6.第6章 牵引供电计算.

合集下载

城轨交通供电牵引供电计算课件

城轨交通供电牵引供电计算课件

VS
详细描述
绿色环保供电技术旨在减少对环境的影响 ,采用清洁能源和高效节能技术,降低能 源消耗和排放。例如,采用太阳能、风能 等可再生能源,减少对化石燃料的依赖; 采用高效节能的变压器和电机等设备,降 低能源损耗。这些技术有助于推动城轨交 通的可持续发展,保护环境,造福子孙后 代。
感谢观看
THANKS
靠。
城轨交通供电系统的特点
01Βιβλιοθήκη 0203大容量和高可靠性
城轨交通供电系统需要满 足大量列车和乘客的用电 需求,同时要保证供电的 可靠性和稳定性。
复杂性和多样性
城轨交通供电系统涉及多 个子系统和设备,需要综 合考虑各种因素,确保系 统的协调和优化。
节能和环保
城轨交通供电系统需要采 取节能措施,降低能耗和 排放,符合环保要求。
采用先进的节能技术和环保材料,降低能耗 和减少对环境的影响。
可靠性
具备高可靠性和稳定性,能够在各种复杂环 境下保持正常运行。
维护方便
采用模块化设计,方便进行日常维护和检修 。
牵引供电设备的应用场景
城市轨道交通
适用于地铁、轻轨、单轨等城市轨道交通系统, 为其提供电能供给。
铁路
适用于国铁、城际铁路、货运铁路等铁路系统, 为其提供电能供给。
牵引供电计算的主要内容
负荷计算
01
根据城轨交通的客流量和列车运行图,计算牵引供电系统的负
荷,包括牵引负荷和动力照明负荷。
短路电流计算
02
根据电路模型和负荷计算结果,计算短路电流,以便进行继电
保护和开关设备选择。
无功补偿计算
03
根据负荷计算结果,计算无功补偿容量,以提高牵引供电系统
的功率因数。

电力牵引与电气计算、牵引变电所容量

电力牵引与电气计算、牵引变电所容量

整理课件
14
i
能耗的计算
利用i=f(t)曲线计算列车电流及能耗。
将时间[0,τ]区间划分为n个间隔,
每一等份为Δt(分钟),则每个时刻 τ 0 1 2 3 ………… ……
t
都有对应的取流(i)的数值, τ=nΔt
电流平均值:
I
1n n 1 k0 ik
平均电压U=25kV
列 车列用车电能平耗均为功:率:PUInnU1kn0ik
2.列车取电平均电流为:
Ig
60A tg U
It
tg
交直型电力机车:
25kV,50Hz 机车牵引 降压
全波 整流 直流
~
变压器
整流电路
牵引电机
实现这一转变过程的是机车主电路,以SS1 为例。
整理课件
5
SS1型电力机车主电路
25kV
机车主变压器
700kW
平波电抗器
整流机组
直流牵引电机,串励机 4200kW
整理课件
6
电力机车的工作过程
牵机引车变主电变所压输器出 将的 高高 压压 交交 流流 电电 送变为到低接压触交网流以后电,再由经机车过整受电 弓流和器接组触整线流接后变触为而引直入流,机车供, 机给车牵电引流电经动主机断 ,路 牵器 引、 电高 动压 机电 流得互电感旋器转,到其机 转车 轴变 输压 出器 的高 机压 绕械组功,率再通经过过齿低轮压传电动流装互置感传器、 车送体给轮、对接,地轮电对刷作、用轮于轴轨、道车,轮 到轨轨道道以,大然小后相经 等轨 、道 方、 向大 相地 反等 流的回力牵作引用变于电轮所 对。 ,从而形成 牵引力,牵引列车运行。
整理课件
17
当采用近期运量计算时:

6.第6章 牵引供电计算

6.第6章  牵引供电计算
4. 牵引变电所馈线平均电流 单边供电 双边供电
I A = mI I A = mI/2
峨眉校区
电气工程系
§6-2 平均运量法
三.牵引供电计算
5. 牵引变电所馈线有效电流 单边供电
2 I xA 2 k 2 x -1 = I A [1 + ] m

