八年级数学(下)学期3月份月考测试卷含答案

合集下载

河南省南阳市卧龙区2023-2024学年八年级下学期3月月考数学试题(解析版)

河南省南阳市卧龙区2023-2024学年八年级下学期3月月考数学试题(解析版)

八年级第二学期学习评价数学(1)一.选择题.(每题只有一个正确答案,请将正确答案填在下面的表格里.每题3分,共30分)1. 下列式子是分式的是( )A.B.C. D.【答案】B 【解析】【分析】本题主要考查了分式的识别,对于两个整式A 、B ,且B 中含有字母,,那么形如的式子就叫做分式,据此求解即可.【详解】解:根据分式的定义可知,四个选项中,只有B 选项中的式子是分式,故选:B .2. 化简的结果是( )A. 2 B. C.D. 【答案】C 【解析】【分析】根据负整数指数幂的运算法则进行化简即可.【详解】解:,故选:C .【点睛】本题考查了负整数指数幂,任何不等于零的数的(为正整数)次幂,等于这个数的次幂的倒数,即(,为正整数).3. 下列分式中,最简分式是( )A.B.C.D.【答案】C 【解析】【分析】利用最简分式定义进行分析即可;【详解】解:、该分式的分子、分母中含有公因式,不是最简分式,故此选项不符合题意;32a1x x +x y+xπ0B ≠AB12-2-1212-1122-=n -n n 1nnaa -=0a ≠n 211a a +-246a bc 22a a-2a b a ab++A ()1+aB 、该分式的分子、分母中含有公因数,不是最简分式,故此选项不符合题意;C 、该分式最简分式,故此选项符合题意;D 、该分式的分子、分母中含有公因式,不是最简分式,故此选项不符合题意;故选:C .【点睛】本题考查了最简分式的定义:一个分式的分子与分母没有公因式时,这个分式叫做最简分式,解题关键掌握最简分式的定义.4. 把下列分式中x ,y 的值都同时扩大到原来的5倍,那么分式的值保持不变的是( )A.B.C.D.【答案】A 【解析】【分析】根据分式的基本性质,x ,y 的值都同时扩大到原来的5倍,求出每个式子的结果,看结果是否等于原式.【详解】解:A 、,分式的值保持不变,符合题意;B 、,分式的值改变,不符合题意;C 、,分式的值改变,不符合题意;D 、,分式的值改变,不符合题意;故选:A .【点睛】本题考查了分式的基本性质.解题的关键是掌握分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.5. 春节游河南,探寻千年古韵,品味地道年味!有游客人,到龙门石窟游玩,需要住宿,如每个人住一间房,结果还有一个人无房住,则客房的间数是( )A.B.C.D.【答案】A 【解析】【分析】本题考查了列代数式,根据有一个人无房住可得住进房间的人数为人,再除以即可求出是2()a b +y x y-1x y-x y xy-2x y y -()55555y y yx y x y x y==---()11115555x y x y x y==⨯---()55515·5255x y x y x yx y xy xy---==⨯()()22255512555x y x yx yy yy ---==⨯m n 1m n-1m n-1m n+1m n+()1m -n客房的间数,读懂题意是解题的关键.【详解】解:由题意可得,客房间数为,故选:.6. 解分式方程,去分母后得到的方程是( )A. B. C. D. 【答案】B 【解析】【分析】本题主要考查了解分式方程,把方程两边同时乘以去分母即可得到答案.【详解】解:方程两边同时乘以去分母得,故选:B .7. 若,,则的值是( )A. 2 B. ﹣2C. 4D. ﹣4【答案】D 【解析】【分析】根据完全平方公式的变形求出的值,再计算异分母分式相加即可.【详解】∵,∴,∴,故选D .【点睛】本题考查了求代数式的值,涉及完全平方根公式,异分母分式相加,熟练掌握公式和运算法则是解题的关键.8. 如图,若,则表示的值的点落在( )的1m n-A 12113x x x+-=()1321x x -+=()13213x x-+=()13211x -+=1633x x x-+=3x 12113x x x+-=3x ()13213x x -+=2x y +=2xy =-y xx y+22x y +()2222x y x xy y +=++()()222222228x y x y xy +=+-=-⨯-=22842y x y x x y xy ++===--2a b =222a ab a b --A. 第①段B. 第②段C. 第③段D. 第④段【答案】C 【解析】【分析】把代入即可求出分式的值,再看值的点落在的位置.【详解】解:∵,∴,∵,∴表示的值的点落在段③,故选:C .【点睛】本题考查了分式的值,知晓把整体代入是解此题的关键.9. 已知关于m 的不等式组,且m 为整数,则关于x 的分式方程的解是( )A. B. C. D. 不能确定【答案】C 【解析】【分析】本题主要考查了求不等式组的整数解,解分式方程,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集,进而求出其整数解,即m 的值,然后解分式方程即可得到答案.【详解】解:解不等式①得,解不等式②得:,∴不等式组的解集为,∵m 为整数,2a b =2a b =222a ab a b --2222224222433b b b b b b -===-2013<<222a ab a b--2a b =12020m m -<⎧⎨-<⎩12+=-x x m 5x =1x =3x =12020m m -<⎧⎨-<⎩①②12m >2m <122m <<∴原分式方程为,去分母得:,去括号得:,解得,经检验,是原方程的解,故选:C10. 漳州市教育局为帮助全市贫困师生举行“一日捐”活动,甲、乙两校教师各捐款60000元,已知“…”,设乙学校教师有x 人,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补( )A. 乙校教师比甲校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%B. 甲校教师比乙校教师人均多捐20元,且乙校教师人数比甲校教师的人数多20%C. 甲校教师比乙校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%D. 乙校教师比甲校教师人均多捐20元,且乙校教师人数比甲校教师的人数多20%【答案】A 【解析】【分析】根据乙学校教师有x 人推出的含义,再推出的含义,即可得解.【详解】设乙学校教师有x 人,则表示:甲校教师的人数比乙校教师的人数多20%,表示乙校教师比甲校教师人均多捐20元,因此可得出:已知“甲校教师比乙校教师人数多,且乙校教师比甲校老师人均多捐20元”;故选A .【点睛】本题考查分式方程的应用.准确理解方程中的等量关系,是解题的关键.二.填空题.(每小题3分,共15分)11. 若分式的值为0,则=______.【答案】1的的121x x +=-()121x x +=-122x x +=-3x =3x =600006000020(120)x x-=+%(120)x +%600006000020(120)x x-=+%(120)x +%600006000020(120)x x-=+%20%11x x -+x【分析】分式的值为0,即是分子为0,分母不能为0,据此可以解答本题.【详解】解:∵,∴,∴.故答案为:1【点睛】本题考查分式的值为0的条件,关键在于理解值为0的条件.12. 某种花粉颗粒的直径约为,将用科学记数法可以表示为________.【答案】【解析】【分析】本题主要考查了科学记数法,科学记数法的表现形式为的形式,其中,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:,故答案为:.13. 若关于x 的方程无解,则m =_____.【答案】1或2【解析】【分析】去分母得(m -2)x +1=0,根据方程无解分情况讨论,求解即可.【详解】解:去分母,得mx +1﹣2x =0,化简得(m ﹣2)x +1=0,当=0时,x =0或x =1当方程有增根为x =0时,m 不存在;当方程有增根x =1时,得m ﹣2+1=0,即当方程有增根时m =1;当m ﹣2=0时,原方程无解,此时m =2,综上所述:m =1或2,故答案为:1或2.101x x -=+10x -=10x +≠1x =0.000031m 0.00003153.110-⨯10n a ⨯110a ≤<50.000031 3.110-=⨯53.110-⨯21201mx x x x +-=--2x x -【点睛】本题考查了分式方程的解,理解分式方程无解的含义是解题的关键.14. 已知,则________.【答案】【解析】【分析】本题主要考查了异分母分式加法计算,先把已知式子右边通分得到,进而得到,据此求出A 、B 的值即可得到答案.【详解】解:∵,∴,∴,∴,∴,∴,故答案为:4.15. 已知关于分式方程的解满足,则的取值范围是______.【答案】且【解析】【分析】本题考查了分式方程的解,解不等式组,先求出分式方程的解,根据,得到关于的一元一次不等式组,解不等式组求出的取值范围,又由最简公分母的值不等于,可得不符合条件的取值,最后综合即可得到最终的取值范围,正确求出分式方程的解是解题的关键.【详解】解:由分式方程得,,∵分式方程的解满足,的()()223222x ABx x x +=+---A B -=4()()223222x Bx A Bx x ++-=--231A B B -==,()()223222x AB x x x +=+---()()()()22223222B x x Ax x x -+=+---()()223222x Bx A Bx x ++-=--231A B B -==,51A B ==,514A B -=-=x ()()232223x kx x x +=+--+41x -<<-k 714k -<<0k ≠41x -<<-k k 0k k ()()232223x kx x x +=+--+217x k =-()()232223x k x x x +=+--+41x -<<-∴,即,解得,又∵,∴且,即且,解得且,∴的取值范围为且,故答案为:且.三.解答题.(本大题8小题,共75分)16. 计算:(1);(2)解方程:.【答案】(1);(2)【解析】【分析】本题主要考查了分式的除法计算,解分式方程:(1)先把除法变成乘法,然后约分即可得到答案;(2)按照去分母,去括号,移项,合并同类项的步骤解方程,然后检验即可得到答案.【详解】解:(1);(2)21471k --<<-21472117k k -⎧>-⎪⎪⎨-⎪<-⎪⎩714k -<<()()230x x -+≠20x -≠30x +≠21207k --≠21307k -+≠35k ≠0k ≠k 714k -<<0k ≠714k -<<0k ≠322243x z xz y y ÷-32222x x x x-=---232x yz-1x =322243x z xz y y ÷-322234x z y y xz -=⋅232x yz=-32222x xx x-=---去分母得:,去括号得:,移项得:,合并同类项得;,经检验,是原方程的解,∴原方程的解为.17. 先化简,再求值:,其中.【答案】,【解析】【分析】本题主要考查了分式的化简求值,零指数幂,先把除数的式子通分,然后把除法变成乘法,接着约分化简,最后代值计算即可.【详解】解:,∵,∴原式.18. 已知x =﹣4时,分式无意义,x =2时,此分式的值为零,求分式的值.【答案】5【解析】【分析】由分式无意义,可求出a 的值,由分式的值为0,可求出b 的值.把a 、b 的值代入分式中求值即可.【详解】解:∵分式无意义,∴2x +a =0即当x =﹣4时,2x +a =0.解得a =8()3222x x x -=---3224x x x -=--+2243x x x -++=-1x =1x =1x =11a a a a +⎛⎫⎛⎫÷- ⎪ ⎪⎝⎭⎝⎭020241a =+11a -111a a a a +⎛⎫⎛⎫÷-⎪ ⎪⎝⎭⎝⎭211a a a a+-=÷()()111a a a a a +=⋅+-11a =-020241112a =+=+=1121==-2x b x a -+3a ba b+-∵分式的值为0,∴x ﹣b =0,即当x =2时,x ﹣b =0.解得b =2∴.【点睛】本题考查分式意义的条件,关键在于通过分式无意义算出a 、b 的值.19. 已知x 为整数,且++化简结果为整数,求出所有符合条件的x 值.【答案】x 值的为1或2或4或5【解析】【分析】将原式化简成,由x 为整数且化简结果为整数可得出x −3=±2或±1,解之即可得出结论.【详解】解:==∵x 为整数且也是整数,∴x-3=±2或±1,则x =1或2或4或5.所以所有符合条件的x 值的为1或2或4或5.【点睛】本题考查了分式的化简,将原式化简成是解题的关键.20. 有甲、乙两筐水果,甲筐水果的质量为,乙筐水果的质量为(其中).售完后,两筐水果都卖了150元.(1)哪筐水果卖的单价高?(2)高的单价是低的单价的多少倍?【答案】(1)甲水果的单价卖得高; (2)高的单价是低的单价的倍.【解析】【分析】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8253832a b a b ++==--⨯23x +23x -22189x x +-23x -222218339x x x x ++++--2222626218999x x x x x x ---+=++---2269x x +-23x -23x -23x -()21kg m -()21kg m -1m >11m m +-(1)用甲框的单间减去乙框的单间,再进行整理即可得出答案;(2)根据题意列出算式,计算即可得到结果.【小问1详解】根据题意得:,所以甲水果的单价卖得高;【小问2详解】根据题意得:,答:高的单价是低的单价的倍.21. 当时,定义一种新运算:,例如:,.(1)直接写出_______________;(2)若,求出m 的值.【答案】(1)2;(2).【解析】【分析】(1)根据题目所给条件代值进去计算即可求出,(2)根据m 与2的大小关系进行分类讨论求解分式方程即可求出m 的值.【详解】解:(1)因为,所以;(2)时,,解得,不合题意,舍去.时,,2222150150150(1)150(1)1500(1)1(1)(1)(1)(1)m m m m m m m m +---==>---+-+()()222111501501501(1)1(1)1501m m m m m m m +-+÷==---- 11m m +-a b ¹2,(,)2,a b a b F a b b a b b a⎧>⎪⎪-=⎨⎪<⎪-⎩2(3,1)131F ==-248(1,4)4(1)5F ⨯-==--(1,)F a a +=(),22,1()F m F m -=0m =1a a +>2(1,)21F a a a a+==+-m>222,22,12()(2)m F m F m m m -=-=--423m =<2m <()(222,22,22)1F m F m m m⨯-=-=--解得.综上,.【点睛】本题主要考查新定义与分式方程的求解,根据题目给定公式代值计算即可,第(2)问注意对m 的值进行分类讨论求解,注意求解出来的m 的值要根据分类讨论时的取值范围进行取舍.22. 甘蔗富含大量铁、钙、锌等人体必需的微量元素,素有“补血果”的美称,是冬季热销的水果之一,为此,某水果商家12月份第一次用600元购进云南甘蔗若干千克,销售完后,他第二次又用600元购进该甘蔗,但这次每千克的进价比第一次的进价提高了20%,所购进甘蔗的数量比第一次少了25千克.(1)求该商家第一次购买云南甘蔗的进价是每千克多少元?(2)假设商家两次购进的云南甘蔗按同一价格销售,要使销售后获利不低于1000元,则每千克的售价至少为多少元?【答案】(1)每千克4元;(2)每千克的售价至少为8元【解析】【分析】(1)设该商家第一次购买云南甘蔗的进价是每千克x 元,根据题意列出方程即可求出答案;(2)设每千克的售价为y 元,根据题意列出不等式即可求出答案.【详解】解:(1)设该商家第一次购买云南甘蔗的进价是每千克x 元,根据题意可知:=﹣25,x =4,经检验,x =4是原方程的解,答:该商家第一次购买云南甘蔗的进价是每千克4元;(2)设每千克的售价为y 元,第一销售了=150千克,第二次销售了125千克,根据题意可知:150(y ﹣4)+125(y ﹣4.8)≥1000,解得:y≥8,答:每千克的售价至少为8元.【点睛】本题考查分式方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.23. 我们定义:如果两个分式与的差为常数,且这个常数为正数,则称是的“和雅式”,这个常数称为关于的“和雅值”.如分式,,,则是的“和雅式”,关于的“和雅值”为.0m =0m =6000.2x x +600x 6004A B A B A B 21x A x =+21B x -=+22222(1)21111x x x A B x x x x -++-=-===++++A B A B 2(1)已知分式,,判断是否为的“和雅式”,若不是,请说明理由;若是,请证明并求出关于的“和雅值”;(2)已知分式,,是的“和雅式”,且关于的“和雅值”是,求的值;(3)已知分式,,是的“和雅式”,且关于的“和雅值”是,为整数,且“和雅式”的值也为整数,求所代表的代数式及所有符合条件的的值之和.【答案】(1)不是,理由见解析(2)(3),【解析】【分析】(1)根据新定义进行判断;(2)根据新定义,列出方程求解;(3)根据新定义列出方程,再根据整除的意义求解.【小问1详解】解:C 不是的“和雅式”;理由:,不是的“和雅式”;【小问2详解】由题意得:,,,,解得:,,;12C x =+225644x x D x x ++=++C D C D M =()(1)x b x x --N =()x x a x-M N M N 1a b +29E P x =-3x Q x=-P Q P Q 1x P E x 239E x =+12D C D -= 12x +-2(2)(3)(2)x x x +++=1(3)2x x -++=22x x --+10=-<C ∴D 1M N -=∴()(1)x b x x ---()x x a x-1=()2a b x b ∴-+=20a b b ∴-+==2a =0b =2a b ∴+=【小问3详解】由题意得:,,,为整数,为整数,的值为:或,的值为:,,,,,所以所有符合条件的的值之和为.【点评】本题考查了分式的加减法,理解新定义和掌握分式的运算是解题的关键.1P Q -=∴(3)(3)E x x +--3x x-1=39E x ∴=+ 29E P x =-=33x-x 3x ∴-1±3±x ∴024*******∴+++=x 12。

