八年级数学上学期月考试题

合集下载

四川省德阳市中江县2024-2025学年八年级上学期10月月考数学试题[含答案]

四川省德阳市中江县2024-2025学年八年级上学期10月月考数学试题[含答案]

A.4
3
S V ABP ,其中正确的个数是(
2
B.3
C.2
第 II 卷

D.1
非选择题(102 分)
二、填空题(本大题共 7 个小题,每小题 4 分,本大题满分 28 分)
13.如图,在 V ABC 中, D 是 BC 边上一点, E 是边上一点.在 △ACE 中, Ð CAE 的对
边是

14.正十边形的每个外角等于
从点 B 出发,在直线 BC 上以 2cm/ s 的速度移动,过点 E 作 BC 的垂线交直线 CD 于点 F ,当
点 E 运动
s 时, CF
= AB .
19.如图,在 V ABC 中, ÐA = 20°, ÐEBC , ÐDCB 为 V ABC 的外角, ÐEBC 与 ÐDCB 的平分
线交于点 A1 , ÐEBA1 与 ÐDCA1 的平分线交于点 A2 , ¼,ÐEBAn -1 与 ÐDCAn -1 的平分线相交于点
的内角和为(
A. 1800°

B. 1440°
C. 1080°
试卷第 2 页,共 7 页
D. 720°
8.如图,在 V ABC 中,点 E 是 BC 的中点, AB = 7 , AC = 10 , △ACE 的周长是 25,则 V ABE
的周长是( )
A.18
B.22
C.28
D.32
9.如图,在 8 ´ 8 的正方形网格中, V ABC 的顶点和线段 EF 的端点都在小正方形的顶点上,

15.如图,四边形 ABCD 中,点 M、N 分别在 AB、BC 上,将 V BMN 沿 MN 翻折得 V FMN ,
若 MF∥AD,FN∥DC ,则 ÐB =

安徽省阜阳市界首市初中月考联考2024-2025学年八年级上学期10月月考数学试题

安徽省阜阳市界首市初中月考联考2024-2025学年八年级上学期10月月考数学试题

安徽省阜阳市界首市初中月考联考2024-2025学年八年级上学期10月月考数学试题一、单选题1.在平面直角坐标系中,点()3,0P -在( )A .x 轴上B .y 轴上C .第二象限D .第三象限 2.小明在高架桥上试驾一辆新能源汽车,以每小时80千米的速度匀速行驶,行驶的路程随时间的变化而变化,在这个变化过程中,自变量是( )A .汽车B .路程C .速度D .时间3.当1x =-时,函数y 的值是( )A .1B .-1 CD 4.如图,某小区有3处健身休闲广场123,,S S S ,为加强对健身休闲广场的管理,小区物业将其中的2处位置用坐标表示为()()122,3,1,4S S -,则第3处健身休闲广场3S 的位置用坐标表示为( )A .()2,1-B . 2,1C . −1,1D .()1,15.已知函数()32y m x n =---是正比例函数,则m ,n 的值为( )A .3,2m n ≠=-B .3,2m n ==C .3,2m n ==-D .3,2m n ≠= 6.要得到直线3y x =-+,可把直线y x =-( )A .向下平移3个单位长度B .向上平移3个单位长度C .向左平移3个单位长度D .向右平移3个单位长度7.下列关于一次函数24y x =-+的图象的说法中,正确的是( )A .函数图象经过第二、三、四象限B .函数图象与x 轴的交点坐标为(2-,0)C .当0x >时,4y <D .y 的值随着x 值的增大而增大8.在同一平面直角坐标系中,一次函数y ax b =+与y bx a =+(a ,b 为常数,0a ≠,0b ≠)的图象可能是( )A .B .C .D .9.关于x 的一次函数()212y m x m =++-,若y 随x 的增大而增大,且图象与y 轴的交点在x 轴下方,则实数m 的取值范围是( )A .12m <-B .12m >-C .122m -<<D .2m >10.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发.设普通列车行驶的时间为x (小时)两车之间的距离为y (千米),y 与x 之间的函数关系的图象大致如图所示,则下列说法错误的是( )①动车的速度是270千米/小时;②点B 的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时.A .①②B .①④C .②③D .②④二、填空题11.函数33y x =+的自变量x 的取值范围是. 12.点()27,1A a a +-在第一、三象限的角平分线上,则a =.13.如图,在平面直角坐标系中,线段AB 经过原点()()()2302O A m B n C CD AB --⊥,,,,,,,于点D .若8AB =,则线段CD 的长为.14.定义:对于给定的一次函数y ax b =+(a ,b 为常数,且0a ≠),把形如()()00ax b x y ax b x ⎧+≥⎪=⎨-+<⎪⎩的函数称为一次函数y ax b =+的“相对函数”.(1)若点()2,M m -在一次函数41y x =-+的“相对函数”图象上,则m 的值是; (2)若点(),3N n 在一次函数52y x =-的“相对函数”图象上,则n 的值是.三、解答题15.已知点()23,1P m m -+的横坐标与纵坐标的和是16,求点P 的坐标.16.如图,在平面直角坐标系中,已知(2,2),(2,0),(3,3),(,)A B C P a b -是三角形ABC 的边AC 上的一点,把三角形ABC 平移后得到三角形DEF ,点P 的对应点为(2,4)P a b '--.(1)写出D ,E ,F 三点的坐标;(2)画出三角形DEF ;(3)求三角形DEF 的面积.17.已知y 与2x -成正比例,当1x =-时,3y =.(1)求y 与x 的函数表达式;(2)若(1)中的函数图象经过第二象限内的点P ,且点P 到y 轴的距离是2,求点P 的坐标. 18.在平面直角坐标系中,一只蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断地平移,每次平移1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:3A :,7A :,24A :; (2)写出点2025A 的坐标.19.某超市出售一种散装花生,其售价y (元)与花生质量x (千克)之间的关系如表:其中售价中的0.2元是包装袋的价钱.(1)在这个变化过程中,自变量与因变量各是什么?(2)求出售6千克花生时的售价;(3)求出y 与x 之间的函数表达式.20.在平面直角坐标系中,给出如下定义:点M 到x 轴、y 轴的距离的较大值称为点M 的“长距”,点N 到x 轴、y 轴的距离相等时,称点N 为“完美点”.(1)若点()21,1P m --是“完美点”求m 的值;(2)若点()31,4Q n +-的“长距”为5,且点Q 在第三象限内,点D 的坐标为()512n --,,试说明点D 是“完美点”.21.如图所示,在同一个坐标系中,一次函数11y k x b =+和y kx b =+的图象分别与x 轴交于点A 、点B ,两直线相交于点C .已知点A 坐标为()10-,,点B 坐标为()20,,观察图象并回答下列问题:(1)关于x 的方程110k x b +=的解是______;关于x 的不等式0kx b +<的解集是______;(2)直接写出:关于x 的不等式组1100kx b k x b +>⎧⎨+>⎩的解集是______; (3)若点C 坐标为()13,, ①关于x 的不等式11k x b kx b +>+的解集是______;②请求出ABC V 的面积.22.某校八年级学生外出社会实践活动,为了提前做好准备工作,学校安排小车送义工队前往,同时其余学生乘坐客车去目的地,小车到达目的地后立即返回,客车在目的地等候,如图是两车距学校的距离y (千米)与行驶时间x (小时)之间的函数图像.(1)填空:目的地距离学校_________千米,小车出发去目的地的行驶速度是___________千米/时;(2)当两车行驶3小时后在途中相遇,求点P 的坐标;(3)在第(2)题的条件下,求客车到达目的地所用时间.23.如图,直线6y x =-+与x 轴交于点A ,与y 轴交于点B ,直线CD 与y 轴交于点()0,2C ,与直线AB 交于点D ,过点D 作DE x ⊥轴于点()3,0E .(1)分别求出点A ,D 的坐标;(2)求出直线CD 的函数表达式;(3)若点P 是线段OA 上一动点,点P 从原点O 开始,以每秒1个单位长度的速度向点A 运动(点P 与点O ,A 不重合),过点P 作x 轴的垂线,分别与直线AB CD ,交于点M ,N .设MN 的长为s ,点P 的运动时间为t ,求出s 与t 之间的函数表达式(写出自变量的取值范围)。