双边供电
2 I xA 2 1.33k 2 x -1 = I A [1 + ] m
I A4
Ix∑ IA∑
Ix1 IA1 上行 下行 Ix2 IA2 正母线
2 2 2 2 2 Ix = I x1 + I x2 + I x3 + I x4
+2I A1 I A2 + 2I A1 I A3 I + 2A1 I A4
Ix3 Ix4
+2I A2 I A3 + 2I A2 I A4 + 2I A3 I A4
IA—馈线平均电流 m—平均列车对数 kx2 —有效系数,kx2 =1.15α
α —区间电流间断系数
峨眉校区 电气工程系
§6-2 平均运量法
三.牵引供电计算
6. 牵引变电所母线有效电流 单边供电 双边供电
2 2 Ix I A =
I
I x1
I x4
2 x
2 IA I A1
ΔAGv I= (A) Uc
ΔA——列车单位能耗[kW·h/(t·km)] Uc —— 牵引网额定电压(KV)


v —— 列车平均运行速度(km/h)
G —— 列车质量(t)
峨眉校区 电气工程系
§6-2 平均运量法
三.牵引供电计算
2. 区间平均列车数 单行平均列车数

电力牵引与电气计算、牵引变电所容量

电力牵引与电气计算、牵引变电所容量

定义
电力牵引是一种使用电能作为 动力源的牵引方式,通过牵引 电动机驱动车辆或机械设备。
环保
电力牵引不产生尾气和噪音污 染,对环境友好。
可靠性高
电力设备具有较高的可靠性, 减少了机械磨损和维护成本。电力牵引的应用与发展 Nhomakorabea应用
电力牵引广泛应用于地铁、轻轨 、动车组、货运列车等领域,成 为现代轨道交通的主要牵引方式 。
供电距离和线路参数
供电距离越长,线路阻抗越大,所需 牵引变电所容量越大。
牵引网供电方式
不同的牵引网供电方式对牵引变电所 容量有不同的影响。
牵引变电所容量优化策略
根据实际运行情况调整变压器分 接头
通过调整变压器分接头来改变电压水平, 从而减小变压器容量。
采用新型节能设备
采用新型节能设备如高效电动机、节能变 压器等,以减小牵引负荷,从而减小牵引 变电所容量。
优化供电系统网络结构
加强负荷管理
通过优化供电系统网络结构,减少供电距 离和线路阻抗,从而减小牵引变电所容量 。
通过加强负荷管理,合理安排机车运行和 调整负荷曲线,提高负荷率,从而减小牵 引变电所容量。
04 牵引变电所容量与电力牵 引的关系
牵引变电所容量对电力牵引的影响
供电能力
01
牵引变电所的容量直接决定了其供电能力,从而影响电力牵引
列车运行图
列车运行图决定了电力牵 引系统的运行方式和时间, 从而影响牵引变电所的容 量需求。
技术进步
随着电力牵引技术的不断 进步,列车牵引负荷逐渐 增加,对牵引变电所的容 量需求也随之提高。
电力牵引与牵引变电所容量的协调发展
规划与设计
在电力牵引系统的规划与设计中, 应充分考虑牵引变电所的容量需 求,确保其满足电力牵引发展的 需要。

牵引供电系统电气计算-城市轨道交通供电。72页PPT

牵引供电系统电气计算-城市轨道交通供电。72页PPT
牵引供电系统电气计算-城市 轨道交通供电。
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托勇敢地 走到底 ,决不 回头。 ——左
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

电气化铁道供电系统2011教学要点

电气化铁道供电系统2011教学要点

《电气化铁道供电系统》2011教学要点第一章电力系统与牵引供电系统电力系统:电能的生产、输送、分配和使用组成了一个系统,称为电力系统,主要由发电厂、电力网、电能用户组成。