2022-2023学年山东省菏泽市开发区多校联考八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年山东省菏泽市开发区多校联考八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年山东省菏泽市开发区多校联考八年级(下)月考数学试卷(3月份)1. 下列不等式中,是一元一次不等式的是( )A.B.C.D.2. 下列判断不正确的是( )A. 若,则 B. 若,则 C. 若,则D. 若,则3. 若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( )A. 13B. 13或17C. 10D. 174.用反证法证明命题“在中,若,则”,首先应假设( )A. B.C. D.5. 如图,,,,要根据“HL ”证明,则还需要添加一个条件是( )A. B.C.D.6. 有一个角是的直角三角形,斜边为1cm ,则斜边上的高为( )A.B.C. D.7. 如图,在中,,,BD 、CE 分别是、的角平分线,则图中的等腰三角形有( )A. 5个B. 4个C. 3个D. 2个8. 如图,,OE平分,交OA于点D,,垂足为若,则OD的长为 ( )A. 2B.C. 4D.9. 下面是教师出示的作图题.已知:线段a,h,小明用如图所示的方法作,使,AB上的高作法:①作射线AM,以点A为圆心、※为半径画弧,交射线AM于点B;②分别以点A,B为圆心、为半径画弧,两弧交于点D,E;③作直线DE,交AB于点P;④以点P为圆心、⊕为半径在AM上方画弧,交直线DE于点C,连接AC,对于横线上符号代表的内容,下列说法不正确的是( )A.※代表“线段a的长” B. 代表“任意长”C. 代表“大于的长”D. ⊕代表“线段h的长”10. 已知点C在线段BE上,分别以BC、CE为边作等边三角形ABC和等边三角形DCE,连接AE与CD相交于点N,连接BD与AC相交于点M,连接OC、MN,则①;②≌;③;④是等边三角形;⑤OC平分;⑥;以上结论正确的个数是( )A. 3个B. 4个C. 5个D. 6个11. 若的解集是,则a的取值范围是______.12. 在实数范围内定义一种新运算“⊕”,其运算规则为:如:则不等式的解集是______ .13. 如图,在中,,,则的度数为______ .14.如图,已知的周长是21,OB,OC分别平分和,于D,且,的面积是______.15. 如图,在中,AC的垂直平分线DE交AC于点D,交BC于点E,,则的度数为______ .16. 如图,等腰三角形ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则的周长的最小值为______.17. 解下列不等式,并把解集在数轴上表示出来.18. 一次数学竞赛中,共有20道题,规定答对一道题得6分,答错或不答一道题扣2分;80分以上含80分可以获奖,问若要获奖,至少要答对几道题?19. 在等边的三条边AB,BC,CA上,分别取点D,E,F,使得,连接DE,EF,FD,求证:是等边三角形.20. 如图,点C在线段AB上,,,,于点求证:≌;求证:CF平分21. 已知:如图中,,BD平分,CD平分,过D作直线平行于BC,交AB,AC于E,求证:是等腰三角形;求的周长.22. 如图1,在中,,,直线m经过点A,直线m,直线m,垂足分别为点D、求证:≌;如图2,将中的条件改为:在中,,D、A、E三点都在直线m上,并且有,其中为任意锐角或钝角.请问结论≌是否成立?如成立,请给出证明;若不成立,请说明理由.拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点三点互不重合,点F为平分线上的一点,且和均为等边三角形,连接BD,CE,若,求证:是等边三角形.答案和解析1.【答案】D【解析】【分析】本题考查一元一次不等式的识别.主要依据一元一次不等式的定义进行辨别.含有一个未知数并且未知数的次数是一次的不等式叫一元一次不等式.【解答】解:A分母中含有未知数,所以不是一元一次不等式,不符合题意;B是一元二次不等式,不符合题意;C是二元一次不等式,不符合题意;D是一元一次不等式,符合题意.故选2.【答案】D【解析】解:A、在不等式的两边同时加2,不等式仍成立,即,正确,不符合题意;B、在不等式的两边同时乘以,不等号方向改变,即,正确,不符合题意;C、在不等式的两边同时乘以2,不等式仍成立,即,正确,不符合题意;D、当时,,原变形错误,符合题意.故选:根据不等式的基本性质进行判断.本题考查的是不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变;不等式两边乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以同一个负数,不等号的方向改变.3.【答案】D【解析】解:若3为腰长,7为底边长,由于,则三角形不存在;若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为故选:求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.【答案】A【解析】解:反证法证明命题“在中,若,则”时,首先假设,故选:根据反证法的步骤中,第一步是假设结论不成立,反面成立解答即可.本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.【答案】D【解析】【分析】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.根据垂直定义求出,再根据全等三角形的判定定理推出即可.【解答】解:条件是,理由是:,,,在和中,,,故选6.【答案】C【解析】解:如下图所示:,于点D,,,,,,,,故选项A错误,选项B错误,选项C正确,选项D错误.故选:根据题目画出相应的图形,由题意可以求得BC、AC的长,由,,可以求得CD 的长,从而可以解答本题.本题考查角的直角三角形,解题的关键是画出合适的三角形,灵活变化,找出所求问题需要的条件.7.【答案】A【解析】解:共有5个.,是等腰三角形;、CE分别是、的角平分线,,,是等腰三角形,,是等腰三角形;,,,又BD是的角平分线,,是等腰三角形;、CE分别平分,,,,,,,,,即是等腰三角形由可得,即是等腰三角形.综上所述,共有5个等腰三角形.故选:根据已知条件和等腰三角形的判定定理,对图中的三角形进行一一分析,即可得出答案.此题主要考查学生对角的平分线,等腰三角形判定和三角形内角和定理的理解和掌握,属于中档题.8.【答案】C【解析】解:过点E作于点H,如图所示:平分,,,,OE平分,,,,,,,,,,,,故选:过点E作于点H,根据角平分线的性质可得,再根据平行线的性质可得的度数,再根据含角的直角三角形的性质可得DE的长度,再证明,即可求出OD的长.本题考查了角平分线的性质,含角的直角三角形的性质,平行线的性质等,熟练掌握这些性质是解题的关键.9.【答案】B【解析】解:作法:①作射线AM,以点A为圆心、“线段a的长”为半径画弧,交射线AM于点B;②分别以点A,B为圆心、“大于二分之一AB的长”为半径画弧,两弧交于点D,E;③作直线DE,交AB于点P;④以点P为圆心、“线段h的长”为半径在AM上方画弧,交直线DE于点C,连接AC,所以说法不正确的是故选:根据基本作图方法即可完成填空.本题考查作图-复杂作图,解题的关键是理解题意,灵活运用所学知识解决问题.10.【答案】D【解析】解:三角形ABC和三角形DCE都是等边三角形,,,,,≌,,故①正确;,又,,,故③正确;,,,≌,故②正确;,又,是等边三角形,故④正确;如图,过C作,,≌,中BD边上的高与中AE边上的高对应相等,即,点C在的角平分线上,即CO平分,故⑤正确;如图,在BO上截取,则是等边三角形,,,又,,≌,,,故⑥正确;故选:依据等边三角形的性质,判定≌,≌,≌,再分别依据全等三角形的对应边相等,对应角相等,对应边上的高相等,即可得到正确的结论.本题主要考查了全等三角形的判定与性质,等边三角形的性质与判断的综合运用,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.11.【答案】【解析】解:,且不等式的解集是,,解得:故答案为:根据不等式的基本性质3,结合题意可得,解之即可.本题主要考查解一元一次不等式,解题的关键是掌握不等式的基本性质和解一元一次不等式的能力.12.【答案】【解析】解:,,不等式即为:,解得,故答案为:根据新定义运算,列出不等式,然后解不等式即可.本题考查了新定义运算,解一元一次不等式,根据新定义得出不等式是解题的关键.13.【答案】【解析】解:,,,,为的外角,,,,,即,故答案为:先根据等腰三角形的性质,得出,,根据三角形的外角得出,根据三角形内角和,结合,求出的度数即可.本题主要考查了等腰三角形的性质,三角形外角的性质,解题的关键是熟练掌握等边对等角.14.【答案】42【解析】【分析】本题考查了角平分线性质,三角形的面积,主要考查学生运用定理进行推理的能力.过O作于E,于F,连接OA,根据角平分线性质求出,根据的面积等于的面积、的面积以及的面积之和,即可求出答案.【解答】解:如图,过O作于E,于F,连接OA,,OC分别平分和,,,,即,的面积是:故答案为:15.【答案】【解析】解:垂直平分线段AC,,,,,,故答案为:证明,利用三角形内角和定理求解即可.本题考查直角三角形的性质,线段的垂直平分线的性质等知识,解题关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】9【解析】解:连接AD,是等腰三角形,点D是BC边的中点,,,解得,是线段AC的垂直平分线,点A关于直线EF的对称点为点C,,,的长为的最小值,的周长最短故答案为:连接AD,AM,由于是等腰三角形,点D是BC边的中点,故,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,,推出,故AD的长为的最小值,由此即可得出结论.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.17.【答案】解:,,,,,,解集在数轴上表示为:去括号得,,移项得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:,移项得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:,去分母得,,去括号得,,移项得,,合并同类项得,,系数化为1得,解集在数轴上表示为:【解析】去分母,去括号,移项,合并同类项,系数化成1即可;去括号,移项,合并同类项,系数化成1即可;移项,合并同类项,系数化成1即可;去分母,去括号,移项,合并同类项,系数化成1即可.本题考查了解一元一次不等式,在数轴上表示不等式的解集,数形结合是解题的关键.在表示解集时“”,“”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.【答案】解:设答对x题,那么答错或者不答的有题解得:答:至少要答对15题.【解析】根据题意,设答对x题,则答对获得的分数为6x,而答错损失的分数为,由这次竞赛获奖必须达到80分,列出不等式求解即可.此题主要考查了一元一次不等式的应用,根据题意得出正确的不等关系是解题关键.19.【答案】证明:是等边三角形,,,,,在和中,,≌,在和中,,≌,≌,,是等边三角形.【解析】根据等边三角形的性质得出,,,进一步证得,即可证得≌≌,根据全等三角形的性质得出,即可证得是等边三角形.此题考查了等边三角形性质,全等三角形的性质和判定的应用,熟练掌握全等三角形的判定与性质是解题的关键.20.【答案】证明:,,在和中,,≌,≌,,又,平分【解析】根据平行线性质求出,根据SAS推出≌;根据全等三角形性质推出,根据等腰三角形性质即可证明CF平分本题考查了平行线性质,全等三角形的性质和判定,等腰三角形性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.21.【答案】证明:,,平分,,,,是等腰三角形;,,平分,,,,,,的周长为:【解析】首先根据平行线的性质可得,再根据角平分线的定义可得,可得,据此即可证得;同理可得,根据的周长,求解即可.本题考查了等腰三角形的判定和性质,平行线的性质,角平分线的定义等,熟练掌握等腰三角形的判定和性质是解题的关键.22.【答案】证明:如图1,直线m,直线m,,,,在和中,,≌解:≌成立,证明:当为钝角时,如图2,,,,,在和中,,≌当为锐角时,如图,,,,,在和中,,≌证明:如图3,和均为等边三角形,,,,,由得≌,,,,,,在和中,,≌和,,,,是等边三角形.【解析】由,推导出,即可根据全等三角形的判定定理“AAS”证明≌;当为钝角时,由,推导出,即可根据全等三角形的判定定理“AAS”证明≌;当为锐角时,用同样的方法可证明≌;先由和均为等边三角形,得,,,则,而,由得≌,则,,可推导出,即可证明≌和,得,,则,即可证明是等边三角形.此题重点考查同角的余角相等、三角形内角和定理、全等三角形的判定与性质、等边三角形的判定与性质、数形结合与分类讨论数学思想的运用等知识与方法,此题综合性强,难度较大,属于考试压轴题.。

2022-2023学年江西省宜春市宜丰中学八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年江西省宜春市宜丰中学八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年江西省宜春市宜丰中学八年级(下)月考数学试卷(3月份)1. 某中学合唱团的17名成员的年龄情况如下表:年龄单位:岁1415161718人数35441则这些队员年龄的众数和中位数分别是( )A. 15,15B. 15,C. 15,16D. 16,152. 已知等腰的周长为10,若设腰长为x,则x的取值范围是( )A. B. C. D.3. 若一次函数的图象不经过第二象限,则m的取值范围是( )A. B. C. D.4.如图,在中,,,,,,都是等边三角形,下列结论中:①;②四边形AEFD是平行四边形;③;④正确的个数是( )A. 1个B. 2个C. 3个D. 4个5.如图,在中,BD平分交AC于点D,且,F在BC上,E为AF的中点,连接DE,AF,若,,,则AB的长为( )A.B.C.D. 96. 在直角坐标系中,横纵坐标都是整数的点称为整点,设k为整数,当直线与的交点为整数时,k的值可以取( )A. 2个B. 4个C. 6个D. 8个7. 某校规定学生的数学成绩由三部分组成,期末考试成绩占,期中成绩占,平时作业成绩占,某人上述三项成绩分别为85分,90分,80分,则他的数学成绩是______.8. 如图,直线与直线相交于点A,则关于x的不等式的解集为______.9. 当光线射到x轴进行反射,如果反射的路径经过点和点,则入射光线所在直线的解析式为______ .10. 设,则代数式的值为______.11. 如图,已知,于B,于A,,点E是CD的中点,则AE的长是______.12. 如图,在平面直角坐标系中,直线l分别交x轴、y轴于A、B两点,点A的坐标为,点B的坐标为直线l与直线交于点点P是直线上,的一点,点Q是坐标平面内任意一点.若使以A、C、P、Q为顶点的四边形是菱形,则Q点的坐标为______ .13. 已知,,且试求正整数14. 如图,在四边形ABCD中,,对角线BD的垂直平分线与边AD、BC分别相交于点M、N,连接BM、求证:四边形BNDM是菱形;若四边形BNDM的周长为52,,求BD的长.15. 如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.城是否受到这次台风的影响?为什么?若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?16. 某地计划从甲、乙两个蔬菜基地向A,B两市运送蔬菜.甲、乙两个基地分别可运出80吨和100吨蔬菜.A,B两市分别需要蔬菜110吨和70吨.从甲,乙两基地运往A,B两市的运费单价如下表:A市元/吨B市元/吨甲基地1520乙基地1025设从甲基地运往A市x吨蔬菜时,总运费为y元.求y关于x的函数表达式及自变量的取值范围;当甲基地运往A市多少吨蔬菜时,总运费最省?最省的总运费是多少元?17. 在中,D为AB的中点,分别延长CA,CB到点E,F,使;过E,F分别作CA,CB的垂线,相交于求证:18. 观察下列方程及解的特征:的解为:;的解为:,;的解为:,;…解答下列问题:请猜想,方程的解为______;请猜想,方程______的解为,;解关于x的分式方程19. 请你用学习“一次函数”中积累的经验和方法研究函数的图象和性质,并解决问题.①当时,;②当时,______;③当时,______;显然,②和③均为某个一次函数的一部分.在平面直角坐标系中,作出函数的图象.根据函数图象写出函数的一条性质:______.一次函数为常数,的图象过点,若无解,结合函数的图象,直接写出k的取值范围.20. 我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为,所以这个三角形是常态三角形.若三边长分别是2,和4,则此三角形__________常态三角形填“是”或“不是”;若是常态三角形,则此三角形的三边长之比为__________请按从小到大排列;如图,中,,,点D为AB的中点,连接CD,若是常态三角形,求的面积.21. 甲、乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程千米与行驶时间小时之间的函数图象,请结合图象回答下列问题:、B两市的距离是______ 千米,甲到B市后,______ 小时乙到达B市;求甲车返回时的路程千米与时间小时之间的函数关系式;甲车从B市开始往回返后,再经过几小时两车相距15千米?22. 【模型建立】如图1,等腰中,,,直线ED经过点C,过点A作于点D,过点B作于点E,求证:≌;【模型应用】如图2,已知直线:与x轴交于点A,与y轴交于点B,将直线绕点A 逆时针旋转至直线;求直线的函数表达式;如图3,平面直角坐标系内有一点,过点B作轴于点A、轴于点C,点P是线段AB上的动点,点D是直线上的动点且在第四象限内.试探究能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.答案和解析1.【答案】C【解析】解:根据图表数据,同一年龄人数最多的是15岁,共5人,所以众数是15岁,17名队员中,按照年龄从大到小排列,第9名队员的年龄是16岁,所以,中位数是16岁.故选:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.2.【答案】A【解析】解:依题意得:,解得故选:根据已知条件得出底边的长为:,再根据第三边的长度应是大于两边的差而小于两边的和,即可求出第三边长的范围.本题考查了等腰三角形的性质和三角形的三边关系及解一元一次不等式组等知识;根据三角形三边关系定理列出不等式,接着解不等式求解是正确解答本题的关键.3.【答案】D【解析】【分析】本题考查了一次函数图象与系数的关系以及一元一次不等式组的解法.根据题意得到关于m的不等式组,然后解不等式组即可.【解答】解:根据题意得,解得故选:4.【答案】D【解析】【分析】由,得出,故①正确;再由SAS证得≌,得,同理≌,得,则四边形AEFD 是平行四边形,故②正确;然后由平行四边形的性质得,则③正确;最后求出,故④正确;即可得出答案.本题考查了平行四边形的判定与性质、勾股定理的逆定理、全等三角形的判定与性质、等边三角形的性质、含角的直角三角形的性质等知识;熟练掌握平行四边形的判定与性质,证明≌是解题的关键.【解答】解:,,,,,是直角三角形,,,故①正确;,都是等边三角形,,,和都是等边三角形,,,,,在与中,,≌,,同理可证:≌,,四边形AEFD是平行四边形,故②正确;,故③正确;过A作于G,如图所示:则,四边形AEFD是平行四边形,,,,故④正确;正确的个数是4个,故选:5.【答案】A【解析】解:平分交AC于点D,,,,,≌,,为AF的中点,是的中位线,,,,,,,,,负值舍去,,,故选:根据角平分线的定义得到,根据垂直的定义得到,根据全等三角形的判定和性质得到,根据三角形中位线定理和勾股定理即可得到结论.本题考查了三角形中位线定理,全等三角形的判定和性质,勾股定理,熟练掌握三角形中位线定理是解题的关键.6.【答案】C【解析】解:由题意得:,解得:,,交点为整数,可取的整数解有0,2,3,5,,共6个.故选:让这两条直线的解析式组成方程组,求得整数解即可.本题考查了两条直线相交或者平行问题,难度一般,解决本题的难点是根据分数的形式得到相应的整数解.7.【答案】分【解析】解:他的数学成绩是:分故答案为:分.根据数学成绩=期末考试成绩所占的百分比+期中考试成绩所占的百分比+平时作业成绩所占的百分比即可求得该学生的数学成绩.本题考查的是加权平均数的求法.正确计算加权平均数是解本题的关键.8.【答案】【解析】【分析】此题主要考查了一次函数与一元一次不等式,关键是能从图象中得到正确信息.以两函数图象交点为分界,直线在直线的下方时,【解答】解:把代入得,,根据图象可得:关于x的不等式的解集为:,故答案为:9.【答案】【解析】解:设反射光线的直线解析式为,反射的路径经过点和点,,解得,,反射光线的直线解析式为,根据入射光线和反射光线轴对称,故知入射光线的解析式为,故答案为首先设反射光线的直线解析式为,把A、B两点代入,求出k和b,然后根据轴对称的知识点求出入射光线的解析式.本题主要考查待定系数法求一次函数解析式和轴对称的知识点,解答本题的关键是运用好轴对称的知识,此题难度一般.10.【答案】24【解析】解:,即,故答案为:24将所求式子提取3后,拆项变形,分别得到的因式,将已知等式变形得到,把a与的值代入计算,即可求出值.此题考查了因式分解的应用,将所求式子进行适当的变形是解本题的关键.11.【答案】【解析】解:连接DB,延长DA到F,使连接FC,,,又点E是CD的中点,为的中位线,则,在中,,,,,,又,四边形DBCF是平行四边形,,故答案为:首先作出辅助线,连接DB,延长DA到F,使,连接根据三角形中位线定理可得,再利用勾股定理求出BD的长,然后证明可得到≌,从而得到,进而得到答案.此题主要考查了三角形中位线定理,勾股定理的综合运用,做题的关键是作出辅助线,证明12.【答案】或或或【解析】解:设直线AB的函数解析式为,点A的坐标为,点B的坐标为,,解得,即直线AB的函数解析式为,点C在直线AB上且在直线上,点C的横坐标为,纵坐标,线段AC的长是:,当时,的坐标为;当时,的坐标为;当时,的坐标为;当在AC的垂直平分线上时,直线AB的函数解析式为,点A的坐标为,点C的坐标为,,设直线解析式为且过点,,解得,直线解析式为,当时,,即的坐标为;由上可得,点Q的坐标为或或或根据题意,可以先求出直线AB的函数解析式,然后根据菱形的判定和分类讨论的数学思想,可以求得相应的点Q的坐标.本题考查一次函数图象上点的坐标特征、菱形的判定,解答本题的关键是明确题意,画出相应的图象,利用数形结合和分类讨论的数学思想解答.13.【答案】解:化简x与y得:,,,,将代入方程,化简得:,,,解得【解析】首先化简x与y,可得:,,所以,;将所得结果看作整体代入方程,化简即可求得.此题考查了二次根式的分母有理化.解题的关键是整体代入思想的应用.14.【答案】证明:,直线MN是对角线BD的垂直平分线,,在和中,,≌,,,四边形BNDM是平行四边形,,四边形BNDM是菱形;解:菱形BNDM的周长为52,,又,,在中,由勾股定理得,,【解析】【分析】证≌,得出,由,证出四边形BNDM是平行四边形,进而得出结论;由菱形的周长得到菱形的边长,由菱形的性质及得到,在中由勾股定理得到OB的长,进而得到BD的长.本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质,证明三角形全等是解题的关键.15.【答案】解:由A点向BF作垂线,垂足为C,在中,,,则,因为,所以A城要受台风影响;设BF上点D,,则还有一点G,有因为,所以是等腰三角形,因为,所以AC是DG的垂直平分线,,在中,,,由勾股定理得,,则,遭受台风影响的时间是:【解析】点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若则A城不受影响,否则受影响;点A到直线BF的长为200km的点有两点,分别设为D、G,则是等腰三角形,由于,则C是DG的中点,在中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.16.【答案】解:,由,解得;答:y关于x的函数表达式为,自变量的取值范围是;在中,,随x的增大而增大,而,当时,,答:当甲基地运往A市10吨蔬菜时,总运费最省,最省的总运费是2550元.【解析】弄清调动方向,再依据路程和运费列出元与吨的函数关系式即可;利用一次函数的增减性确定“最省的总运费”即可.本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定总运费最省.17.【答案】解:如图,分别取AP、BP的中点M、N,并连接EM、DM、FN、根据三角形中位线定理可得:,,,,,、N分别为直角三角形AEP、BFP斜边的中点,,,已知,≌,,,、为顶角相等的等腰三角形,【解析】取AP、BP的中点,并连接EM、DM、FN、DN,根据直角三角形斜边中线性质易证得≌,即可得各角的关系.即可证得结论.本题考查了全等三角形的判定及性质,涉及到直角三角形、等腰三角形的性质等知识点,是一道难度较大的综合题型,正确作出辅助线是解题的关键.18.【答案】,【解析】解:方程:,即方程:,,,故答案为:,;猜想关于x 的方程的解为:,,故答案为:;,,,,,可得:或,解得:,,经检验,,是原分式方程的根.观察阅读材料中的方程解的规律,归纳总结得到结果;仿照阅读材料中的方程解的规律,归纳总结得到结果;先把原方程变形后,利用得出的规律即可解答.本题考查了解分式方程,分式方程的解,理解阅读材料中的方程解的规律是解题的关键.19.【答案】函数图象关于y 轴对称 【解析】解:②时,,时,,③时,,时,,故答案为:,如图,由图象可得,函数图象关于y轴对称,故答案为:函数图象关于y轴对称.当时,如图,当直线与时,方程无解,此时,当时,满足题意.如图,当直线经过,时,将,代入得,解得,时满足题意,综上所述,若无解,且②当时,,进而求解.③当时,,进而求解.分别画出,时的函数图象.根据图象求解.分类讨论与时,函数图象与直线无交点的情况求解.本题考查一次函数的综合应用,解题关键是掌握一次函数的性质,掌握待定系数法求函数解析式,通过数形结合求解.20.【答案】解:是::中,,,点D为AB的中点,是常态三角形,当,时,解得:,则,故,则的面积为:当,时,解得:,则,故,则的面积为:故的面积为或【解析】【解答】解:,三边长分别是2,和4,则此三角形是常态三角形.故答案为:是;是常态三角形,设两直角边长为:a,b,斜边长为:c,则,,则,故a::,设,,则,此三角形的三边长之比为:::故答案为:::;见答案【分析】直接利用常态三角形的定义判断即可;利用勾股定理以及结合常态三角形的定义得出两直角边的关系,进而得出答案;直接利用直角三角形的性质结合常态三角形的定义得出BD的长,进而求出答案.此题主要考查了勾股定理以及新定义,正确应用勾股定理以及直角三角形的性质是解题关键.21.【答案】120 5【解析】解:由图可得A、B两市的距离是,甲到B市后,再过小时乙到达B市;故答案为:120,5;如右图:两地的距离是120km,,,设线段BD的解析式为,由题意得:,解得:,;设EF的解析式为,由题意得:,解得:,的解析式为,当甲车还未追上乙车时,可得:,解得,小时,当甲车追上乙车后,可得:,解得;小时,当甲车返回A地后,,解得,小时,答:甲车从B市往回返后再经过小时或小时或小时两车相距15千米.根据路程=速度时间的数量关系,用甲车的速度甲车到达乙地的时间就可以求出两地的距离,根据时间=路程速度可以求出乙从A市去往B市需要的时间,从而可得答案;由的结论可以求出BD的解析式,由待定系数法就可以求出结论;运用待定系数法求出EF的解析式,再由两车之间的距离公式建立方程求出其解即可.本题考查了一次函数的应用,读懂题意,正确识图,能求出函数的解析式是解答本题关键.22.【答案】解:如图1所示:,,,又,,,又,,在和中,,≌;过点B作交AC于点C,轴,交y轴于点D,如图2所示:轴,x轴轴,,又,,又,,又,,又,,,在和中,,≌,,,又直线:与x轴交于点A,与y轴交于点B,令,得,,即,令,得,即,,,,,点C的坐标为,设的函数表达式为,点A、C两点在直线上,依题意得:,解得:,直线的函数表达式为;能成为等腰直角三角形,依题意得,①若点P为直角顶点时,如图3甲所示:设点P的坐标为,则PB的长为,,,,,又,,在和中,,≌,,,点D的坐标为,又点D在直线上,,解得:,即点D的坐标为;②若点C为直角顶点时,如图3乙所示:设点P的坐标为,则PB的长为,,同理可证明≌,,,点D的坐标为,又点D在直线上,,解得:,点P与点A重合,点M与点O重合,即点D的坐标为;③若点D为直角顶点时,如图3丙所示:设点P的坐标为,则PB的长为,,同理可证明≌,,,点D的坐标为,又点D在直线上,,解得:,即点D的坐标为;综合所述,点D的坐标为或或【解析】本题综合考查了垂直的定义,平角的定义,全等三角形的判定与性质,一次函数求法,待定系数等知识点,重点掌握在平面直角坐标系内一次函数的求法,难点是构造符合题意的全等三角形.由垂直的定义得,平角的定义和同角的余角的相等求出,角角边证明≌;证明≌,求出点C的坐标为,由点到直线上构建二元一次方程组求出,,待定系数法求出直线的函数表达式为;分三种情况讨论:①若点P为直角顶点时;②若点C为直角顶点时;③若点D为直角顶点时,设出P点坐标,构建≌,由其性质,得到点D坐标,根据点D在直线上可求出其坐标.。