河北省邢台市信都区2024-2025学年八年级上学期月考数学试题

河北省邢台市信都区2024-2025学年八年级上学期月考数学试题

河北省邢台市信都区2024-2025学年八年级上学期月考数学试题一、单选题1.下列式子是分式的是( )A .xB .23C .2xD .3x 2.下列各组的两个图形属于全等图形的是( )A .B .C .D .3.如图,若ABC ADE △≌△,则AB 的对应边是( )A .CDB .BDC .AD D .AE4.下列分式是最简分式的是( )A .11x x --B .211x x --C .42xD .221x x - 5.春节游河南,探寻千年古韵,品味地道年味!有游客m 人,到龙门石窟游玩,需要住宿,如每n 个人住一间房,结果还有一个人无房住,则客房的间数是( )A .1m n -B .1m n -C .1m n +D .1m n+ 6.将分式ab a b-中的a b 、都扩大为原来的3倍,则分式的值( ) A .不变B .是原来的3倍C .是原来的9倍D .是原来的6倍7.如图,AC 与BD 交于点O ,若OA OD =,要用“SAS”证明AOB DOC △≌△,还需要的条件是( )A . OB OC =B . AB DC = C .AD ∠=∠ D .B C ∠=∠8.已知1313a a =□,能使等式恒成立的运算符号是( ) A .+B .-C .·D .÷ 9.若分式52x--的值为负数,则x 的取值范围是( ) A .x <2 B .x >2 C .x >5 D .x <﹣210.下列各命题的逆命题成立的是( )A .对顶角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45︒,那么这两个角相等11.若将分式2223x x y -与分式2()x x y -通分后,分式2()x x y -的分母变为2(x ﹣y )(x+y ),则分式2223x x y -的分子应变为( ) A .6x 2(x ﹣y )2 B .2(x ﹣y ) C .6x 2 D .6x 2(x+y ) 12.工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知AOB ∠是一个任意角,在边OA 、OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与点M 、N 重合,就可以知道射线OC 是AOB ∠的角平分线.依据的数学基本事实是( )A .两边及其夹角分别相等的两个三角形全等,B .两角及其夹边分别相等的两个三角形全等.C .两角分别相等且其中一组等角的对边相等的两个三角形全等.D .三边分别相等的两个三角形全等.13.化简分式23311x x x-+--过程中开始出现错误的步骤是( ) 23333(1)11(1)(1)(1)(1)x x x x x x x x x --++=---+-+-…………① 331(1)(1)x x x x --+=+-………② 22(2)(1)x x x --=+-…………③ 21x =--…………④ A .① B .② C .③ D .④14.如图,课本上给出了小明一个画图的过程,这个画图过程说明的事实是( )A .两个三角形的两条边和夹角对应相等,这两个三角形全等B .两个三角形的两个角和其中一角的对边对应相等,这两个三角形全等C .两个三角形的两条边和其中一边对角对应相等,这两个三角形不一定全等D .两个三角形的两个角和夹边对应相等,这两个三角形不一定全等二、填空题15.把2336a b ab-约分后,分母是22b ,分子是 16.关于x 的分式方程5222m x x+=--. (1)若方程的根为1x =,则m =;(2)若方程有增根,则m =三、解答题17.如图所示,在边长为1的正方形网格图中,点A B C D 、、、均在正方形网格格点上.(1)图中与线段AD 的长相等的线段是;(2)B D ∠+∠=︒.18.已知:如图,直线a b 、被直线c 所截,1∠与2∠互补,求证:a b P .19.如图,ADE BCF V V ≌,8cm AD =,6cm CD =,30A ∠=︒,80E ∠=︒.(1)求BD 的长.(2)求BCF ∠的度数.20.如图,小明家住在河岸边的B 处,河对岸的A 处有一棵树,他想要测得这棵树与自己家之间的距离AB .设计了下面的方案:在与B 点同侧的河岸边选择一点C ,测得75ABC ∠=o ,35ACB ∠=o ,然后在M 处立了标杆,使75MBC ∠=o ,35MCB ∠=o ,此时测得MB 的长就是A ,B两点间的距离.小明设计的方案是否正确?请说明理由.21.已知分式2x a+-(a,b为常数)满足表格中的信息:(1)则b的值是______;(2)求出c的值______.22.根据如图所示的程序,求输出D的化简结果.23.直角三角形ABC中,90ACB∠=︒,直线l过点C.(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E .求证:ACD CBE V V≌; (2)当8cm AC =,6cm BC =时,过B 作BP l ⊥于P 点,延长BP 到F 点,使PF BP =.点M 是AC 上一点,点N 是CF 上一点,分别过点M 、N 作MD ⊥直线l 于点D ,NE ⊥直线l 于点E .点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C .点N 从F 点出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F .点M 、N 同时开始运动,各自达到相应的终点时停止运动.设运动时间为t 秒,请求出所有使MDC △与CEN V全等的t 的值.24.甲,乙两个工程队分别接到36千米的道路施工任务.以下是两个工程队的施工规划.(1)问甲工程队完成施工任务需要多少天?(2)若要尽快完成施工任务,乙工程队应采取哪种方案?说明你的理由.。

八年级上第一次月考数学试卷(有答案)

八年级上第一次月考数学试卷(有答案)

八年级上第一次月考数学试卷(有答案)一、选择题(每题3分,共30分)1.(3分)下列各数:0,3.14,﹣π,π﹣|1﹣π|,之间每次增加一个2),其中无理数的个数是()A.1B.2C.3D.4,,0.121221222122221…(每两个12.(3分)A.8的算术平方根是()D.±B.±8C.3.(3分)下列说法正确的有()(1)有理数包括整数、分数和零;(2)不带根号的数都是有理数;(3)带根号的数都是无理数;(4)无理数都是无限小数;(5)无限小数都是无理数.A.1B.2C.3D.4﹣1之值介于下列哪两个整数之间?()C.5,6D.6,7等于()D.﹣2某4.(3分)判断2A.3,4B.4,55.(3分)若某<0,则A.某B.2某C.06.(3分)△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠CC.a2=c2﹣b2B.∠A:∠B:∠C=1:2:3D.a:b:c=3:4:67.(3分)和数轴上的点成一一对应关系的数是()A.自然数B.有理数C.无理数D.实数8.(3分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.42或379.(3分)如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+第1页共15页10.(3分)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=的面积为1,则它的周长为(),如果Rt△ABCA.B.+1C.+2D.+3二、填空题(每空3分,共24分)11.(3分)的相反数是,绝对值是,倒数是.12.(3分)如图,若圆柱的底面周长是30cm,高是40cm,从圆柱底部A处沿侧面缠绕一圈丝线到顶部B处做装饰,则这条丝线的最小长度是.13.(3分)若一个正数的平方根是2a+1和﹣a+2,则a=,这个正数是.14.(3分)若+=0,则某=.15.(3分)已知一个Rt△的两边长分别为3和4,则第三边长是.16.4cm,3cm的木箱中,(3分)有一根7cm木棒,要放在长,宽,高分别为5cm,(填“能”或“不能”)放进去.17.(3分)要使代数式有意义,则某的取值范围是.18.(3分)如图所示,分别以直角三角形的三边为直径作三个半圆,S1=25,S2=144,则S3等于.第2页共15页三、解答题(共66分)19.(12分)计算题(1)(2)(3)(4)20.(8分)解方程(1)3(某﹣2)2﹣=0.(2)(2某﹣1)3﹣8=0.21.(8分)若+(b﹣3)2+|c﹣2|=0,求(a﹣b+c)3的值.,AD=1,且∠B=90°.试求:22.(10分)已知:如图,四边形ABCD中,AB=BC=1,CD=(1)∠BAD的度数.(2)四边形ABCD的面积.(结果保留根号)23.(8分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,(1)求BF长度;(2)求CE的长度.24.(8分)某隧道的截面是由如图所示的图形构成,图形下面是长方形ABCD,上面是半圆形,第3页共15页其中AB=10米,BC=2.5米,隧道设双向通车道,中间有宽度为2米的隔离墩,一辆满载家具的卡车,宽度为3米,高度为4.9米,请计算说明这辆卡车是否能安全通过这个隧道?25.(12分)阅读下面计算过程:1;.请解决下列问题(1)根据上面的规律,请直接写出(2)利用上面的解法,请化简:(3)你能根据上面的知识化简﹣﹣2=..吗?若能,请写出化简过程.第4页共15页八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列各数:0,3.14,﹣π,π﹣|1﹣π|,,,0.121221222122221…(每两个1之间每次增加一个2),其中无理数的个数是()A.1B.2C.3D.4【解答】解:0是有理数,3.14是有理数,﹣π是无理数,π﹣|1﹣π|=π﹣(π﹣1)=1是有理数;=3是有理数;=2是有理数;0.121221222122221…是无理数.故选:B.2.(3分)A.8的算术平方根是()D.±=8,.B.±8C.【解答】解:∵∴的算术平方根是:故选:C.3.(3分)下列说法正确的有()(1)有理数包括整数、分数和零;(2)不带根号的数都是有理数;(3)带根号的数都是无理数;(4)无理数都是无限小数;(5)无限小数都是无理数.A.1B.2C.3D.4【解答】解:(1)有理数包括整数、分数,原来的说法是错误的;(2)π是无理数,原来的说法是错误的;第5页共15页。

