的关系:整个运动过程中,竖直方向的运动与水平方向的运动是独立的,因此竖直方向的运动时间和水平方向的运动时间是相同的;6. 能量守恒:在类平抛运动过程中,能量守恒是一条重要的规律。

物体在落地前,重力势能逐渐转化为动能,而在触地瞬间的动能最大,落地后,物体的能量将被转化为热能等其他形式的能量而消失。

类平抛运动知识点总结

类平抛运动知识点总结

类平抛运动知识点总结一、什么是类平抛运动类平抛运动是物理学中的一个基本概念,指的是在一个水平面上,物体在不受外力作用的情况下,以一定的初速度进行抛射运动。

在这种运动中,物体受到重力的作用,因此沿抛射方向逐渐减速,最终在竖直方向上受到重力作用而下落。

二、类平抛运动的特点1.抛体的初速度只有水平分量,没有竖直分量。

2.抛体在水平方向上匀速运动。

3.抛体在竖直方向上受到重力的作用而匀加速运动。

4.抛体的运动轨迹是一个抛物线。

三、类平抛运动的重要公式1.位移公式:水平方向的位移可以通过初速度和时间计算,公式为:s = vxt。

2.时间公式:在竖直方向上,抛体的运动时间可以通过初速度和重力加速度计算,公式为:t = vy/g。

3.竖直方向的位移公式:抛体的竖直位移可以通过初速度、时间和重力加速度计算,公式为:h = vyt - 0.5gt^2。

4.到达最高点的时间:物体抛出后,经过的时间到达最大高度,公式为:t =vy/g。

5.最大高度公式:最大高度可以通过抛体的初速度和重力加速度计算,公式为:h = (vy^2)/(2g)。

四、类平抛运动的实际应用1.抛体运动的最佳角度:在特定速度下,抛体达到最远的距离时,抛射角度为45度。

这个角度被称为最佳角度,常用于投掷比赛中。

2.火炮的发射原理:火炮发射炮弹的原理就是利用类平抛运动,通过适当的抛射角度和初速度,使炮弹达到预定的目标。

3.投掷运动的分析:如何使手中的物体投掷得更远是一个重要的物理问题,通过对类平抛运动的分析,可以选择合适的力度和角度来最大化投掷距离。

4.炮弹的飞行轨迹:炮弹发射后的飞行轨迹可以看作是一条抛物线,研究抛物线的几何性质对于军事火力控制和导弹弹道设计具有重要意义。

五、类平抛运动与自由落体运动的比较类平抛运动与自由落体运动都是常见的物理运动,它们有以下几点区别: 1. 初速度方向:类平抛运动的初速度只有水平分量,没有竖直分量;而自由落体运动的初速度只有竖直分量,没有水平分量。

专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动(解析版)

专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动(解析版)

2023届高三物理一轮复习多维度导学与分层专练专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动导练目标 导练内容目标1 平抛运动临界问题 目标2 平抛运动中的相遇问题目标3 类平抛运动 目标4斜抛运动一、平抛运动临界问题擦网压线既擦网又压线由21122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 得:()h H gx v -=211由222122121⎪⎪⎭⎫⎝⎛+==v x x g gt H 得:()Hg x x v 2212+= 由20122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 和202122121⎪⎪⎭⎫ ⎝⎛+==v x x g gt H 得:()22121x x x H h H +=-【例1】如图排球场,L=9m,球网高度为H=2m ,运动员站在网前s=3m 处,正对球网跳起将球水平击出,球大小不计,取重力加速度为g=10m/s.(1)若击球高度为h=2.5m,为使球既不触网又不出界,求水平击球的速度范围; (2) 当击球点的高度h 为何值时,无论水平击球的速度多大,球不是触网就是出界? 【答案】(1)10m /s <v 2/s (2)2.13m【详解】(1)当球刚好不触网时,根据h 1−h =12gt 12,解得:()()1122 2.521010h h t s g -⨯-===,则平抛运动的最小速度为:11/310/10min x v s m s t ===.当球刚好不越界时,根据h 1=12gt 22,解得:1222 2.5210h t s g ⨯=== ,则平抛运动的最大速度为:22/122/2max x v s m s t ===,则水平击球的速度范围为10/s <v 2/s .(2)设击球点的高度为h .当h 较小时,击球速度过大会出界,击球速度过小又会触网,1222()h h H g g -=,其中x 1=12m ,x 2=3m ,h=2m ,代入数据解得:h=2.13m ,即击球高度不超过此值时,球不是出界就是触网. 二、平抛运动中的相遇问题平抛与自由落体相遇水平位移:l=vt空中相遇:ght 2<平抛与平抛相遇(1)若等高(h 1=h 2),两球同时抛;(2)若不等高(h 1>h 2)两球不同时抛,甲球先抛; (3)位移关系:x 1+x 2=L(1)A 球先抛; (2)t A >t B ; (3)v 0A <v 0B(1)A 、B 两球同时抛; (2)t A =t B ; (3)v 0A >v 0B 平抛与竖直上抛相遇(1)L=v 1t ;(2)22222121v h t h gt t v gt =⇒=-+; (3)若在S 2球上升时两球相遇,临界条件:2v t g<,即:22h v v g<,解得:2v gh >;(4)若在S 2球下降时两球相遇,临界条件:222v v t g g <<,即2222v h vg v g<<, 解得:22ghv gh <<平抛与斜上抛相遇(1)Ltvt v=⋅+θcos21;(2)θθsin21sin212222vhthgttvgt=⇒=-+;(3)若在S2球上升时两球相遇,临界条件:2sinvtgθ<,即:22sinsinh vv gθθ<,解得:2singhvθ>;(4)若在S2球下降时两球相遇,临界条件:22sin2sinv vtg gθθ<<,即222sin2sinsinv h vg v gθθθ<<,解得:22sin singhghvθθ<<【例2】如图,两个弹性球P、Q在距离水平地面一定高度处,若给P水平向右的初速度0(00v≠),同时释放Q,(两球在同一竖直面内运动)两球与地面接触时间可忽略不计,与地面接触前后水平方向速度不变,竖直方向速度大小不变,方向相反。