浙江省金华市义乌市三校2022-2023学年八年级下学期3月检测数学试卷(含解析)

浙江省金华市义乌市三校2022-2023学年八年级下学期3月检测数学试卷(含解析)

2022-2023学年浙江省金华市义乌市三校联考八年级(下)月考数学试卷(3月份)一.选择题(每题3分,共10小题,测分30分)1.下列式子一定是二次根式的是( )A.B.C.D.2.下列关于x的方程中,是一元二次方程的是( )A.x3﹣3x+2=0B.ax2+bx+c=0C.3x2﹣x﹣1=0D.x2+=﹣23.下列各式是最简二次根式的是( )A.B.C.D.4.一组样本数据为1、2、3、3、6,下列说法错误的是( )A.平均数是3B.中位数是3C.方差是3D.众数是35.一元二次方程x2﹣4x﹣3=0配方后可化为( )A.(x﹣2)2=7B.(x﹣2)2=3C.(x+2)2=7D.(x+2)2=3 6.计算÷的结果是( )A.B.C.D.7.从班上13名排球队员中,挑选7名个头高的参加校排球比赛.若这13名队员的身高各不相同,其中队员小明想知道自己能否入选,只需知道这13名队员身高数据的( )A.平均数B.中位数C.最大值D.方差8.受新冠肺炎疫情影响,某企业生产总值从六月份的500万元,连续两个月降至380万元,设平均下降率为x,则可列方程( )A.500(1﹣x)=380B.500(1﹣2x)=380C.500(1﹣x)2=380D.500(1+x)2=3809.已知关于x的方程(k﹣1)x2有两个实数解,求k的取值范围( )A.k≤B.k≤且k≠1C.0≤k≤D.0≤且k≠110.已知一元二次方程a(x﹣x1)(x﹣x2)=0(a≠0,x1≠x2)与一元一次方程dx+e=0有一个公共解x=x1,若一元二次方程a(x﹣x1)(x﹣x2)+(dx+e)=0有两个相等的实数根,则( )A.a(x1﹣x2)=d B.a(x2﹣x1)=dC.a(x1﹣x2)2=d D.a(x2﹣x1)2=d二.填空题(每题4分,共6小题,满分24分)11.若代数式有意义,则x的取值范围是 .12.已知x=1是方程x2﹣2x+k=0的一个根,则k= .13.甲乙两个人6次体育测试的平均分相同,分,分,则成绩较为稳定的是 .(填“甲”或“乙”)14.学校将平时成绩、期中成绩和期末成绩按2:4:4计算学生的学期总评成绩.若某同学这学期的数学平时成绩、期中成绩和期末成绩分别是95分、85分、90分,则该同学的数学学期总评成绩是 分.15.实数a在数轴上的位置如图所示,则化简后 .16.如图1是某小车侧面示意图,图2是该车后备箱开起侧面示意图,具体数据如图所示(单位:cm),AC=BD,AF∥BE,∠BAF=60°,箱盖开起过程中,点A,C,F不随箱盖转动,点B,D,E绕点A沿逆时针方向转动相同角度,分别到点B′,D′,E′的位置,气簧活塞杆CD随之伸长到CD′.已知直线BE⊥B′E′,垂足为E′,CD′=2CD,BE'=28+28,那么AB的长为 cm,CD′的长为 cm.三.解答题(共8小题,满分0分)17.计算:(1);(2)()().18.解下列方程:(1)x2﹣2x=3;(2)(x﹣5)2+x(x﹣5)=0.19.某校举办了国学知识竞赛,满分10分,学生得分均为整数.在初赛中,甲乙两组(每组10人)学生成绩如:(单位:分)甲组:3,6,6,6,6,6,7,9,9,10.乙组:5,6,6,6,7,7,7,7,8,9.组别平均数中位数众数方差甲组 6.8a6 3.76乙组b7c 1.16(1)以上成绩统计分析表中a= ,b= ,c= ;(2)小明同学说:“这次竞赛我得了7分,在我们小组中属中游略偏上!”观察上面表格判断,小明可能是 组的学生;(3)从平均数和方差看,若从甲乙两组学生中选择一个组参加决赛,应选 组.20.如图,世纪广场有一块长方形绿地,AB=18m,AD=15m,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m2,求道路宽x.21.已知a=3+2,b=3﹣2,分别求下列代数式的值:(1)a2﹣b2;(2)a2﹣3ab+b2.22.已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根是,求a的值及该方程的另一个根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.23.2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月第一周购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,购买20个冰墩墩和30个雪容融的价格相同.(1)今年2月第一周每个冰墩墩和雪容融的进价分别是多少元?(2)今年2月第一周,供应商以100元每个售出雪容融140个,150元每个售出冰墩墩120个.第二周供应商决定调整价格,每个雪容融的售价在第一周的基础上下降了m元,每个冰墩墩的价格不变,由于冬奥赛事的火热进行,第二周雪容融的销量比第一周增加了m个,而冰墩墩的销量比第一周增加了0.2m个,最终商家获利5160元,求m.24.定义:若四边形的一条对角线把它分成两个全等的三角形,则称这个四边形为等角四边形,并且称这条对角线为这个四边形的等分线,显然矩形是等角四边形,两条对角线都是它的等分线.(1)如图网格中存在一个△ABC,请在图1,图2中分别找一个点D,并连接AD,BD,使得四边形ADBC是以AB为等分线的等角四边形.(2)已知,如图3,在平面直角坐标系中,直线y=﹣x+m与x轴相交于点A(8,0),与y轴相交于点B.①求m的值.②若点C的坐标为(5,0),点P、点Q是△OAB边上的两个动点,当四边形OCPQ是以OP为等分线的等角四边形时,求BQ的长.参考答案一.选择题(每题3分,共10小题,测分30分)1.解:因为(﹣1)3=﹣1<0,(﹣1)2=1>0,1﹣π<0,所以只有有意义,故选:B.2.解:A、x3﹣3x+2=0,未知数最高次数为3,不是一元二次方程;B、ax2+bx+c=0,当a=0时,不是一元二次方程;C、3x2﹣x﹣1=0,是一元二次方程;D、x2+=﹣2,不是整式方程,不是一元二次方程;故选:C.3.解:A.=3,不是最简二次根式;B.=3,不是最简二次根式;C.=,不是最简二次根式;D.是最简二次根式.故选:D.4.解:这组数据的平均数为=3,中位数为3,众数为3,方差为×[(1﹣3)2+(2﹣3)2+2×(3﹣3)2+(6﹣3)2]=2.8,故选:C.5.解:∵x2﹣4x﹣3=0,∴x2﹣4x=3,则x2﹣4x+4=3+4,即(x﹣2)2=7,故选:A.6.解:÷===.故选:C.7.解:共有13名排球队员,挑选7名个头高的参加校排球比赛,所以小明需要知道自己是否入选.我们把所有同学的身高按大小顺序排列,第7名学生的身高是这组数据的中位数,所以小明知道这组数据的中位数,才能知道自己是否入选.故选:B.8.解:依题意,得500(1﹣x)2=380.故选:C.9.解:∵关于x的方程(k﹣1)x2有两个实数解,∴Δ=(﹣)2﹣4(k﹣1)×2≥0且k﹣1≠0,k≥0,解得:0≤k≤且k≠1,故选:D.10.解:∵关于x的一元二次方程a(x﹣x1)(x﹣x2)=0与关于x的一元一次方程dx+e=0有一个公共解x=x1,∴x=x1是方程a(x﹣x1)(x﹣x2)+(dx+e)=0的一个解.∵一元二次方程a(x﹣x1)(x﹣x2)+(dx+e)=0,∴ax2﹣(ax1+ax2﹣d)x+ax1x2+e=0,∵有两个相等的实数根,∴x1+x1=﹣,整理得:d=a(x2﹣x1).故选:B.二.填空题(每题4分,共6小题,满分24分)11.解:∵代数式有意义,∴x﹣3≥0,解得:x≥3,故答案为:x≥3.12.解:∵x=1是关于x的方程x2﹣2x+k=0的一个根,∴12﹣2+k=0解得:k=1.故答案为:1.13.解:(1)∵分,分,∴,∴成绩较为稳定的是乙,故答案为:乙.14.解:根据题意得:该同学的数学学期总评成绩是=89(分);故答案为:89.15.解:由题意可得5<a<10,∴a﹣4>0,a﹣11<0,原式=|a﹣4|﹣|a﹣11|=a﹣4﹣(11﹣a)=a﹣4﹣11+a=2a﹣15,故答案为:2a﹣15.16.解:过A作AP⊥EB延长线交于点P,∵AF∥BE,∴∠ABP=∠BAF,∴sin∠ABP=,cos∠ABP=,∴BP=AB,由BE旋转一定角度后得到B'E'可知,旋转角度为90°,过B'作BH⊥AP,交AP于点H,∵∠PAB+∠ABP=90°,∠D'AP+∠PAB=90°,∴∠D'AP=∠ABP,B'H=AB'sin∠D'AP=AB sin∠P'AP=AB,∴28+28=B'H+PB=AB+AB∴AB=56(cm);设CD=xcm,则AC=BD=cm,AD'=AD=x+=(cm),CD'=2CD=2x(cm),∵∠D'AC=90°,∴AC2+AD'2=CD'2,∴+=4x2,解得x=8,或x=﹣8(舍),∴CD'=2x=16(cm),故答案为:56,16.三.解答题(共8小题,满分0分)17.解:(1)原式=4﹣+=3+;(2)原式=()2﹣()2=5﹣6=﹣1.18.解:(1)∵x2﹣2x=3,∴x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,∴x1=3,x2=﹣1;(2)∵(x﹣5)2+x(x﹣5)=0,∴(x﹣5)(2x﹣5)=0,则x﹣5=0或2x﹣5=0,解得x1=5,x2=.19.解:(1)把甲组的成绩从小到大排列后,中间两个数的平均数是=6,则中位数a =6;b=×(5+6+6+6+7+7+7+7+8+9)=6.8,乙组学生成绩中,数据7出现了四次,次数最多,所以众数c=7.故答案为:6,6.8,7;(2)小明可能是甲组的学生,理由如下:因为甲组的中位数是6分,而小明得了7分,所以在小组中属中游略偏上,故答案为:甲;(3)选乙组参加决赛.理由如下:∵甲乙两组学生平均数相同,而S甲2=3.76>S乙2=1.16,∴乙组的成绩比较稳定,故选乙组参加决赛.故选:乙.20.解:∵AB=18m,AD=15m,根据题意,得(18﹣2x)(15﹣x)=144,解方程,得x=21(舍)或x=3,∴道路宽为3m.21.解:(1)∵a=3+2,b=3﹣2,∴a+b=(3+2)+(3﹣2)=6,a﹣b=(3+2)﹣(3﹣2)=4,∴a2﹣b2=(a+b)(a﹣b)=6×4=24;(2)a2﹣3ab+b2=(a﹣b)2+ab=﹣=32﹣1=31.22.解:(1)∵将x=代入方程,得﹣a+a﹣2=0,∴a=,设另外一个根为x,由根与系数的关系可知:+x=﹣a,∴x=1,(2)由题意可知:Δ=a2﹣4(a﹣2)=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根23.解:(1)设今年2月第一周每个冰墩墩的进价为x元,每个雪容融的进价为y元,依题意得:,解得:.答:今年2月第一周每个冰墩墩的进价为120元,每个雪容融的进价为80元.(2)依题意得:(100﹣m﹣80)(140+m)+(150﹣120)(120+0.2m)=5160,整理得:m2+114m﹣1240=0,解得:m1=10,m2=﹣124(不合题意,舍去).答:m的值为10.24.解:(1)由题意知:△ABC≌△ABD或△ABC≌△BAD∴可画出如图1、图2所示的两个等角四边形;(2)①∵直线y=﹣与x轴交于点A(8,0),将点A(8,0)代入得:﹣,解得:m=6;②由(1)知,直线解析式为y=﹣与y轴交于点B,∴B(0,6),根据题意,分三种情况:Ⅰ,当点Q在OB上时,OQ=5,P是∠AOQ的平分线与AB的交点时,∴BQ=OB﹣OQ=6﹣5=1;Ⅱ,当四边形OCPQ是矩形时,∵,∴,∴CP=,∴OQ=CP=,∴BQ=OB﹣OQ=6﹣=3.75;Ⅲ,当P,Q两点都在AB上时,∵OB=6,OA=8,∴AB=10,∴OH•AB=OB•OA,∴OH=4.8,∴BH==3.6,∴QH==1.4,∴BQ=BH﹣QH=3.6﹣1.4=2.2或BQ=BH+QH=3.6+1.4=5,综上所述,BQ的长为:1或3.75或2.2或5.。