山东日照港中学2024年八年级上学期10月月考数学试卷

山东日照港中学2024年八年级上学期10月月考数学试卷

2024-2025学年度上学期八年级单元检测数学试题第I 卷一、单项选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥中的斜拉索桥,那么你能推断出斜拉索大桥中运用的数学原理是( )A. 三角形不稳定性B. 三角形的稳定性C. 四边形的不稳定性D. 四边形的稳定性2. 如图,用三角板作ABC 的边AB 上的高线,下列三角板的摆放位置正确的是( )A B.C. D.3. 已知三条线段的长分别是3,7,m ,若它们能构成三角形,则整数m 的最大值是( )A. 11B. 10C. 9D. 74. 如图,在ABC 和ABD △中,已知AC AD =,则添加以下条件,仍不能判定ABC ABD △≌△的是( )的.A. BC BD =B. ABC ABD ∠=∠C. 90C D ∠=∠=°D. CAB DAB ∠=∠5. 如图,点F ,A ,D ,C 在同一直线上,EF BC ∥,且EF BC =,DE AB ∥.已知3,11,AD CF ==则AC 的长为()A. 5B. 6C. 7D. 6.56. 在下列条件中:①A B C ∠+∠=∠,②::1:2:3A B C ∠∠∠=,③90AB ∠=°−∠,④12A B C ∠=∠=∠,⑤23A B C ∠=∠=∠中,能确定ABC 是直角三角形的条件有( ) A. 2个 B. 3个 C. 4个 D. 5个7. 如图,小林从P 点向西直走 12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了96米回到点P . 则α=( )A. 30°B. 45°C. 60°D. 90°8. 窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.如图是从某窗棂样式结构图案上摘取的部分.已知//385BC DE ∠°,,则1234∠∠∠∠+++的度数是( )A. 320°B. 265°C. 245°D. 225°9. 如图,在ABC 中,延长CA 至点F ,使得AF CA =,延长AB 至点D ,使得2BD AB =,延长BC 至点E ,使得3CE CB =,连接EF 、FD 、DE ,若36DEF S =△,则ABC S ( )A. 1B. 2C. 3D. 410. 如图,在ABC ,AB AC =,D 为BC 上的一点,28BAD ∠=°,在AD 的右侧作ADE ,使得AE AD =,DAE BAC ∠=∠,连接CE 、DE ,DE 交AC 于点O ,若CE AB ∥,则DOC ∠的度数为( )A. 124°B. 102°C. 92°D. 88°二、填空题 (本题共5小题,每小题3分,共15分. )11. 如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上_____根木条.12. 如图,正八边形和正五边形按如图方式拼接在一起,则CAB ∠=______°.13. 如图,在ABC 中,AD 是高线,AE BF 、是角平分线,它们相交于点5070O BAC C EAD ∠=°∠=°∠,,,度数为_________.为14. 如图,在 3×3的方格图中,每个小方格的边长都为1,则1∠与2∠的关系是__________________.15. 如图,在平面直角坐标系中,将直角三角形的直角顶点放在点()3,3P 处,两直角边分别与坐标轴交于点A 和点B ,则OA OB +的值为___________.三、解答题:(本题共 8 小题,解答应写出文字说明、证明过程或演算步骤. 共75分) 16. 如图,经测量,B 处在A 处的南偏西57°的方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东82°方向,求C ∠的度数.17. 如图,F 、C 是AD 上两点,且AF CD =,点E 、F 、G 在同一直线上,且BC GF ,BC EF =.求证:ABC DEF ≌△△18. 如图,在ABC 和DCB △中,AC 与BD 相交于点O ,AB DC =,AC BD =.求证:ABO DCO △≌△.19. 已知一个多边形的内角和与外角和相加等于2160°.(1)求这个多边形的边数及对角线的条数.(2)这个多边形剪去一个角后,所形成的新多边形有几条边?内角和是多少?20. 在ABC 中, A B C ∠∠∠,,的对边分别为a , b , c .(1)化简代数式:a b c b a c +−+−−=; (2)若AB AC AC =,边上的中线BD 把ABC 的周长分为15和6两部分,求底边BC 的长. 21. 如图,在ABC 中.(1)如果7cm AB =,5cm AC =,BC 是能被3整除的偶数,求这个三角形的周长.(2)如果BP 、CP 分别是∠和ACB ∠的角平分线.①当50A ∠=°时,求BPC ∠的度数.②当A n ∠=°时,求BPC ∠的度数.22. 如图1,一张三角形ABC 纸片,点D 、E 分别是ABC 边上两点.研究(1):如果沿直线DE 折叠,使A 点落在CE 上,则BDA ′∠与A ∠的数量关系是 ;研究(2):如果折成图2的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系还成立吗?若成立,请说明理由; 若不成立,直接写出他们的关系.研究(3):如果折成图3的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系是 .23. 如图,在ABC 和CDE 中,AC BC =,CD CE =,ACB DCE ∠=∠,连接AD ,BE 交于点M .(1)如图1,当点B ,C ,D 在同一条直线上时,可以得到图中一对全等三角形,即_____≌_____; (2)当点D 不直线BC 上时,如图2位置,且ACB DCE α∠=∠=.①求证:AD BE =;②求EMD ∠的大小(用含α的代数式表示).的在。

江西2024-2025学年八年级上学期第一次月考数学试题(解析版)

江西2024-2025学年八年级上学期第一次月考数学试题(解析版)