电力网的任务是将电能从发电厂输送和分配到电能用户。

电力网由各种电压等级的输、配电线路和变(配)电站(所)组成。

按其功能常分为输电网和配电网两大部分。

国家规定的电网额定电压分别为(KV):750、500、330、220、110、60、35、10、6等9个电压等级。

牵引变电所进线电源电压等级主要为110kV,少量采用220kV。

牵引供电系统具有哪些主要特点?由哪几个子系统组成?答:牵引供电系统与一般供电系统相比,具有以下明显特点:(1) 所供负载是一个单相、移动而且是直流的负载。

(2) 供电额定电压为27.5kV(BT)和55kV(AT),不同于国家电网规定的额定电压。

(3) 供电网不同于电力网,它是通过与电力机车接触而供电,因此又叫接触网。

(4) 具有独特的回流通路(架空回流、轨回流和地回流)。

广义牵引供电系统由:电力系统、牵引变电所、牵引网(接触网、供电线、吸回装置)、电力机车。

狭义的牵引供电系统通常只指牵引变电所和牵引网2大部分。

牵引供电系统的4种电流制:(1)直流制(1500V),主要用于地铁、矿山等。

(2)低频单相交流制(3)三相交流制(4)工频单相交流制(27.5KV),我国电气化铁路均采用这种制式。

牵引变电所的4种一次供电方式:(1)一边供电(2)两边供电(3)环形供电(4)辐射供电。

单侧供电方式的可靠性一般比双侧供电方式和环形供电方式要差。

牵引变电所向接触网供电的供电方式:单边供电与双边供电。

第二章牵引变压器及其结线第二章牵引变压器及其结线序号变压器类型输出电压容量利用率对称与否1 单相接线(纯单相单相VV,三相VV量等,60°100%不对称系数1,0.52 三相YN/d11量等,60°75.6%不对称系数0.53 三相不等容量量等,60°94.5%不对称系数0.54 斯科特接线量等,90°92.8%对称5 阻抗匹配平衡型(非阻抗匹配平衡型)量等,90°100%对称三相牵引变压器容量利用率是75.6%,当考虑温度系数kt=0.9时容量利用率可提高到84%容量利用率=定额输出容量/额定容量单相结线在电力系统的电流不对称系数为1,VV结线和三相Y/d结线变压器的不对称系数为0.5。

城市轨道交通系统构成——供电与牵引_图文_图文

城市轨道交通系统构成——供电与牵引_图文_图文
图6-9 外部供电方式——放射式供电
【理论知识】 6.2 城市轨道交通电力牵引系统
1.城市轨道交通电力牵引概念 以电力系统城市电网的电力为动力源 ,在车辆上将电能转换为机械能,从而牵引列车组在轨道上运行的一 种城市交通牵引动力形式。
图6-10 城市轨道交通电力牵引结构图
【理论知识】 6.2 城市轨道交通电力牵引系统
【理论知识】 6.2 城市轨道交通牵引系统
(3)电力机车 电力牵引在现实生活中最好的体现就是电力机车。 4.牵引变电所容量的计算和确定 (1)确定牵引变压器的容量 1)确定计算容量。 2)确定校核容量。 3)确定安装容量。 (2)牵引变压器的安装容量 牵引变压器的安装容量是在计算容量和校 核容量的基础上,再考虑备用方式,最后按变压器的产品规格所确定 的变压器台数与容量。 1)移动备用。 2)固定备用。
【理论知识】 6.2 城市轨道交通牵引系统
5.电力牵引的远动监控装置 (1)地下迷流 在直流牵引供电中,牵引电流并非全部由钢轨直接流回 牵引变电所,而是有一部分由钢轨杂散泄漏流入大地,再由大地流回 钢轨和牵引变电所,这种地下杂散电流被称为地下迷流。 (2)谐波 由于牵引变电所大功率整流设备和其他变流装置等的非线性 负荷特性,使牵引供电系统成了城市电网的一个重要谐波源。 (3)电动车组 由牵引供电系统供给电能,驱动车辆上的电动机,产生 牵引力牵引在轨道上行驶的列车组。 (4)车辆电气 车辆电气包括车辆上各种电气设备及其连接导线。
【理论知识】 6.1 城市轨道交通供电系统
(1)牵引变电所 牵引变电所的作用是降压,并将三相电源转换成两个 单相电源,然后通过馈电线分别供电给牵引变电所两侧的接触网。 1)桥接线方式。
图6-1 牵引变电所的引入线方式
【理论知识】 6.1 城市轨道交通供电系统