江苏省南京市将军山中学2022-2023学年八年级下学期3月月考数学试卷(含答案)

江苏省南京市将军山中学2022-2023学年八年级下学期3月月考数学试卷(含答案)

2022-2023学年初二下学期南京市将军山中学3月月考一.选择题(共6小题,每题2分,共12分)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是( )A.B.C.D.2.为了了解某市七年级学生的体重情况,相关人员抽查了该市1000名七年级学生,则下列说法中错误的是( )A.该市七年级学生的全体是总体B.每个七年级学生的体重是个体C.抽查的1000名学生的体重是总体的一个样本D.这次调查样本的容量是10003.下面不可以判断四边形是平行四边形的是( )A.两组对边相等的四边形B.两组对角相等的四边形C.一组对边平行,一组邻角互补的四边形D.一组对边平行,一组对角相等的四边形4.下列事件中,为必然事件的是( )A.购买一张彩票,中奖B.一个袋中只装有2个黑球,从中摸出一个球是黑球C.抛掷一枚硬币,正面向上D.打开电视,正在播放广告5.我们把顺次连接四边形各边中点所得的四边形叫做中点四边形.若一个任意四边形的面积为a,则它的中点四边形面积为( )A.a B.a C.a D.a6.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,以下结论:①∠DCF=∠BCD;②EF=CF;③∠DFE=4∠AEF;④S△ABC<2S△CEF.一定成立的是( )A.②③④B.①②③④C.①②③D.①②④二.填空题(共10小题,每小题2分,共20分)7.某小区要了解成年居民的学历情况,应采用 方式进行调查.8.一只不透明的袋中装有除颜色外完全相同的6个球,其中3个红球、3个黄球,将球摇匀.从袋中任意摸出3个球,则其中至少有2个球同色的事件是 事件.(填“必然”、“不可能”、“随机”)9.从下列图形:等边三角形、平行四边形、矩形、菱形、正方形,圆中,任意抽取一个图形,抽取的图形既是轴对称图形,又是中心对称图形的概率是 .10.一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同.搅均后从中任意摸出1个球,摸出白球可能性 摸出黄球可能性.(填“等于”或“小于”或“大于”).11.已知三角形的三条中位线的长度分别为6cm、7cm、11cm,则这个三角形的周长为 cm.12.如图,▱ABCD中,EF为对角线BD上的两点,若添加一个条件使四边形AECF为平行四边形,则可以是: .13.如图,△ABC中,∠ABC=68°,将△ABC绕点B逆时针旋转到△A′BC′的位置,使得AA′∥BC,则∠CBC′= °.14.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD =BC,∠FPE=100°,则∠PFE的度数是 .15.如图,矩形ABCD的两条对角线夹角为60°,一条短边为4,则矩形的对角线长为 .16.已知矩形ABCD,AB=6,AD=8,将矩形ABCD绕点A顺时针旋转θ(0°<θ<360°)得到矩形AEFG,当θ= °时,GC=GB.三.解答题(共10小题,共68分)17.(4分)如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.18.(6分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC绕点O逆时针旋转90°后的△A1B1C1.(2)将△ABC向右平移3个单位,作出平移后的△A2B2C2.(3)若点M是平面直角坐标系中直线AB上的一个动点,点N是x轴上的一个动点,且以O、A2、M、N为顶点的四边形是平行四边形,请直接写出点N的坐标.19.(6分)如图,四边形ABCD是平行四边形,点E、F分别在BC、AD上,且BE=DF.求证:AC、EF互相平分.20.(7分)如图,①四边形ABCD是平行四边形,线段EF分别交AD、AC、BC于点E、O、F,②EF⊥AC,③AO=CO.(1)求证:四边形AFCE是平行四边形;(2)在本题①②③三个已知条件中,去掉一个条件,(1)的结论依然成立,这个条件是 (直接写出这个条件的序号).21.(6分)题目:如图1,已知线段AB、BC.用直尺和圆规作▱ABCD.(保留作图痕迹,不写作法)(1)图2是小明所作的图,根据作图痕迹,可以知道他作图的依据是“ 的四边形是平行四边形”;(2)请你以“对角线互相平分的四边形是平行四边形”为依据完成题目中的作图.22.(6分)某市林业局要移植一种树苗.对附近地区去年这种树苗移植成活的情况进行调查统计,并绘制了如图折线统计图:(1)这种树苗成活概率的估计值为 .(2)若移植这种树苗6000棵,估计可以成活 棵.(3)若计划成活9000棵这种树苗,则需移植这种树苗大约多少棵?23.(6分)某市教研室的数学调研小组对老师在讲评试卷中学生参与的深度与广度进行评调查,其评价项目为“主动质疑”、“独立思考”、“专注听讲”、“讲解题目”四项,该调研小组随机抽取了若干名初中九年级学生的参与情况,绘制成如图所示的频数.分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题(1)在这次评价中,一共抽查了 名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度;(3)请将频数分布直方图补充完整;(4)如果全市有60000名九年级学生,那么在试卷评讲课中,“独立思考”的九年级学生约有多少人?24.(7分)利用矩形的性质,证明:“直角三角形斜边上的中线等于斜边的一半”.已知:在Rt△ABC中,∠ABC=90°,BO是中线.求证: .证明:25.(8分)如图,在▱ABCD中,E、F分别是AD、BC的中点,∠AEF的角平分线交AB于点M,∠EFC的角平分线交CD于点N,连接MF、NE.(1)求证:四边形EMFN是平行四边形.(2)小明在完成(1)的证明后继续进行了探索,他猜想:当AB=AD时,四边形EMFN 是矩形.请在下列框图中补全他的证明思路.小明的证明思路由(1)知四边形EMFN是平行四边形.要证▱EMFN是矩形,只要证∠MFN=90°.由已知条件知∠EFN=∠CFN,故只要证∠EFM=∠BFM.易证 ,故只要证∠BFM=∠BMF,即证BM=BF,故只要证 .易证AE=AM,AE=BF,即可得证.26.(12分)(1)问题背景如图甲,∠ADC=∠B=90°,DE⊥AB,垂足为E,且AD=CD,DE=5,求四边形ABCD 的面积.小明发现四边形ABCD的一组邻边AD=CD,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△ADE绕点D逆时针旋转90°;第二步:利用∠A与∠DCB互补,证明F、C、B三点共线,从而得到正方形DEBF;进而求得四边形ABCD的面积.请直接写出四边形ABCD的面积为 .(2)类比迁移如图乙,P为等边△ABC外一点,BP=1,CP=3,且∠BPC=120°,求四边形ABPC 的面积.(3)拓展延伸如图丙,在五边形ABCDE中,BC=4,CD+AB=4,AE=DE=6,AE⊥AB,DE⊥CD,求五边形ABCDE的面积.2022-2023学年初二下学期南京市将军山中学3月月考参考答案与试题解析一.选择题(共6小题)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是( )A.B.C.D.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.2.为了了解某市七年级学生的体重情况,相关人员抽查了该市1000名七年级学生,则下列说法中错误的是( )A.该市七年级学生的全体是总体B.每个七年级学生的体重是个体C.抽查的1000名学生的体重是总体的一个样本D.这次调查样本的容量是1000【解答】解:A、该市七年级学生的体重情况是总体,故A错误;B、每个七年级学生的体重是个体,故B正确;C、抽查的1000名学生的体重是总体的一个样本,故C正确;D、这次调查样本的容量是1000,故D正确;故选:A.3.下面不可以判断四边形是平行四边形的是( )A.两组对边相等的四边形B.两组对角相等的四边形C.一组对边平行,一组邻角互补的四边形D.一组对边平行,一组对角相等的四边形【解答】解:A、两组对边相等的四边形是平行四边形,故此选项不合题意;B、两组对角相等的四边形是平行四边形,故此选项不合题意;C、一组对边平行,一组邻角互补的四边形不一定是平行四边形,故此选项符合题意;D、一组对边平行,一组对角相等的四边形可证出是平行四边形,故此选项不合题意;故选:C.4.下列事件中,为必然事件的是( )A.购买一张彩票,中奖B.一个袋中只装有2个黑球,从中摸出一个球是黑球C.抛掷一枚硬币,正面向上D.打开电视,正在播放广告【解答】解:A、购买一张彩票,中奖是随机事件,故A错误;B、一个袋中只装有2个黑球,从中摸出一个球是黑球是必然事件,故B正确;C、抛掷一枚硬币,正面向上是随机事件,故C错误;D、打开电视,正在播放广告是随机事件,故D错误;故选:B.5.我们把顺次连接四边形各边中点所得的四边形叫做中点四边形.若一个任意四边形的面积为a,则它的中点四边形面积为( )A.a B.a C.a D.a【解答】解:如图,设AC与EH、FG分别交于点N、P,BD与EF、HG分别交于点K、Q,∵E是AB的中点,EF∥AC,EH∥BD,∴△EBK∽△ABM,△AEN∽△EBK,∴=,S△AEN=S△EBK,∴=,同理可得=,=,=,∴=,∵四边形ABCD的面积是a,则四边形EFGH的面积为a.故选:A.6.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,以下结论:①∠DCF=∠BCD;②EF=CF;③∠DFE=4∠AEF;④S△ABC<2S△CEF.一定成立的是( )A.②③④B.①②③④C.①②③D.①②④【解答】解:∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故①正确;如图,延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=EM=FE,故②正确;∵EF=FM,∴S△EFC=S△CFM,即S△ECM=2S△CEF,∵△AEF≌△DMF,∴S△AEF=S△DMF,∴S△ECM=S四边形AECD,∵S△ABC<S四边形AECD,故S△ABC<2S△CEF;故③不成立;设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正确.故选:D.二.填空题(共10小题)7.某小区要了解成年居民的学历情况,应采用 普查 方式进行调查.【解答】解:某小区要了解成年居民的学历情况,应采用普查方式进行调查,故答案为:普查;8.一只不透明的袋中装有除颜色外完全相同的6个球,其中3个红球、3个黄球,将球摇匀.从袋中任意摸出3个球,则其中至少有2个球同色的事件是 必然 事件.(填“必然”、“不可能”、“随机”)【解答】解:至少有2个球同色的事件是必然事件.故答案是:必然.9.从下列图形:等边三角形、平行四边形、矩形、菱形、正方形,圆中,任意抽取一个图形,抽取的图形既是轴对称图形,又是中心对称图形的概率是 .【解答】解:在等边三角形、平行四边形、矩形、菱形、正方形,圆这6个图形中,既是轴对称图形,又是中心对称图形的有矩形、菱形、正方形,圆这4个,所以抽取的图形既是轴对称图形,又是中心对称图形的概率是=,故答案为:.10.一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同.搅均后从中任意摸出1个球,摸出白球可能性 小于 摸出黄球可能性.(填“等于”或“小于”或“大于”).【解答】解:∵袋子中有1个白球、1个红球和2个黄球,共有4个球,∴摸到白球的概率是,摸到红球的概率是,摸到黄球的概率是=,∴摸出白球可能性<摸出黄球的可能性;故答案为:小于.11.已知三角形的三条中位线的长度分别为6cm、7cm、11cm,则这个三角形的周长为 48 cm.【解答】解:∵三角形的三条中位线的长度分别为6cm、7cm、11cm,∴这个三角形的三条边分别为12cm,14cm,22cm,∴这个三角形的周长=12+14+22=48cm.故答案为:48.12.如图,▱ABCD中,EF为对角线BD上的两点,若添加一个条件使四边形AECF为平行四边形,则可以是: BE=DF .【解答】解:可以是BE=DF.理由:在平行四边形ABCD中,则可得AD∥BC,且AD=BC,∴∠ADB=∠CBD,∴△ADF≌△CBE,∴CE=AF,同理可得AE=CF,∴四边形AECF是平行四边形.补充其他条件只要使四边形AECF是平行四边形都可,答案并不唯一.13.如图,△ABC中,∠ABC=68°,将△ABC绕点B逆时针旋转到△A′BC′的位置,使得AA′∥BC,则∠CBC′= 44 °.【解答】解:∵△ABC绕点A逆时针旋转到△BA′C′的位置,∴BA′=AB,∴∠BAA′=∠BA′A,∵AA′∥BC,∴∠A′AB=∠ABC,∵∠ABC=68°,∴∠A′AB=68°,∴∠ABA′=180°﹣2×68°=44°,∵∠CBC′=∠ABA′,∴∠CBC′=44°.故答案为44.14.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD =BC,∠FPE=100°,则∠PFE的度数是 40° .【解答】解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.15.如图,矩形ABCD的两条对角线夹角为60°,一条短边为4,则矩形的对角线长为 8 .【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=OC=AC,OB=OD=BD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=4,∴AC=2OA=8,故答案为:8.16.已知矩形ABCD,AB=6,AD=8,将矩形ABCD绕点A顺时针旋转θ(0°<θ<360°)得到矩形AEFG,当θ= 60或300 °时,GC=GB.【解答】解:当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角θ=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角θ=360°﹣60°=300°.故答案为:60或300三.解答题(共10小题)17.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.【解答】解:(1)如图,点O即为所求;(2)OA=OA1、∠AOA1=∠BOB1.18.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC绕点O逆时针旋转90°后的△A1B1C1.(2)将△ABC向右平移3个单位,作出平移后的△A2B2C2.(3)若点M是平面直角坐标系中直线AB上的一个动点,点N是x轴上的一个动点,且以O、A2、M、N为顶点的四边形是平行四边形,请直接写出点N的坐标.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)当OA2为平行四边形的边时,N点坐标为(﹣3,0)或(2,0),当OA2为平行四边形的对角线时,N点坐标为(3,0).19.如图,四边形ABCD是平行四边形,点E、F分别在BC、AD上,且BE=DF.求证:AC、EF互相平分.【解答】证明:连接AE、CF,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE=DF,∴AD﹣DF=BC﹣BE,∴AF=CE,∵AF∥CE,∴四边形AECF是平行四边形,∴AC、EF互相平分.20.如图,①四边形ABCD是平行四边形,线段EF分别交AD、AC、BC于点E、O、F,②EF⊥AC,③AO=CO.(1)求证:四边形AFCE是平行四边形;(2)在本题①②③三个已知条件中,去掉一个条件,(1)的结论依然成立,这个条件是 ② (直接写出这个条件的序号).【解答】解:(1)∵四边形ABCD是平行四边形,∴AE∥CF,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF,∴四边形AFCE是平行四边形.(2)在本题①②③三个已知条件中,去掉一个条件②,(1)的结论依然成立.故答案为②21.题目:如图1,已知线段AB、BC.用直尺和圆规作▱ABCD.(保留作图痕迹,不写作法)(1)图2是小明所作的图,根据作图痕迹,可以知道他作图的依据是“ 一组对边平行且相等 的四边形是平行四边形”;(2)请你以“对角线互相平分的四边形是平行四边形”为依据完成题目中的作图.【解答】解:(1)一组对边平行且相等的四边形是平行四边形,故答案为:一组对边平行且相等;(2)如下图,连接AC后作AC中垂线,得到AC中点O;再连接BO并延长,利用圆规得到OD=OB.则四边形ABCD即为所求作的平行四边形.22.某市林业局要移植一种树苗.对附近地区去年这种树苗移植成活的情况进行调查统计,并绘制了如图折线统计图:(1)这种树苗成活概率的估计值为 0.9 .(2)若移植这种树苗6000棵,估计可以成活 5400 棵.(3)若计划成活9000棵这种树苗,则需移植这种树苗大约多少棵?【解答】解:(1)从折线统计图中的发展趋势,随着实验次数的增加,频率越稳定在0.9附近波动,根据频率估计概率,这种树苗成活概率约为0.9,故答案为:0.9;(2)6000×0.9=5400(棵),故答案为:5400;(3)9 000÷0.9=10000(棵),答:需移植这种树苗大约10000棵.23.某市教研室的数学调研小组对老师在讲评试卷中学生参与的深度与广度进行评调查,其评价项目为“主动质疑”、“独立思考”、“专注听讲”、“讲解题目”四项,该调研小组随机抽取了若干名初中九年级学生的参与情况,绘制成如图所示的频数.分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题(1)在这次评价中,一共抽查了 560 名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 54 度;(3)请将频数分布直方图补充完整;(4)如果全市有60000名九年级学生,那么在试卷评讲课中,“独立思考”的九年级学生约有多少人?【解答】解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360°×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).(4)60000×=18000(人),答:在试卷评讲课中,“独立思考”的初三学生约有18000人.24.利用矩形的性质,证明:“直角三角形斜边上的中线等于斜边的一半”.已知:在Rt△ABC中,∠ABC=90°,BO是中线.求证: BO=AC .证明:【解答】解:求证:BO=AC,故答案为:BO=AC.证明:如图,延长BO到D,使得OD=OB.∵BO是中线,∴OA=OC,∵OB=OD,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD=2OB,即BO=AC.25.如图,在▱ABCD中,E、F分别是AD、BC的中点,∠AEF的角平分线交AB于点M,∠EFC的角平分线交CD于点N,连接MF、NE.(1)求证:四边形EMFN是平行四边形.(2)小明在完成(1)的证明后继续进行了探索,他猜想:当AB=AD时,四边形EMFN 是矩形.请在下列框图中补全他的证明思路.小明的证明思路由(1)知四边形EMFN是平行四边形.要证▱EMFN是矩形,只要证∠MFN=90°.由已知条件知∠EFN=∠CFN,故只要证∠EFM=∠BFM.易证 ∠EFM=∠BMF ,故只要证∠BFM=∠BMF,即证BM=BF,故只要证 AM=BM .易证AE=AM,AE=BF,即可得证.【解答】(1)证明:在▱ABCD中,∠A=∠C,AD∥BC,AD=BC∵E、F分别是AD、BC的中点,∴AE=AD,CF=BC又∵AD=BC,∴AE=CF,∵AD∥BC,∴∠AEF=∠CFE.∵EM平分∠AEF,FN平分∠EFC.∴∠AEM=∠FEM=∠AEF,∠CFN=∠FEN=∠CFE.∵∠AEF=∠CFE,∠AEM=∠AEF,∠CFN=∠CFE.∴∠AEM=∠CFN,在△AME和△CNF中,∴△AME≌△CNF(ASA)∵∠FEM=∠FEN,∴EM∥FN,∵△AME≌△CNF,∴EM=FN.∵EM∥FN,EM=FN,∴四边形EMFN是平行四边形;(2)解:∠EFM=∠BMF,AM=BM(或:M是AB中点).故答案为:∠EFM=∠BMF,AM=BM.26.(1)问题背景如图甲,∠ADC=∠B=90°,DE⊥AB,垂足为E,且AD=CD,DE=5,求四边形ABCD 的面积.小明发现四边形ABCD的一组邻边AD=CD,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△ADE绕点D逆时针旋转90°;第二步:利用∠A与∠DCB互补,证明F、C、B三点共线,从而得到正方形DEBF;进而求得四边形ABCD的面积.请直接写出四边形ABCD的面积为 25 .(2)类比迁移如图乙,P为等边△ABC外一点,BP=1,CP=3,且∠BPC=120°,求四边形ABPC 的面积.(3)拓展延伸如图丙,在五边形ABCDE中,BC=4,CD+AB=4,AE=DE=6,AE⊥AB,DE⊥CD,求五边形ABCDE的面积.【解答】解:(1)由题可知.故答案为25.(2)如图,延长PC至D,取CD=1,连接AD.∵等边△ABC中,∠BAC=60°,∠BPC=120°,∴∠BPC+∠BAC=180°,∴四边形ABPC中,∠ABP+∠ACP=360°﹣180°=180°,∴∠ABP=∠ACD=180°﹣∠ACP,又∵AB=AC,BP=CD,∴△ABP≌△ACD(SAS),∴AP=AP,∠BAP=∠CAP.∵∠BAP+∠PAC=∠BAC=60°,∴∠CAD+∠PAC=60°,∴△APD为等边三角形且PD=PC+CD=3+1=4,∴.(3)如图,延长CD至DF=AB,连接EF、BE、CE.∵AB=DF,AE=DE,∠BAE=∠FDE=90°,∴△ABE≌△DFE(SAS),∴EB=EF.∵CD+AB=CD+DF=4,BC=4,∴CD+DF=CF=BC,∴△EBC≌△EFC(SSS),∴。