江西省2024-2025学年八年级上学期第一次月考数学试题一、单选题1. 在ABC 中,已知3AC =,4BC =,则AB 的取值范围是( )A. 68AB <<B. 17AB <<C. 214AB <<D. 114AB <<【答案】B【解析】【分析】根据三角形三边关系求解.【详解】解: 在ABC 中,3AC =,4BC =, ∴BC AC AB BC AC −<<+,∴4343AB −<<+,即17AB <<.故选B .【点睛】本题考查三角形三边关系的应用,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边.2. 如图,△ABC ≌△ABD ,若∠ABC =30°,∠ADB =100°,则∠BAC 的度数是( ).A. 30°B. 100°C. 50°D. 80°【答案】C【解析】 【分析】根据全等三角形的性质得到∠C 的度数,然后利用三角形内角和定理计算即可.【详解】解:∵△ABC ≌△ABD ,∴∠C =∠ADB =100°,∴∠BAC =180°-100°-30°=50°,故选C.【点睛】本题考查了全等三角形的性质和三角形内角和定理,熟知全等三角形的对应边相等,对应角相等是解题关键.3. 如图,在ABC 中,AB AC =,AE AF =,AD BC ⊥,垂足为D .则全等三角形有( )A. 2组B. 3组C. 4组D. 5组【答案】C【解析】 【分析】本题主要考查了全等三角形的性质和判定,先根据HL 证明Rt ADE ≌Rt ADF ,可得DE DF =,进而得出Rt ABD △≌Rt ACD △,可得BD CD =,即可得出BE CF =,再根据SSS 证明ABE ≌ACF △,ACE △≌ABF △,可得答案.【详解】∵AE AF =,AD AD =,∴Rt ADE ≌Rt ADF ,∴DE DF =.∵AB AC =,AD AD =,∴Rt ADB △≌Rt ADC ,∴BD CD =,∴B D D E C D D F −=−,即BE CF =.∵AB AC =,AE AF =,∴ABE ≌ACF △.∵B D D F C D D E +=+,即BF CE =.∵AB AC =,AE AF =,∴ABF △≌ACE △.全等三角形有4组.故选:C .4. 如图,在ABC 中,,ABC ACB ∠∠的平分线交于点O ,连接AO ,过点O 作,,OD BC OE AB ABC ⊥⊥△的面积是16,周长是8,则OD 的长是( )A. 1B. 2C. 3D. 4【答案】D【解析】 【分析】本题主要考查了角平分线的性质,先过点O 作OF AC ⊥于点F ,然后根据角平分线的性质,证明OE OF OD ==,然后根据ABC 的面积AOB =△的面积BOC +△的面积AOC +△的面积,求出答案即可.【详解】如图所示:过点O 作OF AC ⊥于点F ,OB ,OC 分别是ABC ∠和ACB ∠角平分线,OD BC ⊥,OE AB ⊥,OF AC ⊥,OE OD OF ∴==,16ABC AOB BOC AOC S S S S =++= , ∴11116222AB OE BC OD AC OF ⋅+⋅+⋅=, 11116222AB OD BC OD AC OD ⋅+⋅+⋅=, 1()162OD AB BC AC ++=, 8++= AB BC AC ,4OD ∴=,故选:D .5. 如图,ABC ∆中,AB BC =,点D 在AC 上,BD BC ⊥.设BDC α∠=,ABD β∠=,则( )的A. 3180αβ+°B. 2180αβ+°C. 390αβ−=°D. 290αβ−=°【答案】D【解析】 【分析】根据三角形外角等于不相邻两个内角的和,直角三角形两锐互余解答【详解】解:AB BC = ,A C ∴∠=∠,A αβ−∠= ,90C α+∠=°,290αβ∴=°+,290αβ∴−=°,故选:D .【点睛】本题考查了三角形外角,直角三角形,熟练掌握三角形外角性质,直角三角形两锐角性质,是解决此类问题的关键6. 下列条件,不能判定两个直角三角形全等的是( )A. 两个锐角对应相等B. 一个锐角和斜边对应相等C. 两条直角边对应相等D. 一条直角边和斜边对应相等【答案】A【解析】【分析】本题主要考查全等的判定方法,熟练掌握判定方法是解题的关键.根据判定方法依次进行判断即可.【详解】解:A 、两个锐角对应相等,不能判定两个直角三角形全等,故A 符合题意;B 、一个锐角和斜边对应相等,利用AAS 可以判定两个直角三角形全等,故B 不符合题意;C 、两条直角边对应相等,利用SAS 可以判定两个直角三角形全等,故C 不符合题意;D 、一条直角边和斜边对应相等,利用HL 可以判定两个直角三角形全等,故D 不符合题意;故选:A .7. 如图,在ACD 和BCE 中,,,,,AC BC AD BE CD CE ACE m BCD n ===∠=∠= ,AD 与BE 相交于点P ,则BPA ∠的度数为( )A. n m −B. 2n m −C. 12n m −D. 1()2n m − 【答案】D【解析】 【分析】由条件可证明△ACD ≌△BCE ,根据全等三角形的性质得到∠ACB 的度数,利用三角形内角和可求得∠APB=∠ACB ,即可解答.【详解】在△ACD 和△BCE 中AC BC AD BE CD CE===∴△ACD ≌△BCE (SSS ),∴∠ACD=∠BCE ,∠A=∠B ,∴∠BCA+∠ACE=∠ACE+∠ECD ,∴∠ACB=∠ECD=12(∠BCD-∠ACE )=12×(n-m ) ∵∠B+∠ACB=∠A+∠BPA ,∴BPA ∠=∠ACB=1()2n m −. 故选D .【点睛】此题考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.8. 如图,EB 交AC 于M ,交FC 于D ,AB 交FC 于N ,90E F ∠=∠=°,B C ∠=∠,AE AF =,给出下列结论:①12∠=∠;②BE CF =;③ACN ABM ≌;④CD DN =.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】 【分析】根据90E F ∠=∠=°,B C ∠=∠,AE AF =,可得ABE ACF ≌,三角形全等的性质BE CF =;BAE CAF ∠=∠可得①12∠=∠;由ASA 可得ACN ABM ≌,④CD DN =不成立.【详解】解:∵90E F ∠=∠=°,B C ∠=∠,AE AF =,∴ABE ACF ≌,∴BE CF =;BAE CAF ∠=∠,故②符合题意;∵BAE BAC CAF BAC ∠−∠=∠−∠,∴12∠=∠;故①符合题意;∵ABE ACF ≌∴B C ∠=∠,AB AC =,又∵BAC CAB ∠=∠∴ACN ABM ≌,故③符合题意;∴AM AN =,∴MC BN =,∵,B C MDC BDN ∠=∠∠=∠, ∴MDC NDB ≌,∴CD DB =,∴CD DN =不能证明成立,故④不符合题意.故选:B .【点睛】本题考查三角形全等的判定方法和三角形全等的性质,难度适中.9. 已知AOB ∠,下面是“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图痕迹.该尺规作图的依据是( )A. SASB. SSSC. AASD. ASA【答案】B【解析】 【分析】本题主要考查了尺规作图作一个角等于已知角、全等三角形判定等知识点,掌握尺规作图作一个角等于已知角的作法成为解题的关键.根据“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图痕迹,结合全等三角形的判定定理即可解答.【详解】解:由题意可知,“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图的依据是SSS .故选:B .10. 如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AB AC >,下列结论正确的是( )A. AB AD CB CD −>−B. AB AD CB CD −=−C. AB AD CB CD −<−D. AB AD −与CB CD −的大小关系不确定【答案】A【解析】 【分析】先通过在AB 上截取AE =AD ,得到一对全等三角形,利用全等三角形的性质得到对应边相等,再利用三角形的三边关系和等量代换即可得到A 选项正确.【详解】解:如图,在AB 上取AE AD =,对角线AC 平分BAD ∠,BAC DAC ∴∠=∠,在ACD ∆和ACE ∆中,的AD AE BAC DAC AC AC = ∠=∠ =, ()ACD ACE SAS ∴∆≅∆,CD CE ∴=,BE CB CE >− ,AB AD CB CD ∴−>−.故选:A .【点睛】本题考查了全等三角形的判定与性质、角平分线的定义和三角形的三边关系,要求学生能根据已知条件做出辅助线构造全等三角形,并能根据全等三角形的性质得到不同线段之间的关系,利用三角形三边关系判断大小,解决本题的关键是牢记概念和公式,正确作辅助线构造全等三角形等.二、填空题11. 若正多边形的一个外角为60°,则这个正多边形的边数是______.【答案】六##6【解析】【分析】本题考查了多边形的外角和,熟练掌握任意多边形的外角和都是360度是解答本题的关键.根据任意多边形的外角和都是360度求解即可.【详解】解:360606°÷°=.故答案为:六.12. 四条长度分别为2cm ,5cm ,8cm ,9cm 的线段,任选三条组成一个三角形,可以组成的三角形的个数是___________个.【答案】2【解析】【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【详解】解:四条木棒的所有组合:2,5,8和2,5,9和5,8,9和2,8,9;∵2+5=7<8,∴2,5,8不能组成三角形;∵2+5=7<9,∴2,5,9不能组成三角形;∵5+8=13>9,∴5,8,9能组成三角形;∵2+8=10>9,∴2,8,9能组成三角形.∴ 5,8,9和2,8,9能组成三角形.只有2个三角形.故答案是:2.【点睛】此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.13. 如图,在ABC 中,AD BC ⊥,AE 平分BAC ∠,若140∠=°,230∠=°,则B ∠=______.【答案】40°##40度【解析】【分析】本题考查了三角形的角平分线,高线的定义;由AE 平分BAC ∠,可得角相等,由140∠=°,230∠=°,可求得EAD ∠的度数,在直角三角形ABD 在利用两锐角互余可求得答案.【详解】解:AE 平分BAC ∠12EAD ∴∠=∠+∠,12403010EAD ∴∠=∠−∠=°−°=°,Rt ABD 中,9090401040BBAD ∠=°−∠=°−°−°=°. 故答案为:40°.14. 如图,BE 平分∠ABC ,CE 平分外角∠ACD ,若∠A =52°,则∠E 的度数为_____.【答案】26°【解析】【分析】根据三角形的外角等于和它不相邻的两个内角的和即可得答案.【详解】∵BE 平分∠ABC ,CE 平分外角∠ACD ,∴∠EBC =12∠ABC ,∠ECD =12∠ACD , ∴∠E =∠ECD ﹣∠EBC =12(∠ACD ﹣∠ABC ) ∵∠ACD-∠ABC=∠A ,∴∠E =12∠A =12×52°=26° 故答案为26°【点睛】本题考查三角形外角性质,三角形的一个外角,等于和它不相邻的两个内角的和;熟练掌握外角性质是解题关键.15. 