关于牵引变电所基本电费结算方式的分析及建议

关于牵引变电所基本电费结算方式的分析及建议

关于牵引变电所基本电费结算方式的分析及建议牵引变电所是用于供电给铁路牵引系统的一种变电设备,通常由变电所和牵引网组成。

基本电费是指牵引变电所的基础电力供应费用,一般由国家电网公司或电力公司按照一定的计算方式收取。

牵引变电所的基本电费结算方式通常是根据供电容量和电能消耗来计算的。

供电容量是指牵引变电所的最大允许负荷,一般以千伏安(kVA)为单位。

电能消耗是指牵引变电所在一定时期内实际消耗的电能,一般以千瓦时(kWh)为单位。

基本电费的计算公式通常是:基本电费 = 供电容量× 单位容量电价 + 电能消耗× 单位电能电价。

其中单位容量电价是根据供电容量来确定的,而单位电能电价是根据电能消耗来确定的。

根据以上分析,我们可以得出以下几点建议:1. 提高能源利用效率:牵引变电所的能源消耗基本上是不可避免的,但可以通过改善设备和系统的设计来提高能源利用效率,从而减少能源消耗,降低基本电费支出。

2. 优化供电容量:供电容量的大小直接影响到基本电费的计算结果,因此可以通过优化供电容量的配置来降低基本电费支出。

可以根据实际需要调整供电容量的大小,避免过度配置。

3. 合理控制电能消耗:电能消耗的大小也直接影响到基本电费的计算结果,因此可以通过合理控制电能消耗来降低基本电费支出。

可以加强设备的维护和管理,避免能源的浪费和损耗。

4. 寻求其他能源供应方式:除了国家电网公司或电力公司提供的电力供应之外,还可以考虑寻求其他能源供应方式,例如自备发电设备或利用可再生能源等。

这样不仅可以减少对电力公司的依赖,还可以降低基本电费的支出。

牵引变电所的基本电费结算方式是根据供电容量和电能消耗来计算的,可以通过提高能源利用效率、优化供电容量、合理控制电能消耗和寻求其他能源供应方式等,来降低基本电费的支出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


双边供电
1.5k 1 I Lr pd = (1 + ) 3 m
2 A 2 x
2k 1 I Lr ps = (1 + ) 3 m
2 A 2 x
峨眉校区
电气工程系
§6-2 平均运量法
三.牵引供电计算
12. 牵引网平均电压损失 单边供电

双边供电
I A Lr 1 ud = (1 + ) 3 2m I A Lr 1 us = (1 + ) 6 m


《地铁设计规范》(GB50157—2003)规定:
直流750V牵引供电系统允许的电压波动范围为500~ 900V,直流1500V牵引供电系统允许的电压波动范围 为1000 ~1800V。
峨眉校区
电气工程系
§6-2 平均运量法
四.牵引供电计算几点说明 2. 牵引电压损失计算
B. 计算内容: 正常双边运行方式下,供电区间牵引网产生的最大压降; 任一中间牵引变电所解列,同相邻牵引变电所构成大双 边供电方式下,供电区间牵引网产生的最大压降; 端头牵引变电所解列时,由次端头牵引变电所单边供电 的区间牵引网产生的最大压降。
ΔA——列车单位能耗[kW·h/(t·km)] Uc —— 牵引网额定电压(KV)