2023学年广东省揭阳市普宁市赤岗中学等五校八年级(下)月考数学试卷(3月份)+答案解析(附后)

2023学年广东省揭阳市普宁市赤岗中学等五校八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年广东省揭阳市普宁市赤岗中学等五校八年级(下)月考数学试卷(3月份)1.下面给出了5个式子:①;②;③;④;⑤;⑥,其中不等式有( )A. 2个B. 3个C. 4个D. 5个2. 在中,,,的对边分别是a,b,c,下列条件中,不能判断为直角三角形的是( )A.,, B.C.:::1:2 D.3. 不等式的解集在数轴上表示正确的是( )A. B.C. D.4. 已知,则下列各式中一定成立的是( )A. B. C. D.5. 下列命题的逆命题是假命题的是( )A. 直角三角形的两个锐角互余B. 两直线平行,内错角相等C. 三条边对应相等的两个三角形是全等三角形D. 对顶角相等6.如图,在中,,的平分线BD交AC于点D,如果DE垂直平分BC,那么( )A.B.C.D.7. 在平面直角坐标系中,直线的位置如图所示,则不等式的解集为( )A. B. C. D.8. 如图,为增强人民体质,提高全民健康水平,某市拟修建一个大型体育中心P,要使得体育中心P到三个乡镇中心A,B,C的距离相等,则点P应设计在( )A. 三条高线的交点处B.三条中线的交点处C. 三条角平分线的交点处D. 三边垂直平分线的交点处9. 若关于x的不等式组无解,则a的取值范围是( )A. B. C. D.10.如图,在格点中找一点C,使得是等腰三角形,且AB为其中的一条腰,这样的点C一共有( )A. 3个B. 4个C. 5个D. 6个11. 用反证法证明命题“已知中,;求证:”第一步应先假设______ .12. 根据“3x与5的和是负数”可列出不等式______.13. 如图,在直角坐标系中,点D的坐标是,DC是的高,且,,则的度数为______ .14. 如图,已知一次函数和的图象交于点,则可得不等式的解集是______ .15. 如图,是等边三角形,,N是AB的中点,AD是M是AD上的一个动点,连接BM,M N,则的BC边上的中线,最小值是______.16. 解下列不等式组,并把不等式组的解集在数轴上表示出来.17. 如图,已知,利用直尺和圆规作图:在BC上找一点D,使点D到AC、AB的距离相等不写作法,保留作图痕迹在的条件下,若,,则的面积是______ .18. 如图,C是路段AB的中点,两人从C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,,,D,E与路段AB的距离相等吗?为什么?19. 已知关于x的方程若该方程的解满足,求a的取值范围;若该方程的解是不等式的最小整数解,求a的值.20. 如图,在中,,,AC的垂直平分线DE分别交AB,AC 于点D,求证:是等腰三角形;若的周长是13,,求AC的长.21. 为促进复工复产,调动消费积极性,两个商场分别推出了如下促销活动.甲商场:所有商品按标价9折出售.乙商场:一次购买商品总额不超过300元的按原价付费,超过300元的部分打8折.设需要购买商品的原价总额为x元,去甲商场购买应付元,去乙商场购买应付元.填空:当时,的关系式为______ ,的关系式为:______ .黄老师准备去商场购物,购物的原价会超过300元,请说明黄老师选择去哪个商场购物更划算?22.如图,在中,,,,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,点P的运动速度为,点Q的运动速度为,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为当t为何值时,为等边三角形?当t为何值时,为直角三角形?23. 为了迎接兔年的到来,某网店上架了玉兔亲子装卫衣,已知1件大人卫衣和1件小孩卫衣的售价为200元;2件大人卫衣和1件小孩卫衣的售价为320元.每件大人卫衣和小孩卫衣的售价分别为多少元?已知大人卫衣和小孩卫衣的成本分别为80元/件和50元/件.进入1月后,这款亲子装卫衣持续热销,于是网店再购进了这款卫衣共600件,其购进总价不超过37800元,且小孩卫衣的数量不超过大人卫衣数量的2倍.设网店购进大人卫衣m件,求网店最多购进多少件大人卫衣?在的条件下,为回馈新老客户,网店决定对大人卫衣降价后再销售,若一月份购进的这些卫衣全部售出,所获利润为w元,请求出w与m之间的函数关系式,说明当m为何值时,所获利润最大?并求出最大利润.答案和解析1.【答案】C【解析】解:由题可得:①;②;⑤;⑥是不等式,故不等式有4个.故选:依据不等式的定义来判断即可,用“>”、“”、“<”、“”、“”等不等号表示不相等关系的式子是不等式.本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是会识别常见的不等号:“>”、“”、“<”、“”、“”.2.【答案】D【解析】解:A、,符合勾股定理的逆定理,能够判断是直角三角形,不符合题意;B、由可得:,符合勾股定理的逆定理,能够判断是直角三角形,不符合题意;C、根据:::1:2,可得:,能够判断是直角三角形,不符合题意;D 、,可得,不能够判断是直角三角形,符合题意;故选:根据勾股定理的逆定理,三角形内角和定理进行计算,逐一判断即可解答.本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足,那么这个三角形就是直角三角形.也考查了三角形内角和定理.3.【答案】A【解析】解:不等式的解集为,在数轴上表示如下:.故选:先求出不等式的解集为,再根据其在数轴上的表示方法即可得.本题考查了在数轴上表示一元一次不等式的解集,不等式的解集在数轴上表示的方法:>,向右画;<,向左画,在表示解集时“”,“”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.【答案】B【解析】解:,,故A不符合题意;,,故B符合题意;当时,,故C不符合题意;,,,故D不符合题意,故选:根据不等式的性质:①不等式的两边同时加上或减去同一个数或同一个含有字母的式子,不等号的方向不变,②不等式的两边同时乘以或除以同一个正数,不等号的方向不变,分别判断即可.本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.5.【答案】D【解析】解:A、直角三角形的两个锐角互余的逆命题是两个锐角互余的三角形是直角三角形,逆命题是真命题,不符合题意;B、两直线平行,内错角相等的逆命题是内错角相等,两直线平行,逆命题是真命题,不符合题意;C、三条边对应相等的两个三角形是全等三角形的逆命题是全等三角形的三条边对应相等,逆命题是真命题,不符合题意;D、对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题,符合题意;故选:分别写出各个命题的逆命题,根据平行线的判定定理、全等三角形的判定定理、对顶角、直角三角形的性质判断即可.本题考查的是命题的真假判断、逆命题的概念,正确写出各个命题的逆命题是解题的关键.6.【答案】C【解析】解:在中,,DE垂直平分BC,,,在和中,,≌,,是的平分线,,故选:根据线段垂直平分线的性质得到,根据等腰三角形的性质得到,根据角平分线的定义、三角形内角和定理计算即可.本题考查的是线段的垂直平分线的性质和全等三角形的性质和判定,掌握线段的垂直平分线上的点到线段的两个端点的距离相等.7.【答案】C【解析】解:直线的图象经过点,且函数值y随x的增大而增大,不等式的解集是故选:从图象上得到函数的增减性及与y轴的交点的横坐标,即能求得不等式的解集.本题考查了一次函数与一元一次不等式,一次函数的图象,一次函数的性质,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.8.【答案】D【解析】解:体育中心P到三个乡镇中心A、B、C的距离相等,,点P在线段AB的垂直平分线上,同理,点P在线段AC的垂直平分线上,点应设计在三条边的垂直平分线的交点,故选:直接根据线段垂直平分线的性质解答即可.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.【答案】C【解析】解:不等式组无解,,解得:故选:利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.10.【答案】C【解析】解:如图,点C的位置共有5个.故选根据网格结构,分别以A、B为顶角顶点作出与AB长度相等的格点线段即可得到点C的位置.本题考查了等腰三角形的判定,关键在于根据网格结构找出与AB长度相等的线段.11.【答案】【解析】解:第一步应先假设;故答案为:根据反证法的步骤,先假设命题的结论不成立,即假设结论的反面成立,进行作答即可.本题考查反证法.熟练掌握反证法的步骤是解题的关键.12.【答案】【解析】解:由题意得:,故答案为:首先表示“3x与5的和”,再表示“负数”即可.此题主要考查了由实际问题抽象出一元一次不等式,关键是抓住题目中的关键词,如“大于小于、不超过不低于、是正数负数”“至少”、“最多”等等,正确选择不等号.13.【答案】【解析】解:点D的坐标是,,是的高,且,是的角平分线,,而,的度数为故答案为:根据已知条件可以证明AD是的角平分线即可求解.此题主要考查了坐标与图形的性质,同时也利用了角平分线的判定定理,题目比较简单.14.【答案】【解析】解:一次函数和的图像交于点,的解集是故答案为:直接根据图象作答即可.本题考查了根据图象求不等式组的解集,正确理解图象含义是解题的关键.15.【答案】【解析】解:连接CM,CN,是等边三角形,AD是中线,,,是BC的垂直平分线,,,即当点C、M、N三点共线时,最小值为CN的长,点N是AB的中点,,,,最小值为:,故答案为:连接CM,CN,由等腰三角形的性质可知:AD是BC的垂直平分线,得,则,即当点C、M、N三点共线时,最小值为CN的长,利用勾股定理求出CN的长即可.本题主要考查了等边三角形的性质,勾股定理,线段垂直平分线的性质,两点之间,线段最短等知识,将最小值转化为CN的长是解题的关键.16.【答案】解:解不等式①,得:,解不等式②,得:,将不等式的解集表示在数轴上为:不等式组的解集为:【解析】分别求出每一个不等式的解集,在数轴上表示出每个不等式的解集即可确定不等式组的解集.本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,将不等式解集表示在数轴上是关键.17.【答案】7【解析】解:如图,点D即为所求.过点D作于点E,为的平分线,,,的面积为故答案为:利用角平分线的作图方法,作的平分线,与BC的交点即为点根据角平分线的性质可得,再利用三角形的面积公式计算即可.本题考查作图-复杂作图、角平分线的性质,熟练掌握角平分线的性质以及作图方法是解答本题的关键.18.【答案】解:D,E与路段AB的距离相等,理由:点C是路段AB的中点,,两人从C同时出发,以相同的速度分别沿两条直线行走,,,,,在和中,,,【解析】本题主要考查了全等三角形的判定与性质.首先根据题意可知,,再根据HL定理证明,可得到19.【答案】解:解方程,得,该方程的解满足,,解得;解不等式,去括号,得:,移项,得,合并同类项,得,系数化成1得:则最小的整数解是把代入得:,解得:【解析】首先要解这个关于x的方程,求出方程的解,根据方程的解满足,可以得到一个关于a的不等式,就可以求出a的范围;首先解不等式求得不等式的解集,然后确定解集中的最小整数值,代入方程求得a的值即可.本题考查了一元一次不等式的解法以及方程的解的定义,正确解不等式求得x的值是关键.20.【答案】证明:,,,是AC的垂直平分线,,,,,,是等腰三角形;解:的周长是13,,,,,,,,【解析】先利用等腰三角形的性质以及三角形内角和定理可得,再利用线段的垂直平分线性质可得,从而利用等腰三角形的性质可得,然后利用三角形外角的性质可得,最后根据等角对等边即可解答;根据已知和的结论易得,从而可得本题考查了等腰三角形的判定与性质,线段垂直平分线的性质,熟练掌握等腰三角形的判定与性质,以及线段垂直平分线的性质是解题的关键.21.【答案】【解析】解:由题意可得,,当时,,当时,,;故答案为:,;令,解得,将代入得,,由解析式可得,当时,去甲商场购物更合算;当时,两家商场购物一样合算;当时,去甲商场购物更合算.根据题意和题目中的数据,可以分别写出,关于x的函数关系式;由点E的实际意义并结合图象解答即可.本题考查了一次函数的应用及一元一次不等式的应用,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】解:在中,,,,,,,当时,为等边三角形,即,;当时,为等边三角形;若为直角三角形,①当时,,即,,②当时,,即,即当或时,为直角三角形.【解析】用含t的代数式表示出BP、由于,当时,可得到关于t的一次方程,求解即得结论;分两种情况进行讨论:当时,当时.利用直角三角形中,含角的边间关系,得到关于t的一次方程,求解得结论.本题考查了含角的直角三角形、等边三角形的判定和性质,分类讨论的思想方法,利用“直角三角形中,角所对的边等于斜边的一半”及“有一个角是的等腰三角形是等边三角形”,得到关于t的一次方程是解决本题的关键.23.【答案】解:设每件大人卫衣售价x元,每件小孩卫衣售价y元,由题意得:,解得,答:每件大人卫衣售价120元,每件小孩卫衣售价80元;设网店购进大人卫衣m件,则购进小孩卫衣件,由题意得:,解得,的最大值为260,答:网店最多购进260件大人卫衣;根据题意得:,,且,当时,w最大,最大值为17600,与m之间的函数关系式为,当时,所获利润最大,最大利润17600元.【解析】设每件大人卫衣售价x元,每件小孩卫衣售价y元,根据“1件大人卫衣和1件小孩卫衣的售价为200元;2件大人卫衣和1件小孩卫衣的售价为320元”列出二元一次方程组,解方程组即可;设网店购进大人卫衣m件,则购进小孩卫衣件,根据“购进总价不超过37800元,且小孩卫衣的数量不超过大人卫衣数量的2倍”列出不等数组,解不等式组即可;根据总利润=大人卫衣和小孩卫衣利润之和列出函数解析式,再根据函数的性质求最值.本题考查了一次函数的应用,二元一次方程组及一元一次不等式组的应用,关键是找出数量关系列出函数解析式、方程组和不等式.。