如图1,123456∠+∠+∠+∠+∠+∠为m 度,如图2,123456∠+∠+∠+∠+∠+∠为n 度,则m n −=__________.【答案】0【解析】【分析】将图1原六边形分成两个三角形和一个四边形可得到m 的值,将图2原六边形分成四个三角形可得到n 的值,从而得到答案.【详解】解:如图1,将原六边形分成两个三角形和一个四边形,,1234562180360720m ∴°=∠+∠+∠+∠+∠+∠=×°+°=°,如图2,将原六边形分成四个三角形,,∴°=∠+∠+∠+∠+∠+∠=×°=°,1234564180720n∴==,m n720∴−=,m n故答案为:0.【点睛】本题考查了多边形的内角和,此类问题通常连接多边形的顶点,将多边形分割成四边形和三角形,通过计算四边形和三角形的内角和,求得多边形的内角和.16. 如图,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③ ACN≌ ABM;④CD=DN.其中符合题意结论的序号是_____.【答案】①②③【解析】【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【详解】∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴△ACN≌△ABM(ASA),即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE-∠BAC,∠2=∠CAF-∠BAC,∴∠1=∠2,即结论①正确;∴△AEM ≌△AFN (ASA ),∴AM =AN ,∴CM =BN ,∵∠CDM =∠BDN ,∠C =∠B ,∴△CDM ≌△BDN ,∴CD =BD ,无法判断CD =DN ,故④错误,∴题中正确的结论应该是①②③.故答案为:①②③.【点睛】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.三、解答题17. 如图,已知点D ,E 分别AB ,AC 上,B C ∠=∠,DC BE =,求证:ABE ACD △△≌.【答案】见解析【解析】【分析】本题考查了全等三角形的判定,根据已知条件选择恰当的判定方法是解题的关键.【详解】解:在ABE 和ACD 中,B C A A BE DC ∠=∠ ∠=∠ =, ∴()AAS ABE ACD ≌.18. 如图,请你仅用无刻度直尺作图.在(1)在图①中,画出三角形AB 边上的中线CD ;(2)在图②中,找一格点D ,使得ABC CDA △△≌.【答案】(1)见解析 (2)见解析【解析】【分析】(1)如图,连接CD 即可;(2)按如图所示,找到点D ,连接AD CD ,即可.【小问1详解】【小问2详解】如图,CDA 即为所求;【点睛】本题考查了作图,三角形中线的性质、全等三角形的判定方法,掌握中线的性质及全等三角形判定的方法是关键.19. (1)在ABC 中,ABC ∠的角平分线和ACB ∠的角平分线交于点P ,如图1,试猜想P ∠与A ∠的关系,直接写出结论___________:(不必写过程)(2)在ABC 中,一个外角ACE ∠的角平分线和一个内角ABC ∠的角平分线交于点P ,如图2,试猜想P ∠与A ∠的关系,直接写出结论____________;(不必写过程) (3)在ABC 中,两个外角EBC ∠的角平分线和FCB ∠的角平分线交于点P ,如图3,试猜想P ∠与A ∠的关系,直接写出结论_________,并予以证明.【答案】(1)1902P A∠=°+∠;(2)12P A∠=∠;(3)1902P A∠=°−∠【解析】【分析】(1)根据三角形的内角和定理表示出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后根据三角形的内角和定理列式整理即可;(2)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,再根据角平分线的定义可得∠PBC=12∠ABC,∠PCE=12∠ACE,然后整理即可得证;(3)根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠PBC+∠PCB,然后利用三角形的内角和定理列式整理即可得解.【详解】解:(1)1902P A ∠=°+∠;理由:在△ABC中,∠ABC+∠ACB=180°-∠A,∵点P为角平分线的交点,∴1=2PBC ABC∠∠,1=2PCB ACB∠∠,∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A,在△PBC中,∠P=180°-(90°-12∠A)=90°+12∠A;故答案为:1902P A ∠=°+∠;(2)12P A ∠=∠.理由:由三角形的外角性质得,∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,∵外角∠ACE的角平分线和内角∠ABC的角平分线交于点P,∴∠PBC=12∠ABC,∠PCE=12∠ACE,∴12(∠A+∠ABC)=∠P+12∠ABC,∴∠P=12∠A;(3)1902P A ∠=°−∠; 证明: 外角EBC ∠的角平分线和FCB ∠的角平分线交于点P ,11()()22PBC PCB A ACB A ABC ∴∠+∠=∠+∠+∠+∠ 111()90222A A ABC ACB A =∠+∠+∠+∠=∠+° 在PBC ∆中,11180909022P A A ∠=°−∠+°=°−∠. 故答案为:1902P A ∠=°−∠; 【点睛】本题考查的是三角形内角和定理,角平分线的定义和三角形外角的性质,熟记性质与概念是解题的关键,要注意整体思想的利用.20. 如图,在ABC 中,AE 为边BC 上的高,点D 为边BC 上的一点,连接AD .(1)当AD 为边BC 上的中线时,若6AE =,ABC 的面积为30,求CD 的长;(2)当AD 为BAC ∠的角平分线时,若6636C B ∠=°∠=°,,求DAE ∠的度数.【答案】(1)5 (2)15°【解析】【分析】本题考查了用三角形中线求三角形面积、三角形外角性质、直角三角形性质.(1)利用三角形中线定义及三角形面积求出CD 长;(2)利用三角形内角和先求BAC ∠,再用外角性质和直角三角形性质求出DAE ∠.【小问1详解】∵AD 为边BC 上的中线, ∴1152ADC ABC S S == , ∵AE 为边BC 上的高, ∴1152DC AE ××=, ∴5CD =.【小问2详解】∵6636C B ∠=°∠=°,∴18078BAC B C =°−−=°∠∠∠,∵AD 为BAC ∠的角平分线,∴39BAD DAC ∠=∠=°,∴393675ADC BAD B ∠=∠+∠=°+°=°,∵AE BC ⊥,∴90AED ∠=°,∴9015DAE ADC ∠=°−∠=°21. 如图,点A ,D ,B ,E 在同一直线上,AC =DF ,AD =BE ,BC =EF .求证:AC ∥DF .【答案】详见解析【解析】【分析】根据等式的性质得出AB =DE ,利用SSS 证明△ABC 与△DEF 全等,进而解答即可.【详解】证明:∵AD =BE ,∴AD +DB =BE +DB ,∴AB =DE ,在△ABC 与△DEF 中,AB DE AC DF BC EF = = =,∴△ABC ≌△DEF (SSS ),∴∠A =∠FDE ,∴AC ∥DF .【点睛】此题主要考查了平行线的性质和判定,全等三角形的判定和性质,做题的关键是找出证三角形全等的条件.22. 如图,在ACB △中,90ACB ∠=°,CD AB ⊥于D .(1)求证:ACD B ∠=∠;(2)若AF 平分CAB ∠分别交CD 、BC 于E 、F ,求证:CEF CFE ∠=∠.【答案】(1)见解析 (2)见解析【解析】【分析】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中. (1)由于ACD ∠与B ∠都是BCD ∠的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出9090CFA CAF AED DAE ∠=°−∠∠=°−∠,,再根据角平分线的定义得出CAF DAE ∠=∠,然后由对顶角相等的性质,等量代换即可证明CEF CFE ∠=∠.【小问1详解】证明:90ACB ∠=° ,CD AB ⊥于D ,90ACD BCD ∴∠+∠=°,90B BCD ∠+∠=°,ACD B ∴∠=∠;【小问2详解】证明:在Rt AFC △中,90CFA CAF ∠=°−∠,同理Rt AED △中,90AED DAE ∠=°−∠.又AF 平分CAB ∠,CAF DAE ∴∠=∠,AED CFE ∴∠=∠,又CEF AED ∠=∠ ,CEF CFE ∴∠=∠.23. 如图,AC ,BD 相交于点O ,OB OD =,A C ∠=∠,求证:△≌△AOB COD .在【答案】见解答【解析】【分析】本题主要考查全等三角形的判定,熟练掌握判定方法是解题的关键.根据全等三角形的判定方法证明即可.【详解】证明:AOB 和COD △中,A C AOB COD OB OD∠=∠ ∠=∠ = , (AAS)AOB COD ∴≌△△.24. 材料阅读:如图①所示的图形,像我们常见的学习用品—— 圆规.我们不妨把这样图形叫做 “规形图 ”.解决问题:(1)观察“规形图 ”,试探究BDC 与A B C ∠∠∠,,之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下两个问题:Ⅰ.如图② ,把一块三角尺 DEF 放置在ABC 上,使三角尺的两条直角边DE DF ,恰好经过点B C ,,若40A ∠=°,则ABD ACD +=∠∠ ° . Ⅱ.如图③ ,BD 平分ABP CD ∠,平分ACP ∠,若40130A BPC ∠=°∠=°,,求BDC ∠的度数.【答案】(1) BDC A B C ∠=∠+∠+∠,理由见解析(2)Ⅰ.50;Ⅱ. 85°【解析】【分析】本题考查的是三角形内角和定理,三角形外角性质以及角平分线的定义得运用.根据题意连接AD 并延长至点 F ,利用三角形外角性质即可得出答案.Ⅰ.由(1)可知BDC A B C ∠=∠+∠+∠,因为40A ∠=°,90D ∠=︒,所以904050ABD ACD ∠+∠=°−°=°;Ⅱ.由(1)的已知条件,由于BD 平分ABP CD ∠,平分ACP ∠,即可得出在1452ABD ACD ABP ACP ∠+∠=∠+∠=°(),因此4540=85BDC ∠=°+°°. 【小问1详解】 解:如图连接AD 并延长至点 F , 根据外角的性质,可得 BDF BAD B ∠=∠+∠, CDF C CAD ∠=∠+∠, 又∵BDC BDF CDF BAC BAD CAD ∠=∠+∠∠=∠+∠,, ∴BDC BAC B C ∠=∠+∠+∠;【小问2详解】解:Ⅰ. 由(1)可得,BDC ABD ACD A ∠=∠+∠+∠; 又∵4090A D ∠=°∠=°,, ∴9040=50ABD ACD ∠+∠=°−°°, 故答案为:50; Ⅱ.由(1),可得BPC ABP ACP BDC BAC ABD ACD ∠=∠+∠+∠∠=∠+∠+∠,, ∴1304090ABP ACP BPC BAC ∠+∠=∠−∠=°−°=°, 又∵BD 平分ABP CD ∠,平分ACP ∠, ∴1452ABD ACD ABP ACP ∠+∠=∠+∠=°(), ∴4540=85BDC ∠=°+°°.。