专题:类平抛运动

专题:类平抛运动
平抛运动是指物体在具有水平方向初速度的同时,仅受重力作用而进行的运动。在此类运动中,物体所受的合外力即为重力,方向始终竖直向下,大小不变。因此,平抛运动的加速度恒定为重力加速度g,且方向亦始终竖直向下。这种运动的特点是,其轨迹为一条抛物线,显示出匀变速曲线运动的性质。进一步地,我们可以将平抛运动分解为两个独立的分运动:一是沿水平方向的匀速直线运动,其速度等于物体的初速度;二是沿竖直方向的自由落体运动,即物体在重力作用下,从静止开始的匀加速直线运动。这两个分运动同时发生பைடு நூலகம்互不干扰,共同构成了平抛运动的完整图景。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 v 0 tan 45 g
oቤተ መጻሕፍቲ ባይዱ
0
t1 t2

tan 30 tan 45
o o
由已知得:

tan g v0
tan( ) t g v0 tan( ) v 0 g t
已知球以
v0
t
水平抛出落在了斜面上 求抛出到落到斜面所用 的时间。



例题:如图所示物体的物体一定的初速度 水平 抛出后垂直落在斜面上,求物体的落到斜面的时间。
竖直位移为:
y 1 2 gt
2
水平位移为: x v 0 t
v0
且: y x tan 整理得:

y
1 2
gt
2
v0t
x
t
2 v 0 tan g
两个小球最终都落在各自的斜面,求落到 例题:球面上所用的时间之比?
v0
v0
t1
30
t1
t2
0
t2
45
0
2 v 0 tan 30 g
物理新课标(必修Ⅰ) 第五章
约束条件下的抛体运动
抛体运动:物体只受重力的作用下,以一定的 初速度抛出后,物体所做的运动为抛体运动。
抛体运动的种类: 竖直方向上的抛体运 动;平抛运动;斜抛 运动。
约束条件下的抛体运动是
指在其它条件约束下的抛体运动 叫做约束条件下的抛体运动。
下面就以平抛运动为例讲解约束条件下 的抛体运动。

分析: 物体运动属于斜面约束下的类平抛运动,沿斜面向下
的分运动为加速度为
a g sin
所以有:运动到底端的沿斜面向 下的速度 v 为:
y
x h sin .a g sin .v 0 0 m s x; v y 2 gh
2 匀速直线运动 2 v0 v y v0
2a
所以实际速度为:
v
v0 v y
2
2

v 0 2 gh
2
vy
v
例题:一个小球从一斜面的左上端水平抛出初速度为:v 0
已知斜面的告诉为 h ,倾角为: 求小球到达底端时的速度 大小和水平面的夹角。
h

本节到此结束!
竖直挡板约束下的抛体运动
斜面约束下的抛体运动
竖直挡板约束下的抛体运动
s
由于碰壮后不损失能量, 所以轨迹AC和BC是对称 的。
h
所以时间为: t
初速度为:

2h g
v0 3s t 3s
g 2h
2s
2s
已知物体从斜面的某一 位置水平抛出时速度为v 0 最后落在斜面上,求下 落的的时间?
分析:
相关文档
最新文档