湖北省武汉市江岸区七一华源中学2019-2020学年八年级(下)月考数学试卷(3月份) 解析版

湖北省武汉市江岸区七一华源中学2019-2020学年八年级(下)月考数学试卷(3月份)  解析版

2019-2020学年湖北省武汉市江岸区七一华源中学八年级(下)月考数学试卷(3月份)一.选择题(共10小题)1.使二次根式有意义的x的取值范围是()A.x≠2B.x>2C.x≤2D.x≥22.下列式子中,属于最简二次根式的是()A.B.C.D.3.下列各式计算正确的是()A.8﹣2=6B.5+5=10C.4÷2=2D.4×2=8 4.不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D5.下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:56.八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线.如果一条对角线用了49盆红花,还需要从花房运来红花()A.48盆B.49盆C.50盆D..51盆7.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺8.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A.3B.C.D.49.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连结P A和PM,则P A+PM的值最小是()A.3B.2C.3D.610.在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于()A.12B.16C.16或24D.12或20二.填空题(共6小题)11.是整数,则最小的正整数a的值是.12.已知x=+1,y=﹣1,则x2﹣y2=.13.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是.14.已知x+=,那么x﹣=.15.在矩形ABCD中,E、F、M分别为AB、BC、CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为.16.如图,在矩形ABCD中,AB=2,AD=1,点P在线段AB上运动,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原设四边形EPFD的面积为S,当四边形EPFD为菱形时,请写出S的取值范围.三.解答题(共7小题)17.(1)(+)×(2)(4﹣3)﹣18.先化简,再求值:+x﹣4y﹣,其中x=,y=4.19.如图,在边长为a的正方形ABCD中,M是CD的中点,N是BC上一点,且BN=BC.求△AMN的面积.20.如图在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.(1) 填空:∠ABC=,BC=.(2)若点A在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D,并作出以A、B、C、D四个点为顶点的平行四边形,求出满足条件的D点的坐标.21.如图,E、F、G、H分别为四边形ABCD四边之中点.(1)求证:四边形EFGH为平行四边形;(2)当AC、BD满足时,四边形EFGH为菱形.当AC、BD满足时,四边形EFGH为矩形.当AC、BD满足时,四边形EFGH为正方形.22.在三角形△ABC中,D是BC边的中点,AD=BC.(1)△ABC的形状为.(2)如图,BM=3,BC=12,∠B=45°,∠MAN=45°,求CN;(3)在(2)的条件下,AN=.23.如图所示,在平面直角坐标系中A(a,0),B(b,0),D(0,d),以AB,AD为邻边做平行四边形ABCD,其中a,b,d满足(a+1)2++|d﹣4|=0.(1)求出C的坐标,及平行四边形ABCD的面积;(2)如图2,线段BC的中垂线交y轴与点E,F为AD的中点,试判断∠EFB的大小,并说明理由;(3)如图3,过点C作CG⊥x轴与点G,K为线段DG上的一点,KH⊥CK交OG延长线与点H,且∠DKC=3∠KHG,请求出的值.参考答案与试题解析一.选择题(共10小题)1.使二次根式有意义的x的取值范围是()A.x≠2B.x>2C.x≤2D.x≥2【分析】利用当二次根式有意义时,被开方式为非负数,得到有关x的一元一次不等式,解之即可得到本题答案.【解答】解:∵二次根式有意义,∴x﹣2≥0,解得:x≥2,故选:D.2.下列式子中,属于最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数含分母,故D错误;故选:A.3.下列各式计算正确的是()A.8﹣2=6B.5+5=10C.4÷2=2D.4×2=8【分析】根据同类二次根式的合并,及二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、8﹣2=6,原式计算错误,故A选项错误;B、5与5不是同类二次根式,不能直接合并,故B选项错误;C、4÷2=2,原式计算错误,故C选项错误;D、4×2=8,原式计算正确,故D选项正确;故选:D.4.不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D【分析】根据平行四边形的判定定理进行判断.【解答】解:A、AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形,错误;B、∵AB∥CD,∴∠A+∠D=180°,∵∠A=∠C,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD为平行四边形,正确;C、∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,正确;D、∵∠A=∠C,∠B=∠D,∴∠A+∠D=∠C+∠D=180°,∴AD∥BC,AB∥CD,∴四边形ABCD为平行四边形,正确;故选:A.5.下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【分析】根据三角形内角和定理,以及勾股定理逆定理分别进行分析可得答案.【解答】解:A、可利用勾股定理逆定理判定△ABC为直角三角形,故此选项不合题意;B、根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠A=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=45°,∠B=60°,∠C=75°,可判定△ABC不是直角三角形,故此选项符合题意;故选:D.6.八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线.如果一条对角线用了49盆红花,还需要从花房运来红花()A.48盆B.49盆C.50盆D..51盆【分析】根据矩形的对角线互相平分且相等,即可得出结果.【解答】解:∵矩形的对角线互相平分且相等,∴一条对角线用了49盆红花,中间一盆为对角线交点,49﹣1=48,∴还需要从花房运来红花48盆;故选:A.7.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选:D.8.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A.3B.C.D.4【分析】由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【解答】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE==4,故选:D.9.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连结P A和PM,则P A+PM的值最小是()A.3B.2C.3D.6【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时P A+PM 的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD 垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得P A+PM的最小值.【解答】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时P A+PM 的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,P A=PC,∵M为AD中点,∴DM=AD=3,CM⊥AD,∴CM==3,∴P A+PM=PC+PM=CM=3.故选:C.10.在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于()A.12B.16C.16或24D.12或20【分析】根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【解答】解:①如图1所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴AD=BC=5,∴▱ABCD的周长等于:20,②如图2所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴BC=3﹣2=1,∴▱ABCD的周长等于:1+1+5+5=12,则▱ABCD的周长等于12或20.故选:D.二.填空题(共6小题)11.是整数,则最小的正整数a的值是5.【分析】由于45a=5×3×3×a,要使其为整数,则必能被开得尽方,所以满足条件的最小正整数a为5.【解答】解:45a=5×3×3×a,若为整数,则必能被开方,所以满足条件的最小正整数a为5.故答案为:5.12.已知x=+1,y=﹣1,则x2﹣y2=.【分析】先分解因式,再代入比较简便.【解答】解:x2﹣y2=(x+y)(x﹣y)=2×2=4.13.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是32或42.【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.综上所述,△ABC的周长是42或32.故填:42或32.14.已知x+=,那么x﹣=±3.【分析】直接利用完全平方公式得出x2+=11,进而得出x﹣的值.【解答】解:∵x+=,∴(x+)2=13,∴x2++2=13,∴x2+=11,∴x2+﹣2=(x﹣)2=9,∴x﹣=±3.故答案为:±3.15.在矩形ABCD中,E、F、M分别为AB、BC、CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为5.【分析】由四边形ABCD是矩形,得到∠B=∠C=90°,CD=AB=6,根据AE=3,DM =2,于是得到BE=3,CM=4,推出△BEF∽△CFM,得到关于BF的比例式,进而可求出EM,EF的长,再利用勾股定理即可求出EM的长.或过M作MN⊥AB于N,易知MN=7,EN=1,EM==5.【解答】解:∵四边形ABCD是矩形,∴∠B=∠C=90°,CD=AB=6,∵AE=3,DM=2,∴BE=3,CM=4,∵EF⊥FM,∴∠BEF+∠BFE=∠BFE+∠MFC=90°,∴∠BEF=∠CFM,∴△BEF∽△CFM,∴,∴,解得:BF=3,或BF=4,∴CF=4,或CF=3,∴EF==5,FM==5,∴EM==5,故答案为:5.或过M作MN⊥AB于N,易知MN=7,EN=1,EM==5.16.如图,在矩形ABCD中,AB=2,AD=1,点P在线段AB上运动,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原设四边形EPFD的面积为S,当四边形EPFD为菱形时,请写出S的取值范围1≤S≤.【分析】由要使四边形EPFD为菱形,则需DE=EP=FP=DF,可得当点E与点A重合时,AP最小;当点P与点B重合时,AP最大,继而求得四边形EPFD为菱形的AP的取值范围,进而得到S的取值范围.【解答】解:∵要使四边形EPFD为菱形,则需DE=EP=FP=DF,∴如图1:当点E与点A重合时,AP=AD=1,此时AP最小;此时,S=AP2=1.如图2:当点P与B重合时,AP=AB=2,此时AP最大;此时,设AE=x,则EP=DE=2﹣x,根据勾股定理得:12+x2=(2﹣x)2,解得:x=,∴EP=,∴S=1×=.∴四边形EPFD为菱形时,S的取值范围:1≤S≤.故答案为:1≤S≤.三.解答题(共7小题)17.(1)(+)×(2)(4﹣3)﹣【分析】(1)根据乘法分配律可以解答本题;(2)先去括号,然后合并同类项即可解答本题.【解答】解:(1)(+)×==4+3;(2)(4﹣3)﹣=4﹣3﹣=3﹣3.18.先化简,再求值:+x﹣4y﹣,其中x=,y=4.【分析】直接利用二次根式的性质化简,进而把已知数据代入得出答案.【解答】解:原式=5+x•﹣4y•﹣•y=5+﹣4﹣=,当x=,y=4时,原式==.19.如图,在边长为a的正方形ABCD中,M是CD的中点,N是BC上一点,且BN=BC.求△AMN的面积.【分析】首先用a表示出AN、AM和MN的长,再利用勾股定理的逆定理证明△AMN是直角三角形,最后利用三角形面积公式计算即可.【解答】解:在Rt△ABN中,AN2=AB2+BN2,∴AN2=a2+(a)2=a2,在Rt△ADM中,AM2=AD2+DM2,∴AM2=a2+()2=a2,在Rt△CMN中,MN2=CM2+CN2,∴MN2=(a)2+(a)2=a2,∵a2=a2+a2,∴AN2=AM2+MN2,∴△AMN是直角三角形,∴S△AMN=AM•AN=×a×a=a2.20.如图在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.(1) 填空:∠ABC=135°,BC=2.(2)若点A在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D,并作出以A、B、C、D四个点为顶点的平行四边形,求出满足条件的D点的坐标.【分析】(1)直接利用网格得出:∠ABC的度数,再利用勾股定理得出BC的长;(2)利用平行四边形的性质得出D点位置即可.【解答】解:(1)由图形可得:∠ABC=45°+90°=135°,BC==;故答案为:135°,2;(2)满足条件的D点共有3个,以A、B、C、D四个点为顶点的四边形为:平行四边形分别是▱ABCD1、▱ABD2C和▱AD3BC.其中第四个顶点的坐标为:D1(3,﹣4)或D2(7,﹣4)或D3(﹣1,0).21.如图,E、F、G、H分别为四边形ABCD四边之中点.(1)求证:四边形EFGH为平行四边形;(2)当AC、BD满足AC=BD时,四边形EFGH为菱形.当AC、BD满足AC⊥BD时,四边形EFGH为矩形.当AC、BD满足AC=BD且AC⊥BD时,四边形EFGH 为正方形.【分析】(1)连接BD,根据三角形的中位线平行于第三边并且等于第三边的一半可得EH∥BD且EH=BD,FG∥BD且FG=BD,从而得到EH∥FG且EH=FG,再根据一组对边平行且相等的四边形是平行四边形证明即可;(2)连接AC,同理可得EF∥AC且EF=AC,再根据邻边相等的平行四边形是菱形,邻边垂直的平行四边形是矩形,邻边相等且垂直的平行四边形是正方形解答.【解答】(1)证明:如图,连接BD,∵E、F、G、H分别为四边形ABCD四边之中点,∴EH是△ABD的中位线,FG是△BCD的中位线,∴EH∥BD且EH=BD,FG∥BD且FG=BD,∴EH∥FG且EH=FG,∴四边形EFGH为平行四边形;(2)解:连接AC,同理可得EF∥AC且EF=AC,所以,AC=BD时,四边形EFGH为菱形;AC⊥BD时,四边形EFGH为矩形;AC=BD且AC⊥BD时,四边形EFGH为正方形.故答案为:AC=BD;AC⊥BD;AC=BD且AC⊥BD.22.在三角形△ABC中,D是BC边的中点,AD=BC.(1)△ABC的形状为直角三角形.(2)如图,BM=3,BC=12,∠B=45°,∠MAN=45°,求CN;(3)在(2)的条件下,AN=2.【分析】(1)结论:△ABC是直角三角形.证明DA=DB=DC即可解决问题.(2)设CN=x,将△BAM绕点A逆时针旋转90°得到△ACH,连接NH.证明△NAM ≌△NAH(SAS),推出MN=NH,利用勾股定理构建方程解决问题即可.(3)求出AD,DN,利用勾股定理解决问题.【解答】解:(1)结论:△ABC是直角三角形.理由:∵BD=DC,AD=BC,∴DA=DB=DC,∴∠BAC=90°.故答案为直角三角形.(2)如图,设CN=x.∵∠B=45°,∠BAC=90°,∴∠ACB=∠B=45°,∴AB=AC,∵BD=DC,∴AD⊥BC,将△BAM绕点A逆时针旋转90°得到△ACH,连接NH.∵∠ACB=∠ACH=∠B=45°,∴∠NCH=90°,∵∠MAN=45°,∠MAH=90°,∴∠NAM=∠NAH=45°,∵NA=NA,AM=AH,∴△NAM≌△NAH(SAS),∴MN=NH,∵BM=CH=3,BC=12,∴CM=12﹣3=9,∴MN=NH=9﹣x,∵NH2=CH2+CN2,∴(9﹣x)2=x2+32,解得x=4.∴CN=4.(3)在Rt△ADN中,∵∠ADN=90°,AD=BD=CD=6,DN=CD﹣CN=6﹣4=2,∴AN===2.故答案为2.23.如图所示,在平面直角坐标系中A(a,0),B(b,0),D(0,d),以AB,AD为邻边做平行四边形ABCD,其中a,b,d满足(a+1)2++|d﹣4|=0.(1)求出C的坐标,及平行四边形ABCD的面积;(2)如图2,线段BC的中垂线交y轴与点E,F为AD的中点,试判断∠EFB的大小,并说明理由;(3)如图3,过点C作CG⊥x轴与点G,K为线段DG上的一点,KH⊥CK交OG延长线与点H,且∠DKC=3∠KHG,请求出的值.【分析】(1)根据非负数的性质得到a=1,b=3,d=4,求得A(﹣1,0),B(3,0),D(0,4),得到OA=1,OD=4,过C作CE⊥x轴于E点,根据平行四边形的性质得到AD=BC,AD∥BC,根据全等三角形的性质得到CE=OD=4,BE=AO=1,于是得到结论;(2)连接BE,OF,过F作FG⊥x轴于G,FK⊥y轴于K,根据线段垂直平分线的性质得到CE=BE,求得F(﹣,2),设ED=b,根据勾股定理列方程得到ED=,根据勾股定理和勾股定理的逆定理即可得到结论;(3)如图3,过K作KE⊥KG交CG于E,提出四边形CDOG是正方形,得到∠DGC =45°,推出△EKG是等腰直角三角形,求得KG=KE,根据全等三角形的性质得到CK =HK,根据已知条件即可得到结论.【解答】解:(1)∵(a+1)2++|d﹣4|=0.∴a+1=0,b﹣3=0,d﹣4=0,∴a=1,b=3,d=4,∴A(﹣1,0),B(3,0),D(0,4),∴OA=1,OD=4,过C作CE⊥x轴于E点,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAO=∠CBE,∵∠AOD=∠CEB=90°,∴△CBE≌△DAO(AAS),∴CE=OD=4,BE=AO=1,∴OE=4,∴C(4,4),∴S四边形ABCD=4×4=16;(2)连接BE,OF,过F作FG⊥x轴于G,FK⊥y轴于K,∵线段BC的中垂线交y轴与点E,∴CE=BE,∵F为AD的中点,∴F(﹣,2),设ED=b,∴DE2+DC2=EC2=EB2=EO2+OB2,∴DE2+42=(4﹣DE)2+32,解得:ED=,∴FB2=FG2+BG2=4+,EF2=FK2+EK2=+,BE2=OE2+OB2=9+=,∵FB2+EF2=+==BE2,∴△EFB是直角三角形,∴∠EFB=90°;(3)如图3,过K作KE⊥KG交CG于E,∵CG⊥x轴与点G,∴CD=CG=4,∴四边形CDOG是正方形,∴∠DGC=45°,∴△EKG是等腰直角三角形,∴KG=KE,∴∠KEG=∠KGE=45°,∴∠CEK=∠HGK=135°,∴△ECK≌△GHK(ASA),∴CK=HK,∴△KCH是等腰直角三角形,∵∠DKC=3∠KHG,∴2∠KHG=45°,∠KHG=∠KCE=22.5°,∴CD=CG=CE+EG=KE+EG=KG+KG,∴.。