2024-2025学年初中八年级上学期9月月考数学试题及答案(人教版)

人教版数学2024-2025学年八年级上学期数学9月月考模拟试卷(全国通用)一.选择题(共10小题,满分30分,每小题3分)1. 下列各组图形中,属于全等图形的是( )A. B.C. D.2. 以下列数据为三边长能构成三角形的是( )A. 1,2,3B. 2,3,4C. 14,4,9D. 7,2,4 3. 下列各组图形中,BD 是ABC 的高的图形是( )A B.C. D.4. 已知三角形两边的长分别是3和5,则这个三角形第三边的长可能为( )A. 1B. 2C. 7D. 95. 两个同样大小的直角三角板按如图所示摆放,其中两条一样长的直角边交于点M ,另一直角边BE ,CD 分别落在PAQ ∠的边AP 和AQ 上,且AB AC =,连接AM ,则在说明AM 为PAQ ∠的平分线的过程中,理由正确的是( )A. SASB. SSAC. HLD. SSS.6. 一个多边形的内角和是720°,这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形7. 如图,已知ABC 六个元素,则下面甲、乙、丙三个三角形中,和ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙8. 如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=°,60D ∠=°,则B ∠=( )A 50° B. 45° C. 40° D. 25°9. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形10. 如图所示,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( )A. 25B. .30C. 35D. 40二.填空题(共6小题,满分18分,每小题3分)11. 如图,已知AB ∥CF ,E 为AC 的中点,若FC =6cm ,DB =3cm ,则AB =________.12. 如图,A B C D E F ∠+∠+∠+∠+∠+∠=______.的.13. 一个n 边形内角和等于1620°,则边数n 为______.14. 如图,在ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC 的面积等于24cm ,则阴影部分图形面积等于_____2cm .15. 已知,如图ABC ,点D 是ABC 内一点,连接BD CD ,,则BDC ∠与12A ∠∠∠,,之间的数量关系为______.16. △ABC 中,AD 是BC 边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=___________.三.解答题(共9小题,满分72分)17. 如果一个三角形一边长为9cm ,另一边长为2cm ,若第三边长为x cm .(1)求第三边x 的范围;(2)当第三边长为奇数时,求三角形周长.18. 已知:如图,点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,BF EC =.求证:ABC DEF ≌△△.的的19. 如图,CE 是ABC 外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,42B ∠=°,25E ∠=°,(1)求ECD ∠的度数;(2)求BAC ∠的度数.20. 将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,ACDE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=°,求∠21. 如图,在44×的正方形网格中,点A ,B ,C 均为小正方形的顶点,用无刻度的直尺作图,不写作法,保留作图痕迹;(1)在图1中,作ABD △与ABC 全等(点D 与点C 不重合);(2)在图2中,作ABC 的高BE ;(3)在图3中,作AFC ABC ∠=∠(点F 为小正方形的顶点,且不与点B 重合); (4)在图3中,在线段AC 上找点P ,使得BPC ABC ∠=∠.22. (1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在ABC 中,9AB =,5AC =,求BC 边上的中线AD 的的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD 到Q ,使得DQ AD =;②再连接BQ ,把2AB AC AD 、、集中在ABQ 中;根据小明的方法,请直接写出图1中AD 的取值范围是 .(2)写出图1中AC 与BQ 的位置关系并证明.(3)如图2,在ABC 中,AD 为中线,E 为AB 上一点,AD 、CE 交于点F ,且AE EF =.求证:AB CF =.23. 如图,在四边形ABCD 中,60120AD AB DC BC DAB DCB ==∠=°∠=°,,,,E 是AD 上一点,F 是AB 延长线上一点,且DE BF =.(1)求D ∠的度数;(2)求证:CE CF =;(3)若G 在AB 上且60ECG ∠=°,试猜想DE EG BG ,,之间的数量关系,并证明.24. 在ABC 中,90ACB ∠=°,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E . (1)如图,当AC CB =,点A 、B 在直线m 的同侧时,猜想线段DE ,AD 和BE 三条线段有怎样的数量关系?请直接写出你的结论:__________;(2)如图,当AC CB =,点A 、B 在直线m 的异侧时,请问(1)中有关于线段DE 、AD 和BE 三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确的结论,并说明理由.(3)当16cm AC =,30cm CB =,点A 、B 在直线m 的同侧时,一动点M 以每秒2cm 的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒3cm 的速度从B 点出发沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作MP m ⊥于P ,NQ m ⊥于Q .设运动时间为t 秒,当t 为何值时,MPC 与NQC 全等?25. 在平面直角坐标系中,点A (0,5),B (12,0),在y 轴负半轴上取点E ,使OA =EO ,作∠CEF =∠AEB ,直线CO 交BA D .(1)根据题意,可求得OE = ;(2)求证:△ADO ≌△ECO ;(3)动点P 从E 出发沿E ﹣O ﹣B 路线运动速度为每秒1个单位,到B 点处停止运动;动点Q 从B 出发沿B ﹣O ﹣E 运动速度为每秒3个单位,到E 点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM ⊥CD 于点M ,QN ⊥CD 于点N .问两动点运动多长时间△OPM 与△OQN 全等?人教版数学2024-2025学年八年级上学期数学9月月考模拟试卷(全国通用)一.选择题(共10小题,满分30分,每小题3分)1. 下列各组图形中,属于全等图形的是( )A. B.C. D.【答案】C【解析】【分析】本题考查了全等图形.根据全等图形的定义(能够完全重合的两个图形叫做全等形)逐项判断即可得.【详解】解:A 、两个图形的大小不相同,不能够完全重合,不是全等图形,则此项不符合题意; B 、两个图形的大小不相同,不能够完全重合,不是全等图形,则此项不符合题意;C 、两个图形能够完全重合,是全等图形,则此项符合题意;D 、两个图形的形状不相同,不能够完全重合,不是全等图形,则此项不符合题意;故选:C .2. 以下列数据为三边长能构成三角形的是( )A 1,2,3B. 2,3,4C. 14,4,9D. 7,2,4【答案】B【解析】【分析】利用三角形三边关系进行判定即可.【详解】解:A 、123+=,不符合三角形三边关系,错误,不符合题意;B 、234+>,成立,符合题意;C 、4913+<,不符合三角形三边关系,错误,不符合题意;D 、247+<,不符合三角形三边关系,错误,不符合题意;故选B .【点睛】本题考查三角形三边关系,判定形成三角形的标准是两小边之和大于最大边,熟练掌握运用三角形.三边关系是解题关键.3. 下列各组图形中,BD 是ABC 的高的图形是( )A. B.C. D.【答案】B【解析】【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念即可得到答案.【详解】解:根据三角形高的定义可知,只有选项B 中的线段BD 是△ABC 的高,故选:B .【点睛】考查了三角形的高的概念,掌握高的作法是解题的关键.4. 