v —— 列车平均运行速度(km/h)
G —— 列车质量(t)
峨眉校区 电气工程系
§6-2 平均运量法
三.牵引供电计算
2. 区间平均列车数 单行平均列车数
Nt NL m= = T v
上、下行平均列车数
峨眉校区 电气工程系
§6-2 平均运量法
四.牵引供电计算几点说明 1. 牵引整流机组容量计算
A. d) 计算目的:牵引整流机组的容量应根据牵引供电计算 得出的牵引负荷大小进行确定。原则如下: 牵引整流机组(牵引变压器、整流器)的过负荷能力: 100%In连续运行、 150%In运行2h、 300%In运行 1min; 当牵引变电所内的一组牵引整流机组故障或退出运行 时,另一组牵引整流机组在过负荷能力和谐波条件满 足时可继续运行。
城轨供电系统
第6章 牵引供电计算
电气工程系 黄小红
§6-1 概述
一.牵引负荷特点
1. 规律性 运行有规律,严格按照事先制定好的列车运行图运行。 取流有规律,周期按取流、惰行、制动、停站四种运 行方式运行。
2.
动态性
峨眉校区
电气工程系
§6-1 概述
二.牵引供电计算方法
1. 平均运量法 建立在概率论基础上,根据列车运行的规律性,由列 平均电流、有效值计算馈线电流、有效值,最后利用 方差定律计算牵引所有效电流。 运行图法 建立在列车运行图基础上,根据列车所处不同位置的 取流值,计算馈线在不同时间的电流值,绘制电流曲 线,并由此计算馈线及变电所有效电流。
kδ —列车自用电加大系数。一般取1.03。
峨眉校区
电气工程系
§6-2 平均运量法
三.牵引供电计算
8. 牵引变电所容量
S 1.1 P (kVA)
S∑ —牵引变电所容量