2023-2024学年上海市闵行区八年级下学期月考数学试卷含详解

2023-2024学年上海市闵行区八年级下学期月考数学试卷含详解

2023学年第二学期第一次阶段练习八年级数学学科时长:90分钟总分:100分一、选择题:(本大题共6题,每题3分,满分18分)1.下列函数中,y 值随x 的增大而减小的函数()A .3y x =-+; B.12y x =; C.31y x =+; D.11y x =+.2.下图中表示函数x y a a =-和a y x =在同一平面直角坐标系中的图像是()A.B.C.D.3.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的()A.B.C.D.4.下列方程中,有实数根的方程是()A.40=;B.2350x x ++=;C.111x x x =--;D.380x +=.5.已知各组x y 、的值①1,2;x y =-⎧⎨=⎩②20x y =-⎧⎨=⎩,;③34x y =-⎧⎨=⎩,;④41x y =-⎧⎨=⎩,;其中,是二元二次方程2244260x xy y x y ++---=的解的个数为()A.1B.2C.3D.46.已知关于x3m x ++=有一个实数根是1x =,那么m 的值为()A.2B.3C.2或3D.一切实数.二、填空题:(本大题共12题,每题2分,满分24分)7.当m _______时,函数7y mx =+是一次函数.8.直线25y x =-的截距是_______.9.已知一次函数()112f x x =-,那么()2f =_______.10.如果点()1,A a -、点()1,B b 在直线1y x =-+上,那么a _______b (填“>”、“<”).11.若一次函数2y x m =+的图象不经过第四象限,那么m 的取值范围是_____.12.一次函数()0y kx b k =+≠的图像如图所示,当0y >时,x 的取值范围是_______.13.换元法解方程()2231512x x x x -+=-时,如果设21x y x =-,那么得到关于y 的整式方程是_______.14.方程(x 0-=的解是_____________________15.某校举行篮球单循环赛,即两队之间互相比赛,共进行了m 场比赛.设有x 个队参加这个比赛,那么可以列出方程为_______.16.已知一个多边形的每个内角都是o160,则这个多边形的边数是_______.17.已知(6,2),B(3,4)A ---,点P 在y 轴上且PA PB +最短,则点P 的坐标为_______________18.如果关于x 的方程2202(2)x x x a x x x x -+++=--只有一个实数根,则实数a 的值为________________.三、简答题:(本大题共4题,每题6分,满分24分)19.解关于x 的方程:()13x x -=.20.解方程:2631x 1x 1-=--21.1=22.解方程组:222910x xy y x y ⎧-+=⎨+-=⎩四、解答题:(本大题共3题,每题8分,满分24分)23.已知一次函数图象经过点()1,7A 、点()1,5B -.(1)求这个一次函数的解析式;(2)求这个一次函数图象、直线y x =-与x 轴围成的三角形面积.24.某校组织甲、乙两班学生参加“美化校园”的义务劳动.如果甲班做2小时,乙班做3小时,那么可完成全部工作的一半;如果甲班先做2小时后另有任务,剩下工作由乙班单独完成,那么乙班所用的时间恰好比甲班单独完成全部工作的时间多1小时.问:甲乙两班单独完成这项工作各需多少时间?25.A 、B 两城间的公路长为m 千米,甲、乙两车同时从A 城出发沿这一公路驶向B 城,甲车到达B 城1小时后沿原路用每小时90千米的速度返回.如图是它们离A 城的路程y (千米)与行驶时间x (小时)之间的函数图像.(1)由题设可以得出m 的值为_______;(2)甲车从A 城出发时的速度为_______千米/小时;(3)甲车返回过程中y 与x 之间的函数解析式是_______;(4)如果乙车的行驶速度为60千米/小时,那么甲从B 城开始返回,经过几个小时与途中的乙车相遇.五、综合题:(本题满分10分,第(1)(3)小题各4分,第(2)小题2分)26.如图,直线1:l y x m =-+与y 轴交于点A ,直线2:2l y x n =+与y 轴交于点C ,与x 轴交于点D ,且它们都经过点()2,2B .(1)求点A 、点D 坐标;(2)过点A 作BC 的平行线交x 轴于点E ,求点E 的坐标;(3)在(2)的条件下,直线2l 上是否存在一动点P ,使EDP △是等腰三角形?若存在,请直线写出P 点坐标;若不存在,请说明理由.2023学年第二学期第一次阶段练习八年级数学学科时长:90分钟总分:100分一、选择题:(本大题共6题,每题3分,满分18分)1.下列函数中,y 值随x 的增大而减小的函数()A.3y x =-+; B.12y x =; C.31y x =+; D.11y x =+.【答案】A【分析】此题考查函数的性质,熟知一次函数的性质及反比例函数的性质是解题的关键,根据函数性质依次判断即可.【详解】A.是一次函数,0k <,y 值随x 的增大而减小,故符合题意;B.是正比例函数,0k >,y 值随x 的增大而增大,故不符合题意;C.是一次函数,0k >,y 值随x 的增大而增大,故不符合题意;D.由0x ≠得函数图象是两个分支,在每个象限内,y 值随x 的增大而减小,故不符合题意;故选:A .2.下图中表示函数x y a a =-和a y x =在同一平面直角坐标系中的图像是()A. B. C. D.【答案】B【分析】此题考查了一次函数图像及反比例函数图像,根据a 的取值分别确定一次函数及反比例函数图像所在的象限,即可得到答案【详解】当0a >时,x y a a=-的图像过第一,三,四象限;a y x =的图像在第一,三象限;故C 错误,D 错误;当a<0时,x y a a =-的图像过第一,二,四象限;a y x =的图像在第二,四象限;故A 错误,B 正确;故选:B3.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的()A.B.C.D.【答案】B【分析】根据题意,列出函数关系式,即可求解.【详解】解∶根据题意得∶()54008y t t=-+≤≤,∴该图象为一次函数图象的一部分.故选:B【点睛】本题主要考查了一函数的图象,根据题意,列出函数关系式是解题的关键.4.下列方程中,有实数根的方程是()A.40=;B.2350x x++=; C.111xx x=--; D.380x+=.【答案】D【分析】此题考查了二次根式的性质,一元二次方程根的判别式,解分式方程,立方根的概念,据此依次判断即可.【详解】解:A、40+=4=-,无意义,故无实数根,不符合题意;B、2345110∆=-⨯=-<,无实数根,故不符合题意;C、去分母,得1x=,此时10x-=,无实数根,故不符合题意;D、380x+=,得2x=-,有实数根,故符合题意;故选:D.5.已知各组x y、的值①1,2;xy=-⎧⎨=⎩②2xy=-⎧⎨=⎩,;③34xy=-⎧⎨=⎩,;④41xy=-⎧⎨=⎩,;其中,是二元二次方程2244260x xy y x y++---=的解的个数为()A.1B.2C.3D.4【答案】C【分析】本题考查二元二次方程的解,将题目中的各组解分别代入224426x xy y x y ++---中,看哪一组解使得2244260x xy y x y ++---=,则哪一组解就是方程的解,本题得以解决【详解】解:2244260x xy y x y ++---=即()()2216x y x y ++-=①当12x y =-⎧⎨=⎩时,()()2216x y x y ++-=,故该选项符合题意;②.当20x y =-⎧⎨=⎩,()()2216x y x y ++-=,故该选项符合题意;③.34x y =-⎧⎨=⎩,()()2216x y x y ++-≠故该选项不符合题意;④.41x y =-⎧⎨=⎩,()()2216x y x y ++-=故该选项符合题意;则符合题意得有3个.故选:C .6.已知关于x 3m x ++=有一个实数根是1x =,那么m 的值为()A.2B.3C.2或3D.一切实数.【答案】A【分析】本题主要考查的是无理方程,先把方程的根代入方程,可以求出m 的值,然后根据无理方程中二次根式的双重非负性列出不等式,得2m =.【详解】解:把1x =代入方程有:13m ++=,2m =-,两边同时平方得:2244m m m -=-+,即2560m m -+=,即()()230m m --=,∴12m =,23m =,由题意得:2020m x m -≥⎧⎨-≥⎩,∴2020m m -≥⎧⎨-≥⎩,经检验2m =13m ++=的解,3m =不符合题意,要舍去.故选:A .二、填空题:(本大题共12题,每题2分,满分24分)7.当m _______时,函数7y mx =+是一次函数.【答案】0≠##不等于0【分析】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.根据一次函数的定义即可求解.【详解】 函数7y mx =+是一次函数,∴0m ≠故答案为:0≠.8.直线25y x =-的截距是_______.【答案】5-【分析】此题考查了一次函数截距的定义,截距即为图象与y 轴交点的纵坐标,据此解答即可.【详解】当0x =时,25y x =-中5y =-,故答案为5-.9.已知一次函数()112f x x =-,那么()2f =_______.【答案】0【分析】此题考查求一次函数值,根据公式代入计算即可.【详解】∵()112f x x =-,∴()122102f =⨯-=,故答案为:0.10.如果点()1,A a -、点()1,B b 在直线1y x =-+上,那么a _______b (填“>”、“<”).【答案】>【分析】此题考查比较一次函数值的大小,将点()1,A a -、点()1,B b 代入1y x =-+,分别求出a ,b ,比较即可.【详解】将点()1,A a -、点()1,B b 代入1y x =-+,得112,110a b =+==-+=,∴a b >,故答案为:>.11.若一次函数2y x m =+的图象不经过第四象限,那么m 的取值范围是_____.【分析】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系,先判断出一次函数图象经过第一、二、三象限或一、三象限,即可确定m 的取值范围,解题的关键是熟练掌握一次函数的图象及性质.【详解】解:∵一次函数2y x m =+的图象不经过第四象限,∴一次函数2y x m =+图象经过第一、二、三象限或一、三象限,∴0m ≥,故答案为:0m ≥.12.一次函数()0y kx b k =+≠的图像如图所示,当0y >时,x 的取值范围是_______.【答案】3x <【分析】本题主要考查一次函数图像和一元一次不等式的解集,根据图像直接解答即可.【详解】解:根据函数图像可知:当3x <时,0y >,故答案为:3x <.13.换元法解方程()2231512x x x x -+=-时,如果设21x y x =-,那么得到关于y 的整式方程是_______.【答案】25302y y -+=【分析】由21x y x =-,则211x x y -=,将方程()2231512x x x x -+=-变形得25302y y -+=.【详解】解:设21x y x =-,则211x x y-=,则方程()2231512x x x x -+=-为352y y +=整理得25302y y -+=,故答案为25302y y -+=.14.方程(x 0-=的解是_____________________【答案】4x =【详解】解:(x 0-=Q 20x ∴-=或40x -=,解得:2x =或4x =,40x -≥∴4x ≥4x ∴=故答案为:4x =【点睛】此题考查解无理方程,注意被开方数必须大于或等于0,求此类方程的解必须满足这一条件.15.某校举行篮球单循环赛,即两队之间互相比赛,共进行了m 场比赛.设有x 个队参加这个比赛,那么可以列出方程为_______.【答案】()112x x m -=【分析】本题主要考查了一元二次方的应用,解决本题的关键是读懂题意,得到总场数的等量关系.根据“比赛场数()12x x -=”,即可求解.【详解】解:根据题意得:()112x x m -=,故答案为:()112x x m -=.16.已知一个多边形的每个内角都是o160,则这个多边形的边数是_______.【答案】18【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解: 多边形每一个内角都等于o 160∴多边形每一个外角都等于o o o180-160=20∴边数o o 3602018n =÷=故答案为:18【点睛】此题主要考查了多边形的外角与内角,解题的关键是掌握多边形的外角与它相邻的内角互补,外角和为360°.17.已知(6,2),B(3,4)A ---,点P 在y 轴上且PA PB +最短,则点P 的坐标为_______________【答案】(0,2)-【分析】要使点P 在y 轴上且PA PB +最短,作A 点关于y 轴对称点A’,连接A’B 交y 轴于点P ,P 即为所求.【详解】解:作A 点关于y 轴对称点A’,连接A’B 交y 轴于点P ,则此时使PA +PB 最小,∵A (-6,2),∴A’坐标为(6,2),设直线A’B 的解析式为y =kx +b ,将A’(6,2),B (-3,−4)代入y =kx +b 得:2643k b k b =+⎧⎨-=-+⎩,解得:232k b ⎧=⎪⎨⎪=-⎩,∴直线A’B 的解析式为y =223x -,当x=0时,y=-2,∴点P 的坐标为(0,2)-,故答案为(0,2)-.【点睛】此题主要考查了最短路径求法以及待定系数法求一次函数解析式等知识,求得直线A’B 的解析式是解题关键.18.如果关于x 的方程2202(2)x x x a x x x x -+++=--只有一个实数根,则实数a 的值为________________.【答案】7,4,82---【分析】先将分式方程化为整式方程,此整式方程为一元二次方程,根据判别式等于0求得a 的值,再分为两种情况,当△=0和△>0,再分别求出即可.【详解】解:去分母得整式方程为:2224=0x x a -++,∵方程只有一个实数根,当△=0时,(-2)2-4×2×(a+4)=0,解得:a=72-,此时方程的解为:x=72-,满足条件;当△>0时,a <72-,此时方程2224=0x x a -++有两个不相等的实数根,则当x=0时,代入方程得:a=-4<72-,即a=-4时,x=0是方程2202(2)x x x a x x x x -+++=--的增根,当x=2时,代入方程得:a=-8<72-,即a=-8时,x=2是方程2202(2)x x x a x x x x -+++=--的增根,综上:a 的值为72-或-4或-8.【点睛】本题考查了分式方程的解和分式有意义的条件,以及一元二次方程根的判别式,能求出符合的所有情况是解此题的关键.三、简答题:(本大题共4题,每题6分,满分24分)19.解关于x 的方程:()13x x -=.【答案】1122x =+,2122x =-【分析】本题主要考查了用公式法解一元二次方程,先把方程变形得到230x x --=,再按公式法解方程即可.【详解】解:方程()13x x -=可化为:230x x --=,1a =,1b =-,3c =-,()()2241413130b ac ∆=-=--⨯⨯-=>,∴方程有两个不相等的实数根.411322b x a -±==,∴1122x =+,2122x =-.20.解方程:2631x 1x 1-=--【答案】x=-4【分析】本题考查解分式方程的能力.因为x 2-1=(x+1)(x-1),所以可得方程最简公分母为(x+1)(x-1).再去分母整理为整式方程即可求解.结果需检验.【详解】方程两边同乘(x+1)(x-1),得6-3(x+1)=x 2-1,整理得x 2+3x-4=0,即(x+4)(x-1)=0,解得x 1=-4,x 2=1.经检验x=1是增根,应舍去,∴原方程的解为x=-4.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.21.1=【答案】1x 0=【分析】根据解无理方程的一般步骤求解即可.=2x 11+=+x =2x -4x 0=解得1x 0=,2x 4=经检验2x 4=是原方程的增根,所以原方程的解为1x 0=【点睛】本题主要考查解无理方程,去掉根号把无理方程化成有理方程是解题的关键,注意无理方程需验根.需要同学们仔细掌握.22.解方程组:222910x xy y x y ⎧-+=⎨+-=⎩【答案】21x y =⎧⎨=-⎩或12x y =-⎧⎨=⎩【分析】本题考查了解二元一次方程组,先变形(1)得出3x y -=,3x y -=-,作出两个方程组,求出方程组的解即可.【详解】解:22291102x xy y x y ⎧-+=⎨+-=⎩()(),由(1)得出3x y -=,3x y -=-,故有31x y x y -=⎧⎨+=⎩或31x y x y -=-⎧⎨+=⎩解得:21x y =⎧⎨=-⎩或12x x =-⎧⎨=⎩原方程组的解是21x y =⎧⎨=-⎩或12x y =-⎧⎨=⎩.四、解答题:(本大题共3题,每题8分,满分24分)23.已知一次函数图象经过点()1,7A 、点()1,5B -.(1)求这个一次函数的解析式;(2)求这个一次函数图象、直线y x =-与x 轴围成的三角形面积.【答案】(1)6y x =+(2)9【分析】本题主要考查了求一次函数的解析式,一次函数与x 轴的交点,两直线的交点以及一次函数的几何应用.(1)用待定系数法求一次函数解析式即可.(2)根据题意作出图象,分解求出点A ,B ,O 的坐标,然后计算ABO S 即可.【小问1详解】解:设一次函数的解析式为y kx b =+,∵一次函数图象经过点()1,7A ,点()1,5B -,∴75k b k b +=⎧⎨-+=⎩,解得:16k b =⎧⎨=⎩,∴一次函数的解析式为6y x =+.【小问2详解】根据题意作图如下:令60y x =+=,解得:6x =-,∴一次函数6y x =+与x 轴的交点坐标为:()6,0B -令0y x =-=,解得:0x =,∴直线y x =-与x 轴为()0,0O ,∴6OB =,联立两直线:6y x y x =+⎧⎨=-⎩,解得:33x y =-⎧⎨=⎩,∴()3,3A -.∴点A 到x 轴的距离为3.∴13692ABO S =⨯⨯=.24.某校组织甲、乙两班学生参加“美化校园”的义务劳动.如果甲班做2小时,乙班做3小时,那么可完成全部工作的一半;如果甲班先做2小时后另有任务,剩下工作由乙班单独完成,那么乙班所用的时间恰好比甲班单独完成全部工作的时间多1小时.问:甲乙两班单独完成这项工作各需多少时间?【答案】甲、乙两班单独完成这项工作各需8小时、12小时.【分析】单独完成这项工作甲需要x 小时,乙需要y 小时,则甲每小时完成全部工作的1x ,乙每小时完成全部工作的1y ,再根据题意列方程组即可求解.,【详解】解:设甲、乙两班单独完成这项工作各需x 小时、y 小时.由题意得2312211x y x xy ⎧+=⎪⎪⎨+⎪+=⎪⎩①②①-②得:212x y -=得:24y x =-③将③代①得:231242x x +=-解得:8x =所以12y =经检验:812.x y =⎧⎨=⎩是原方程的解且符合题意.答:甲、乙两班单独完成这项工作各需8小时、12小时.【点睛】本题考查了分式方程组的应用,根据方程组的特点化二元分式方程为一元分式方程进一步转化为整式方程求解是关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.已知:△ABC 中,BD 、CE 分别是AC 、AB 边上的高,BQ =AC ,点F 在CE 的延长线上,CF =AB ,下列结论错误的是( ).A .AF ⊥AQB .AF=AQC .AF=AD D .F BAQ ∠=∠2.如图,在矩形纸片ABCD 中,AD =9,AB =3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为( )A .3B .6C .10D .93.如图,等边ABC ∆的边长为1cm ,D ,E 分别是AB ,AC 上的两点,将ADE ∆沿直线DE 折叠,点A 落在点'A 处,且点'A 在ABC ∆外部,则阴影部分图形的周长为( )A .1cmB .1.5cmC .2cmD .3cm 4.如图,菱形ABCD 的对角线AC ,BD 的长分别为6cm ,8cm ,则这个菱形的周长为( )A .5cmB .10cmC .14cmD .20cm5.在ABC 中,90C ∠=︒,30A ∠=︒,12AB =,则AC =( )A .6B .12C .62D .636.如图,△ABC 中,AB=10,BC=12,AC=213,则△ABC 的面积是( ).A .36B .1013C .60D .12137.如图,分别以直角ABC ∆三边为边向外作三个正方形,其面积分别用123,,S S S 表示,若27S =,32S =,那么1S =( )A .9B .5C .53D .458.在直角三角形ABC 中,90C ∠=︒,两直角边长及斜边上的高分别为,,a b h ,则下列关系式成立的是( )A .222221a b h +=B .222111a b h +=C .2h ab =D .222h a b =+9.由下列条件不能判定△ABC 为直角三角形的是( )A .∠A+∠B=∠CB .∠A :∠B :∠C=1:3:2C .a=2,b=3,c=4D .(b+c)(b-c)=a² 10.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为( )A .5B .6C .8D .10二、填空题11.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________.12.在△ABC 中,AB =6,AC =5,BC 边上的高AD =4,则△ABC 的周长为__________.13.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.14.如图,在四边形ABCD 中,AC 平分∠BAD ,BC=CD=10,AC=17,AD=9,则AB=_____.15.如图,正方体的底面边长分别为2cm 和3cm ,高为5cm .若一只蚂蚁从P 点开始经过四个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为_____cm .16.在等腰Rt ABC △中,90C ∠=︒,2AC =,过点C 作直线l AB ,F 是l 上的一点,且AB AF =,则FC =__________. 17.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.18.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则2________BD =.19.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为1S,2S,3S,若12315S S S++=,则2S的值是__________.20.已知,在△ABC中,BC=3,∠A=22.5°,将△ABC翻折使得点B与点A重合,折痕与边AC交于点P,如果AP=4,那么AC的长为_______三、解答题21.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22.(1)计算:1312248233⎛÷⎝(2)已知a、b、c满足2|2332(30)0a b c-+-=.判断以a、b、c为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.23.如图,在矩形ABCD中,AB=8,BC=10,E为CD边上一点,将△ADE沿AE折叠,使点D落在BC边上的点F处.(1)求BF 的长;(2)求CE 的长.24.定义:如图1,平面上两条直线AB 、CD 相交于点O ,对于平面内任意一点M ,点M 到直线AB 、CD 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O .(1)“距离坐标”为(1,0)的点有 个;(2)如图2,若点M 在过点O 且与直线AB 垂直的直线l 上时,点M 的“距离坐标”为(p ,q ),且∠BOD = 150︒,请写出p 、q 的关系式并证明;(3)如图3,点M 的“距离坐标”为(1,3),且∠DOB = 30︒,求OM 的长.25.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.26.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.27.如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.(1)求∠EDF= (填度数);(2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;(3)①若AB=6,G是AB的中点,求△BFG的面积;②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.28.(已知:如图1,矩形OACB的顶点A,B的坐标分别是(6,0)、(0,10),点D 是y轴上一点且坐标为(0,2),点P从点A出发以每秒1个单位长度的速度沿线段AC﹣CB方向运动,到达点B时运动停止.(1)设点P运动时间为t,△BPD的面积为S,求S与t之间的函数关系式;(2)当点P运动到线段CB上时(如图2),将矩形OACB沿OP折叠,顶点B恰好落在边AC上点B′位置,求此时点P坐标;(3)在点P运动过程中,是否存在△BPD为等腰三角形的情况?若存在,求出点P坐标;若不存在,请说明理由.29.如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系.(2)把图1中的正方形DEFG绕点D顺时针旋转45 ,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.30.在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ; (3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C 【分析】根据BD 、CE 分别是AC 、AB 边上的高,推导出EBH DCH ∠=∠;再结合题意,可证明FAC AQB △≌△,由此可得F BAQ ∠=∠,AF AQ =;再经90AEF ∠=得90F FAE ∠+∠=,从而证明AF ⊥AQ ;最后由勾股定理得222AQ AD QD =+,从而得到AF AD ≠,即可得到答案.【详解】如图,CE 和BD 相较于H∵BD 、CE 分别是AC 、AB 边上的高∴CE AB ⊥,BD AC ⊥∴90BEC BDC AEF ADQ ∠=∠=∠=∠=∴90EBH EHB DHC DCH ∠+∠=∠+∠=∵EHB DHC ∠=∠∴EBH DCH ∠=∠又∵BQ =AC 且CF =AB∴FAC AQB △≌△∴F BAQ ∠=∠,AF AQ =,故B 、D 结论正确;∵90AEF ∠=∴90F FAE ∠+∠=∴90BAQ FAE F FAE ∠+∠=∠+∠=∴AF ⊥AQ 故A 结论正确;∵90ADQ ∠=∴222AQ AD QD =+∵0QD ≠∴AQ AD ≠∴AF AD ≠故选:C .【点睛】本题考查了全等三角形、直角三角形、勾股定理、三角形的高等知识;解题的关键是熟练掌握全等三角形、直角三角形、勾股定理、三角形的高的性质,从而完成求解. 