已知三角形两边的长分别是3和5,则这个三角形第三边的长可能为( )A. 1B. 2C. 7D. 9 【答案】C【解析】【分析】先根据三角形的三边关系求出x 的取值范围,再求出符合条件的x 的值即可.【详解】解:设三角形第三边的长为x ,则5-3<x <5+3,即2<x <8,只有选项C 符合题意.故选C .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边. 5. 两个同样大小的直角三角板按如图所示摆放,其中两条一样长的直角边交于点M ,另一直角边BE ,CD 分别落在PAQ ∠的边AP 和AQ 上,且AB AC =,连接AM ,则在说明AM 为PAQ ∠的平分线的过程中,理由正确的是( )A. SASB. SSAC. HLD. SSS【答案】C【解析】 【分析】根据全等三角形的判定和性质定理以及角平分线的定义即可得结论,从而作出判断.【详解】解:根据题意可得:90ABM ACM ∠=∠=°,∴ABM 和ACM △都是直角三角形,在Rt ABM 和Rt ACM 中,AB AC AM AM = =∴()Rt Rt HL ABM ACM ≌,∴BAM CAM ∠=∠,∴AM 为PAQ ∠的平分线,故选:C .【点睛】本题考查角平分线的判定和全等三角形的判定和性质的应用,解题的关键是掌握全等三角形的判定方法.6. 一个多边形的内角和是720°,这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形【答案】B【解析】【分析】本题考查了多边形的内角和公式,根据多边形的内角和公式解答即可.【详解】设边数为n ,根据题意,得 ()2180720n −⋅°=°,解得6n =. ∴这个多边形为六边形,故选:B .7. 如图,已知ABC 的六个元素,则下面甲、乙、丙三个三角形中,和ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙【答案】B【解析】 【分析】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,分别利用全等三角形的判定方法逐个判断即可.【详解】解:在ABC 中,边a 、c 的夹角为50°,∴与乙图中的三角形满足SAS ,可知两三角形全等,在丙图中,由三角形内角和可求得另一个角为58°,且58°角和50°角的夹边为a ,ABC ∴ 和丙图中的三角形满足ASA ,可知两三角形全等,在甲图中,和ABC 满足的是SSA ,可知两三角形不全等,综上可知能和ABC 全等的是乙、丙,故选:B .8. 如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=°,60D ∠=°,则B ∠=( )A. 50°B. 45°C. 40°D. 25°【答案】A【解析】 【分析】本题主要考查了平行线的性质,三角形内角和定理,角平分线的定义,根据平行线的性质和角平分线的定义,可以求得BCD ∠的度数,再根据三角形内角和.即可求得B ∠的度数.【详解】解:∵AE CD ∥,235∠=°,∴1235∠=∠=°,∵AC 平分BCD ∠,∴2170BCD ∠=∠=°,∵60D ∠=°,∴180180607050B D BCD ∠=°−∠−∠=°−°−°=°,故选:A .9. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形【答案】C【解析】【分析】一个多边形的镶嵌应该符合其内角度数可以整除360°【详解】A 、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;B 、四边形内角和为360°,能整除360°,能密铺,故此选项不合题意;C 、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D 、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意; 故选C .【点睛】本题主要考查图形的镶嵌问题,重点是掌握多边形镶嵌的原理.10. 如图所示,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( )A. 25B. .30C. 35D. 40【答案】B【解析】 【分析】由于BD=2DC ,那么结合三角形面积公式可得S △ABD =2S △ACD ,而S △ABC =S △ABD +S △ACD ,可得出S △ABC =3S △ACD ,而E 是AC 中点,故有S △AGE =S △CGE ,于是可求S △ACD ,从而易求S △ABC . 【详解】.解:BD =2DC ,∴S △ABD =2S △ACD , ∴S △ABC =3S △ACD ,∵E 是AC 的中点,∴S△AGE=S△CGE,又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.故选B.【点睛】此题考查三角形的面积公式、三角形之间的面积加减计算.解题关键在于注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.二.填空题(共6小题,满分18分,每小题3分)11. 如图,已知AB∥CF,E为AC的中点,若FC=6cm,DB=3cm,则AB=________.【答案】9cm【解析】【详解】试题解析:AB∥CF,∴∠=∠∠=∠A FCE ADE CFE..E为AC的中点,∴=AE CE.△ADE≌△CFE,∴==DA FC6.AB AD DB cm∴=+=+=639.cm故答案为9.∠+∠+∠+∠+∠+∠=______.12. 如图,A B C D E F【答案】180°##180度【解析】【分析】本题主要考查三角形的外角的性质,三角形的内角和为180°,将所求角的度数转化为某些三角形的内角和是解题的关键;将所求的角的度数转化为HNG △的内角和,即可得到答案.【详解】解:,,A B GHN C D GNH E F HGN ∠+∠=∠∠+∠=∠∠+∠=∠ ,∴180A B C D E F GNH GHN HGN ∠+∠+∠+∠+∠+∠=∠+∠+∠=°,故答案为:180°.13. 一个n 边形内角和等于1620°,则边数n 为______.【答案】11【解析】【分析】根据多边形内角和公式,列方程求解即可.【详解】解:由题意,得()18021620n −=,解得:11n =,故答案为:11.【点睛】本题考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.14. 如图,在ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC 的面积等于24cm ,则阴影部分图形面积等于_____2cm .【答案】1【解析】【分析】此题考查了三角形中线的性质,根据三角形的中线分得的两个三角形的面积相等,就可证得12BEF BEC S S = ,12BDE ABD S S = ,12DE CD S S =△C △A ,12ABD ABC S S = ,再由ABC 的面积为4,就可得到BEF △的面积,解题的关键是熟练掌握三角形中线的性质及其应用.【详解】解:∵点F 是CE 的中点, ∴12BEF BEC S S = , ∵点E 是AD 的中点, ∴12BDE ABD S S = , 同理可证12DE CD S S =△C △A , ∵点D 是BC 的中点, ∴114222ABD ABC S S ==×= , ∴1212BDE CDE S S ==×= , ∴112BEC S =+= , ∴1212BEF S =×=△, 故答案为:1.15. 已知,如图ABC ,点D 是ABC 内一点,连接BD CD ,,则BDC ∠与12A ∠∠∠,,之间的数量关系为______.【答案】12BDC A ∠=∠+∠+∠【解析】【分析】本题考查了三角形的外角性质,延长BBBB 交AC 于点E ,由三角形外角性质可得1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,进而即可求解,正确作出辅助线是解题的关键.【详解】解:延长BBBB 交AC 于点E ,如图,∵BEC ∠是ABE 的外角,∴1BEC A ∠=∠+∠,∵BDC ∠是CDE 的外角,∴2BDC BEC ∠=∠+∠,即12BDC A ∠=∠+∠+∠,故答案为:12BDC A ∠=∠+∠+∠.16. △ABC 中,AD 是BC 边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=___________.【答案】70°或30°【解析】【分析】根据AD 的不同位置,分两种情况进行讨论:AD 在△ABC 的内部,AD 在△ABC 的外部,分别求得∠BAC 的度数.【详解】①如图,当AD 在△ABC 的内部时,∠BAC=∠BAD+∠CAD=50°+20°=70°.②如图,当AD 在△ABC 的外部时,∠BAC=∠BAD -∠CAD=50°-20°=30°.故答案为:70°或30°.