说明:
P∑ —牵引变电所功率
牵引变电所总功率按正常双边供电计算;当一座牵引 变电所故障解列时按大双边供电计算,其牵引整流机 组的过负荷能力不超过150% In。
14. 走行轨电压损失
RZ ΔuZ = Δu RJ + RZ
RZ —走行轨阻抗(Ω) RJ —接触网阻抗(Ω) Δu —牵引网电压损失(V)
峨眉校区 电气工程系
§6-2 平均运量法
四.牵引供电计算几点说明 1. 牵引整流机组容量计算
A. a) b) c) 计算目的:牵引整流机组的容量应根据牵引供电计算 得出的牵引负荷大小进行确定。原则如下: 应满足远期高峰小时运量的要求,在高峰小时牵引机 组的负荷宜在90%~100%; 正常情况下双机组并列运行,共同承担本所的负荷; 当任一座牵引所故障解列时,靠相邻牵引变电所的过 负荷能力(150%In,2h),不降低运送旅客的能力, 使城市轨道交通正常运行;
umax
双边供电
ILr = I max Lr + ( m - 1) 2 I max Lr ILr = + ( m - 1) 4 8
Imax —列车起动电流(A)
umax
I
—列车区间平均电流(A)
峨眉校区 电气工程系
§6-2 平均运量法
三.牵引供电计算
11. 牵引网平均功率损耗 单边供电
Ix∑—母线总有效电流 IA∑—牵引所总平均电流 Ix —馈线有效电流, Ix1 、Ix2 … IA —馈线平均电流,IA1 、IA2 …
IA3 IA4
峨眉校区
电气工程系
§6-2 平均运量法
三.牵引供电计算
7. 牵引变电所功率
P = kc k Uc I x
kc —牵引网损耗加大系数,一般取1.05。
1. ① 列车区间平均电流 列车电流曲线法
i
列车电流曲线
Ig
Ig
=
Ig α
tg
0
i g dt tg
I o tg t t
I=
——电流间断系数
t = = I tg Ig
峨眉校区 电气工程系
§6-2 平均运量法
三.牵引供电计算
1. ② 列车区间平均电流 列车单位能耗法
ΔAGv I= (A) Uc
峨眉校区 电气工程系
e)
§6-2 平均运量法
四.牵引供电计算几点说明 1. 牵引整流机组容量计算
B. 计算内容: a) 正常双边运行方式下,各牵引变电所牵引整流机组承担 的牵引负荷;
b)
c) d)
任一中间牵引变电所解列,同相邻牵引变电所构成大双 边供电方式下,牵引变电所整流机组承担的牵引负荷;
端头牵引变电所解列时,次端头牵引变电所牵引整流机 组承担的牵引负荷; 牵引变电所一套牵引整流机组退出运行时,该所另一套 牵引整流机组承担的牵引负荷。
4.
列车运行图可分为单线运行图和双线运行图。在单线 区段,上、下行列车都在同一正线上运行,两个方向 的列车必须在车站上进行交会。在双线区段,上、下 行列车在各自的正线上运行,上、下行方向的列车互 不干扰,可以在区间内或车站交会。
2. 峨眉校区电气工来自系§6-2 平均运量法
一.基本假设
列车在馈电分区分布均匀,数量不变,等于平均列车 数; 列车运动位置受运行图制约(不可能两列车重合); 列车瞬时电流任意变化,但平均电流和有效电流恒定, 区间能耗固定。
峨眉校区
电气工程系
§6-2 平均运量法
二.计算条件
1. 2. 3. 4. 车流密度N(对/h),每小时发车对数; 列车编组(辆),3~8节/列; 动车自重M(t)、定员人数a(人); 拖车自重T(t)、定员人数b(人);
三.牵引供电计算
9. 列车给电运行时弓上电压损失平均值 双边供电
I A Lr 2α - 1 us = (1 + ) 6 m
IA —双边供电平均电流(A)
L —双边供电距离(km)
r —牵引网单位阻抗(Ω/km)
峨眉校区 电气工程系
§6-2 平均运量法
三.牵引供电计算
10. 列车起动时最大电压损失 单边供电
峨眉校区 电气工程系
§6-2 平均运量法
四.牵引供电计算几点说明 1. 牵引整流机组容量计算
C. 计算方法: (平均运量法)
P = kc k Uc I x S 1.1 P (kVA)
峨眉校区
电气工程系
§6-2 平均运量法
四.牵引供电计算几点说明 2. 牵引电压损失计算
A. 计算目的: 牵引网电压损失(压降)是验证全线牵引变电所设置是 否合理 的关键参数之一。
峨眉校区
电气工程系
§6-3 运行图法
一.列车运行图
A 2 B 1 C D
10:00 11:00 12:00 13:00 14:00
峨眉校区 电气工程系
7 3 4 5 6
§6-3 运行图法
一.列车运行图 3. 列车运行图是列车运行的图解表示方法。在运行图中,
以水平线表示车站的中心线,以垂直线表示时间,斜 线表示运行线。运行线反映了列车的时间、位置状态, 即 t=f(l)曲线,它与车站中心线的交点,即为列车到、 发或通过车站的时刻。
N—列车对数(对/h)
2Nt 2NL m= = T v
T—时间周期(=60min) t—列车区间走行时间 (min) L—供电距离(km) v—列车平均运行速度 (km/h)
峨眉校区 电气工程系
§6-2 平均运量法
三.牵引供电计算
3. 区间走行时间
L t = 60 (min) v
4. 牵引变电所馈线平均电流
C. 计算方法: 平均运量法,走行轨对地电位的平均值以走行轨电压损 失值的1/2作为参考。
峨眉校区
电气工程系
§6-3 运行图法
一.列车运行图 3. 列车运行图是列车运行的图解表示方法。在运行图中,
以水平线表示车站的中心线,以垂直线表示时间,斜 线表示运行线。运行线反映了列车的时间、位置状态, 即 t=f(l)曲线,它与车站中心线的交点,即为列车到、 发或通过车站的时刻。
峨眉校区
电气工程系
§6-2 平均运量法
三.牵引供电计算
9. 列车给电运行时弓上电压损失平均值 单边供电
I A Lr 1.5α - 1 ud = (1 + ) 3 m
IA —单边供电平均电流(A)
L —单边供电距离(km)
r —牵引网单位阻抗(Ω/km)
峨眉校区 电气工程系
§6-2 平均运量法

相关文档
最新文档