2.C解析:C【分析】做点F 做FH AD ⊥交AD 于点H ,因此要求出EF 的长,只要求出EH 和HF 即可;由折叠的性质可得BE=DE=9-AE ,在Rt ABE △中应用勾股定理求得AE 和BE ,同理在Rt BC F 'Rt ABE △中应用勾股定理求得BF ,在Rt EFH 中应用勾股定理即可求得EF .【详解】过点F 做FH AD ⊥交AD 于点H .∵四边形EFC B '是四边形EFCD 沿EF 折叠所得,∴ED=BE ,CF=C F ',3BC CD '==∵ED=BE ,DE=AD-AE=9-AE∴BE=9-AE∵Rt ABE △,AB=3,BE=9-AE∴()22293AE AE -=+∴AE=4∴DE=5∴9C F BC BF BF '=-=-∴Rt BC F ',3BC '=,9C F BF '=-∴()22293BF BF -+=∴BF=5,EH=1∵Rt EFH ,HF=3,EH=1 ∴22223110EF EH HF =+=+故选:C .【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题. 3.D解析:D【分析】根据折叠的性质可得AD=A'D ,AE=A'E ,易得阴影部分图形的周长为=AB+BC+AC ,则可求得答案.【详解】解:因为等边三角形ABC 的边长为1cm ,所以AB=BC=AC=1cm ,因为△ADE 沿直线DE 折叠,点A 落在点A'处,所以AD=A'D ,AE=A'E ,所以阴影部分图形的周长=BD+A'D+BC+A'E+EC=BD+AD+BC+AE+EC=AB+BC+AC =1+1+1=3(cm ).故选:D .【点睛】此题考查了折叠的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用以及折叠前后图形的对应关系.4.D解析:D【解析】【分析】根据菱形的对角线互相垂直平分可得AC ⊥BD ,12OA AC =,12OB BD =,再利用勾股定理列式求出AB ,然后根据菱形的四条边都相等列式计算即可得解. 【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,11622OA AC ==⨯=3cm , 118422OB BD cm ==⨯=根据勾股定理得,5cm AB == ,所以,这个菱形的周长=4×5=20cm.故选:D.【点睛】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记. 5.D解析:D【分析】根据直角三角形的性质求出BC ,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∠A=30°,∴BC=12AB=6,由勾股定理得,=故选:D .【点睛】 本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.6.A解析:A【分析】作AD BC ⊥于点D ,设BD x =,得222AB BD AD -=,222AC CD AD -=,结合题意,经解方程计算得BD ,再通过勾股定理计算得AD ,即可完成求解.如图,作AD BC ⊥于点D设BD x =,则12CD BC x x =-=-∴222AB BD AD -=,222AC CD AD -=∴2222AB BD AC CD -=-∵AB=10,AC=213∴(()22221021312x x -=-- ∴8x = ∴22221086AD AB BD =-=-=∴△ABC 的面积111263622BC AD =⨯=⨯⨯= 故选:A .【点睛】本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.7.A解析:A【分析】根据勾股定理与正方形的性质解答.【详解】解:在Rt △ABC 中,AB 2=BC 2+AC 2,∵S 1=AB 2,S 2=BC 2,S 3=AC 2,∴S 1=S 2+S 3.∵S 2=7,S 3=2,∴S 1=7+2=9.故选:A .【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.8.B【分析】设斜边为c ,根据勾股定理得出【详解】解:设斜边为c ,根据勾股定理得出 ∵12ab=12ch ,∴,即a 2b 2=a 2h 2+b 2h 2, ∴22222a b a b h =22222a h a b h +22222b h a b h, 即21a +21b =21h . 故选:B .【点睛】 本题考查勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题关键.9.C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A 、∠A+∠B =∠C ,可得∠C =90°,是直角三角形,错误;B 、∠A :∠B :∠C =1:3:2,可得∠B =90°,是直角三角形,错误;C 、∵22+32≠42,故不能判定是直角三角形,正确;D 、∵(b+c )(b ﹣c )=a 2,∴b 2﹣c 2=a 2,即a 2+c 2=b 2,故是直角三角形,错误; 故选C .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10.C解析:C【分析】根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD 的长,即可得出BC 的长.【详解】在△ABC 中,AB =AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BC=2BD.∴∠ADB=90°在Rt △ABD 中,根据勾股定理得:BD=22-AB AD =225-3=4∴BC=2BD=2×4=8.故选C.【点睛】本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.二、填空题11.23或2【分析】先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.【详解】在Rt ABC 中,90,30,2C A BC ∠=∠==,∴AB=2BC=4,∴22224223AC AB BC =-=-=,当AC 为腰时,则该三角形的腰长为23;当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3,设DE=x ,则AD=2x ,∵222AE DE AD +=,∴222(3)(2)x x +=∴x=1(负值舍去),∴腰长AD=2x=2,故答案为:32【点睛】此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.12.1425+或825+【分析】分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在直角三角形ABD 与直角三角形ACD 中,利用勾股定理求出BD 与DC 的长,由BD+DC 求出BC 的长,即可求出周长;如图2所示,此时△ABC 为钝角三角形,同理由BD -CD 求出BC 的长,即可求出周长.【详解】解:分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在Rt △ABD 中,根据勾股定理得:BD=22226425AB AD -=-=, 在Rt △ACD 中,根据勾股定理得:CD=2222543AC AD -=-=,∴BC=253+, ∴△ABC 的周长为:652531425+++=+;如图2所示,此时△ABC 为钝角三角形,在Rt △ABD 中,根据勾股定理得:22226425AB AD -=-= 在Rt △ACD 中,根据勾股定理得:2222543AC AD --=,∴BC=253-, ∴△ABC 的周长为:65253825++=+综合上述,△ABC 的周长为:145+85+故答案为:145+825+【点睛】此题考查了勾股定理,利用了分类讨论的思想,熟练掌握勾股定理是解本题的关键. 1371【分析】分别找到两个极端,当M 与A 重合时,AP 取最大值,当点N 与C 重合时,AP 取最小,即可求出线段AP 长度的最大值与最小值之差【详解】如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB 是正方形,在Rt △ABC 中,2222AB=AC BC =54=3--,∴AP 的最大值为A P 1=AB=3如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,2222PD=PC CD =43=7--,∴AP 的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为(1AP AP=347=71-- 71【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索.14.21【分析】在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,先证明△ADC ≌△AEC ,得出AE=AD=9,CE=CD=BC =10的长度,再设EF=BF=x ,在Rt △CFB 和Rt △CFA 中,由勾股定理求出x ,再根据AB=AE+EF+FB 求得AB 的长度.【详解】如图所示,在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,∵AC 平分∠BAD ,∴∠DAC=∠EAC .在△AEC 和△ADC 中, AE AD DAC EACAC AC ⎧⎪∠∠⎨⎪⎩===∴△ADC ≌△AEC (SAS ),∴AE=AD=9,CE=CD=BC =10,又∵CF ⊥AB ,∴EF=BF ,设EF=BF=x .∵在Rt △CFB 中,∠CFB=90°,∴CF 2=CB 2-BF 2=102-x 2,∵在Rt △CFA 中,∠CFA=90°,∴CF 2=AC 2-AF 2=172-(9+x )2,即102-x 2=172-(9+x )2,∴x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB 的长为21.故答案是:21.【点睛】考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.15.55【解析】【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【详解】展开图如图所示:由题意,在Rt △APQ 中,PD=10cm ,DQ=5cm ,∴蚂蚁爬行的最短路径长2222105PD QD +=+5cm ),故答案为:5【点睛】本题考查了平面展开﹣最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.163131【解析】如图,l AB ,2AC =,作AD l ⊥于点D ,∴1AD =,∵222AF AB ==⋅=,且F 有2个, ∴2212213DF DF ==-=,∵1DC AD ==,∴1113CF CD DF =+=+, 2231CF DF CD =-=-.点睛:本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答,考查了学生的空间想象能力.17.169【解析】解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512+=169. 故答案为:169.点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.18.41【解析】作AD′⊥AD ,AD′=AD ,连接CD′,DD ′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD ′中,;BA CA BAD CAD AD AD ===⎧⎪∠∠'⎨⎪⎩∴△BAD ≌△CAD′(SAS ), ∴BD=CD′,∠DAD′=90°,由勾股定理得22AD AD +' ,∠D′DA+∠ADC=90°,由勾股定理得22DC DD +' 41BD 2=41.故答案是:41.19.5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】此题主要考查了图形面积关系,根据已知得出用x,y表示出1S,2S,3S,再利用12315S S S++=求出是解决问题的关键.20.522,322++【分析】过B作BF⊥CA于F,构造直角三角形,分两种情况讨论,利用勾股定理以及等腰直角三角形的性质,即可得到AC的长.【详解】分两种情况:①当∠C为锐角时,如图所示,过B作BF⊥AC于F,由折叠可得,折痕PE垂直平分AB,∴AP=BP=4,∴∠BPC=2∠A=45°,∴△BFP是等腰直角三角形,∴BF=DF=22,又∵BC=3,∴Rt△BFC中,CF=221BC BF-=,∴AC=AP+PF+CF=5+22;②当∠ACB为钝角时,如图所示,过B作BF⊥AC于F,同理可得,△BFP是等腰直角三角形,∴BF=FP=22又∵BC=3,∴Rt△BCF中,221BC BF-=,∴AC=AF-CF=3+22故答案为:5+223+22【点睛】本题主要考查了折叠问题以及勾股定理的运用,解决问题的关键是分两种情况画出图形进行求解.解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题21.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22257-=24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴22CD CE-222520-,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.22.(1)423;(2)以a、b、c为边能构成三角形,此三角形的形状是直角三角形,6【分析】(1)根据二次根式的加减法法则、除法法则和二次根式的性质求出即可;(2)先根据绝对值,偶次方、算术平方根的非负性求出a、b、c的值,再根据勾股定理的逆定理得出三角形是直角三角形,再求出面积即可.【详解】解:(1)1312248233⎛÷⎝=2(63343)233÷=28(3)(23) 3÷=423;(2)以a、b、c为边能构成三角形,此三角形的形状是直角三角形,理由是:∵a 、b 、c 满足2|a (c 0-=,∴a ﹣=0,﹣b =0,c 0,∴a =,b =,c∵,,∴以a 、b 、c 为边能组成三角形,∵a =,b =,c∴a 2+b 2=c 2,∴以a 、b 、c 为边能构成直角三角形,直角边是a 和b ,则此三角形的面积是12⨯. 【点睛】此题考查了计算能力,掌握二次根式的加减法法则、除法法则和二次根式的性质,绝对值,偶次方、算术平方根的非负性,勾股定理的逆定理是解题的关键.23.(1)BF 长为6;(2)CE 长为3,详细过程见解析.【分析】(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt △ABF 中,可由勾股定理求出BF 的长;(2)设CE=x ,根据翻折可知,EF=DE=8-x ,由(1)可知BF=6,则CF=4,在Rt △CEF 中,可由勾股定理求出CE 的长.【详解】解:(1)∵四边形ABCD 为矩形,∴∠B=90°,且AD=BC=10, 又∵AFE 是由ADE 沿AE 翻折得到的,∴AF=AD=10,又∵AB=8,在Rt △ABF 中,由勾股定理得:,故BF 的长为6.(2)设CE=x ,∵四边形ABCD 为矩形,∴CD=AB=8,∠C=90°,DE=CD-CE=8-x ,又∵△AFE 是由△ADE 沿AE 翻折得到的,∴FE=DE=8-x ,由(1)知:BF=6,故CF=BC-BF=10-6=4,在Rt △CEF 中,由勾股定理得:222CF +CE =EF ,∴2224+x =(8-x),解得:x=3,故CE 的长为3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.24.(1)2;(2)32q p =;(3)27OM = 【分析】(1)根据“距离坐标”的定义结合图形判断即可;(2)过M 作MN ⊥CD 于N ,根据已知得出MN q =,OM p =,求出∠MON =60°,根据含30度直角三角形的性质和勾股定理求出223MN MO NO p =-=即可解决问题;(3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点,首先证明OM OE OF EF ===,求出2MF =,23ME =,然后过F 作FG QM ⊥,交QM 延长线于G ,根据含30度直角三角形的性质求出1FG =,3MG =,再利用勾股定理求出EF 即可.【详解】解:(1)由题意可知,在直线CD 上,且在点O 的两侧各有一个,共2个,故答案为:2;(2)过M 作MN CD ⊥于N ,∵直线l AB ⊥于O ,150BOD ∠=︒,∴60MON ∠=︒,∵MN q =,OM p =,∴1122NO MO p ==, ∴2232MN MO NO p =-=, ∴32q p =; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点.∴OFP OMP △≌△,OEQ OMQ △≌△,∴FOP MOP ∠=∠,EOQ MOQ ∠=∠,OM OE OF ==,∴260EOF BOD ∠=∠=︒,∴△OEF 是等边三角形,∴OM OE OF EF ===,∵1MP =,3MQ =, ∴2MF =,23ME =,∵30BOD ∠=︒,∴150PMQ ∠=︒,过F 作FG QM ⊥,交QM 延长线于G ,∴30FMG ∠=︒,在Rt FMG △中,112FG MF ==,则3MG =, 在Rt EGF 中,1FG =,33EG ME MG =+=,∴22(33)127EF =+=,∴27OM =.【点睛】本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.25.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明△ACD ≌△BCF ;②连接EF ,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE ≌△FCE 得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD ,DE ,BE 之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,FG=32BF∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt △EFG 中,EF 2=FG 2+EG 2又∵EG=EB+BG∴EG=EB+12BF , ∴EF 2=(EB+12BF )2+(3BF )2 ∴DE 2= (EB+12AD )2+(32AD )2 ∴DE 2= EB 2+AD 2+EB ·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.26.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.,理由见解析. 27.(1)45°;(2)GF=AG+CF,证明见解析;(3)①6;②s ab【解析】【分析】(1)如图1中,连接BE.利用全等三角形的性质证明EB=ED,再利用等角对等边证明EB=EF即可解决问题.(2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,证明△GDH≌△GDF(SAS)即可解决问题.(3)①设CF=x,则AH=x,BF=6-x,GF=3+x,利用勾股定理构建方程求出x即可.②设正方形边长为x,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.【详解】解:(1)如图1中,连接BE.∵四边形ABCD是正方形,∴CD=CB,∠ECD=∠ECB=45°,∵EC=EC,∴△ECB≌△ECD(SAS),∴EB=ED,∠EBC=∠EDC,∵∠DEF=∠DCF=90°,∴∠EFC+∠EDC=180°,∵∠EFB+∠EFC=180°,∴∠EFB=∠EDC,∴∠EBF=∠EFB,∴EB=EF,∴DE=EF,∵∠DEF=90°,∴∠EDF=45°故答案为45°.(2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,∴∠CDF=∠ADH,DF=DH,CF=AH,∠DAH=∠DCF=90°,∵∠DAC=90°,∴∠DAC+∠DAH=180°,∴H、A、G三点共线,∴GH=AG+AH=AG+CF,∵∠EDF=45°,∴∠CDF+∠ADG=45°,∴∠ADH+∠ADG=45°∴∠GDH=∠EDF=45°又∵DG=DG∴△GDH≌△GDF(SAS)∴GH=GF,∴GF=AG+CF.(3)①设CF=x,则AH=x,BF=6-x,GF=3+x,则有(3+x)2=(6-x)2+32,解得x=2∴S△BFG=12•BF•BG=6.②设正方形边长为x,∵AG=a,CF=b,∴BF=x-b,BG=x-a,GF=a+b,则有(x-a)2+(x-b)2=(a+b)2,化简得到:x2-ax-bx=ab,∴S=12(x-a)(x-b)=12(x2-ax-bx+ab)=12×2ab=ab.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.28.(1)S=24(06)464(616)tt t<⎧⎨-+<<⎩(2)10,103⎛⎫⎪⎝⎭(3)存在,(6,6)或(6,1027)-,(6,272)+【解析】【分析】(1)当P在AC段时,△BPD的底BD与高为固定值,求出此时面积;当P在BC段时,底边BD为固定值,用t表示出高,即可列出S与t的关系式;(2)当点B的对应点B′恰好落在AC边上时,设P(m,10),则PB=PB′=m,由勾股定理得m2=22+(6-m)2,即可求出此时P坐标;(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.【详解】解:(1)∵A,B的坐标分别是(6,0)、(0,10),∴OA=6,OB=10,当点P在线段AC上时,OD=2,BD=OB-OD=10-2=8,高为6,∴S=12×8×6=24;当点P在线段BC上时,BD=8,高为6+10-t=16-t,∴S=12×8×(16-t)=-4t+64;∴S与t之间的函数关系式为:240t6S4t64(6t16)<≤⎧=⎨-+<<⎩();(2)设P(m,10),则PB=PB′=m,如图1,∵OB′=OB=10,OA=6,∴AB′22OB OA-',∴B′C=10-8=2,∵PC=6-m,∴m2=22+(6-m)2,解得m=10 3则此时点P的坐标是(103,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图2,①当BD=BP 1=OB-OD=10-2=8,在Rt △BCP 1中,BP 1=8,BC=6,根据勾股定理得:CP 1228627-=∴AP 1=10−7,即P 1(6,10-27②当BP 2=DP 2时,此时P 2(6,6);③当DB=DP 3=8时,在Rt △DEP 3中,DE=6,根据勾股定理得:P 3228627-=,∴AP 3=AE+EP 3=7+2,即P 3(6,27),综上,满足题意的P 坐标为(6,6)或(6,10-276,7+2).【点睛】本题是四边形综合题,考查了矩形的性质,坐标与图形性质,等腰三角形的性质,勾股定理等知识,注意分类讨论思想和方程思想的运用.29.(1),CM ME CM EM =⊥;(2)见解析;(3)25CM =【解析】【分析】(1)证明ΔFME ≌ΔAMH ,得到HM=EM ,根据等腰直角三角形的性质可得结论. (2)根据正方形的性质得到点A 、E 、C 在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知. (3)如图3中,连接EC ,EM ,由(1)(2)可知,△CME 是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.【详解】解:(1)结论:CM =ME ,CM ⊥EM .理由:∵AD ∥EF ,AD ∥BC ,∴BC ∥EF ,∴∠EFM =∠HBM ,在△FME 和△BMH 中,EFM MBH FM BMFME BMH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△FME ≌△BMH (ASA ),∴HM =EM ,EF =BH ,∵CD =BC ,∴CE =CH ,∵∠HCE =90°,HM =EM , ∴CM =ME ,CM ⊥EM .(2)如图2,连接BD ,∵四边形ABCD 和四边形EDGF 是正方形, ∴45,45FDE CBD ︒︒∠=∠=∴点B E D 、、在同一条直线上,∵90,90BCF BEF ︒︒∠=∠=,M 为BF 的中点, ∴12CM BF =,12EM BF =,∴CM ME =, ∵45EFD ∠=︒,∴135EFC ∠=︒,∵CM FM ME ==,∴,MCF MFC MFE MEF ∠=∠∠=∠ ∴135MCF MEF ∠+∠=︒,∴36013513590CME ∠=︒-︒-︒=︒, ∴CM ME ⊥.(3)如图3中,连接EC ,EM .由(1)(2)可知,△CME 是等腰直角三角形, ∵22EC 26210+=∴CM =EM =25【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.30.(1)AB =45;(2)见解析;(3)CD +CF 的最小值为47.【分析】(1)根据勾股定理可求AB 的长;(2)过点D 作DF ⊥AO ,根据等腰三角形的性质可得OF =EF ,根据轴对称的性质等腰直角三角形的性质可得AF =DF ,设OF =EF =x ,AE =4﹣2x ,根据勾股定理用参数x 表示 DE ,CE 的长,即可证CE =2DE ;(3)过点B 作BM ⊥OB ,在BM 上截取BM =AO ,过点C 作CN ⊥BM ,交MB 的延长线于点N ,根据锐角三角函数可得∠ABO =30°,根据轴对称的性质可得AC =AO =4,BO =BC =43,∠ABO =∠ABC =30°,∠OAB =∠CAB =60°,根据“SAS ”可证△ACF ≌△BMD ,可得CF =DM ,则当点D 在CM 上时,CF +CD 的值最小,根据直角三角形的性质可求CN ,BN 的长,根据勾股定理可求CM 的长,即可得CF +CD 的最小值.【详解】(1)∵点A (0,4),B (m ,0),且m =8,∴AO =4,BO =8,在Rt △ABO 中,AB =2245AO BO +=(2)如图,过点D 作DF ⊥AO ,∵DE =DO ,DF ⊥AO ,∴EF =FO ,∵m =4,∴AO =BO =4,∴∠ABO =∠OAB =45°,∵点C ,O 关于直线AB 对称,∴∠CAB =∠CBA =45°,AO =AC =OB =BC =4,∴∠CAO =∠CBO =90°,∵DF ⊥AO ,∠BAO =45°,∴∠DAF =∠ADF =45°,∴AF =DF ,设OF =EF =x ,AE =4﹣2x ,∴AF =DF =4﹣x ,在Rt △DEF 中,DE ()2222242816EF DF x x x x +=+-=-+。

相关文档
最新文档