【点睛】本题主要考查了三角形高的位置情况,充分考虑三角形的高在三角形的内部或外部进行分类讨论是解题的关键.三.解答题(共9小题,满分72分)17. 如果一个三角形的一边长为9cm ,另一边长为2cm ,若第三边长为x cm .(1)求第三边x 的范围;(2)当第三边长为奇数时,求三角形的周长.【答案】(1)7<x <11(2)20cm【解析】【分析】(1)根据三角形的三边关系得到有关第三边的取值范围即可;(2)根据(1)得到的取值范围确定第三边的值,从而确定三角形的周长.【小问1详解】由三角形的三边关系得:9292x −<<+,即711x <<;【小问2详解】∵第三边长的范围为711x <<,且第三边长为奇数,∴第三边长为9,则三角形的周长为:99220cm ++=【点睛】本题考查了三角形的三边关系,解题的关键是能够根据三角形的三边关系列出有关x 的取值范围,难度不大.18. 已知:如图,点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,BF EC =.求证:ABC DEF ≌△△.【答案】证明见解析【解析】【分析】根据两直线平行,内错角相等,得出ABC DEF ∠=∠,再根据线段之间的数量关系,得出BC EF =,再根据“边角边”,即可得出结论.【详解】证明:∵AB DE ∥,∴ABC DEF ∠=∠,∵BF EC =,∴BF FC EC FC +=+,∴BC EF =,在ABC 和DEF 中,AB DE ABC DEF BC EF = ∠=∠ =, ∴()ABC DEF SAS ≌.【点睛】本题考查了平行线的性质、全等三角形的判定定理,解本题的关键在熟练掌握全等三角形的判定方法.19. 如图,CE 是ABC 外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,42B ∠=°,25E ∠=°,(1)求ECD ∠的度数;(2)求BAC ∠的度数.【答案】(1)67°(2)92°【解析】【分析】本题考查角平分线定义及三角形外角性质.(1)根据三角形外角性质求出ECD ∠;(2)由已知可求出ACE ∠,根据三角形外角性质求出BAC ∠即可.【小问1详解】解:ECD ∠ 是BCE 的外角,ECD B E ∴∠=∠+∠,42B ∠=° ,25E ∠=°,∴67ECD ∠=°;【小问2详解】解:EC 平分ACD ∠,67ACE ECD ∠=∠=°∴,BAC ∠ 是ACE △的外角,BAC ACE E ∴∠=∠+∠,672592BAC ∴∠=°+°=°.20. 将两个三角形纸板ABC 和DBE 按如图所示方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=°,求BED ∠的度数.【答案】(1)见解析 (2)36BED ∠=°【解析】【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=°,即可得解.【小问1详解】解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBEBAC BDE AC DE∠=∠ ∠=∠ = ,所以()AAS ABC DBE ≌.【小问2详解】因为ABC DBE ≌△△,所以BD BA =,BCA BED ∠=∠.的在DBC △和ABC 中,DC AC CB CB BD BA = = =,所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=°, 所以36BED BCA ∠=∠=°.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等.21. 如图,在44×的正方形网格中,点A ,B ,C 均为小正方形的顶点,用无刻度的直尺作图,不写作法,保留作图痕迹;(1)在图1中,作ABD △与ABC 全等(点D 与点C 不重合);(2)在图2中,作ABC 的高(3)在图3中,作AFC ABC ∠=∠(点F 为小正方形的顶点,且不与点B 重合); (4)在图3中,在线段AC 上找点P ,使得BPC ABC ∠=∠.【答案】(1)见解析 (2)见解析(3)见解析 (4)见解析【解析】【分析】本题考查作图-应用与设计作图,全等三角形的判定与性质等知识,作三角形的高,三角形内角和,勾股定理,解题的关键是学会利用数形结合的思想解决问题.(1)利用全等三角形的判定方法,构造全等三角形即可;(2)取格点T ,连接BT 交AC 于点E ,线段BE 即为所求;(3)构造全等三角形即可;(4)利用勾股定理可知45A ∠=°,根据三角形内角和定理,作45QBC A ∠=∠=°,QB 交AC 点P 即可.【小问1详解】如图1,ABD △即为所求;【小问2详解】如图,BE 即为所求;【小问3详解】如图,AFC ∠即为所求;【小问4详解】如图,点P 即为所求.22. (1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在ABC 中,9AB =,5AC =,求BC 边上的中线AD 的的取值范围. 小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD 到Q ,使得DQ AD =;②再连接BQ ,把2AB AC AD 、、集中在ABQ 中;根据小明的方法,请直接写出图1中AD 的取值范围是 .(2)写出图1中AC 与BQ 的位置关系并证明.(3)如图2,在ABC 中,AD 为中线,E 为AB 上一点,AD 、CE 交于点F ,且AE EF =.求证:AB CF =.【答案】(1)27AD <<;(2)AC BQ ∥,证明见解析;(3)见解析 【解析】【分析】(1)先证()SAS BDQ CDA ≌ ,推出5BQCA ==,再利用三角形三边关系求解; (2)根据BDQ CDA ≌可得BQD CAD ∠=∠,即可证明AC BQ ∥; (3)(3)延长AD 至点G ,使GD AD =,连接CG ,先证明()SAS ≌ADB GDC ,即可得出AB GC G BAD =∠=∠,,再根据AE EF =,得出AFE FAE ∠=∠,最后根据等角对等边,即可求证AB CF =.【详解】解:(1)延长AD 到Q ,使得DQ AD =,再连接BQ ,∵AD 是ABC 的中线,∴BD CD =,又∵DQ AD =,BDQ CDA ∠=∠, ∴()SAS BDQ CDA ≌ ,∴5BQCA ==, 在ABQ 中,AB BQ AQ AB BQ −<<+,∴9595AQ −<<+,即414AQ <<,∴27AD <<,故答案为:27AD <<;(2)AC BQ ∥,证明如下:由(1)知BDQ CDA ≌,∴BQD CAD ∠=∠, ∴AC BQ ∥;(3)延长AD 至点G ,使GD AD =,连接CG ,∵AD 为BC 边上中线,∴BD CD =,在ADB 和GDC 中,的BD CD ADB GDC AD GD = ∠=∠ =, ∴()SAS ≌ADB GDC ,∴AB GC G BAD =∠=∠,,∵AE EF =,∴AFE FAE ∠=∠,∴DAB AFE CFG ∠=∠=∠,∴∠=∠G CFG ,∴CG CF =,∴AB CF =.【点睛】本题考查全等三角形的判定和性质,平行线的判定和性质,三角形三边关系的应用等,解题的关键是通过倍长中线构造全等三角形.23. 如图,在四边形ABCD 中,60120AD AB DC BC DAB DCB ==∠=°∠=°,,,,E 是AD 上一点,F 是AB 延长线上一点,且DE BF =.(1)求D ∠的度数;(2)求证:CE CF =;(3)若G 在AB 上且60ECG ∠=°,试猜想DE EG BG ,,之间的数量关系,并证明.【答案】(1)见解析 (2)见解析(3)EG BG DE =+,证明见解析【解析】【分析】本题考查了全等三角形的判定与性质、四边形内角和定理以及角的计算;根据全等三角形的性质找出相等的边角关系是关键.(1)结合AD AB DC BC ==、即可证出ABC ADC △△≌,由此即可得出30DAC ∠=°,60DCA ∠=°,即可求解;(2)通过角的计算得出D CBF ∠=∠,证出()CDE CBF SAS ≌,由此即可得出CE CF =; (3)结合AD AB DC BC ==、即可证出ABC ADC △△≌,由此即可得出60BCA DCA ∠=∠=°,再根据60ECG ∠=°即可得出DCE ACG ∠=∠,ACE BCG ∠=∠,由(2)可知CDE CBF △△≌,进而得知DCE BCF ∠=∠,根据角的计算即可得出ECG FCG ∠=∠,结合DE DF =即可证出CEG CFG ≌ ,即得出EG FG =,由相等的边与边之间的关系即可证出DE BG EG +=.【小问1详解】解:ABC 和ADC △中,AB AD AC AC BC DC = = =, ()ABC ADC SSS ∴ ≌,BCA DCA ∴∠=∠,DAC BAC ∠=∠,60120DAB DCB ∠=°∠=° ,,1302DAC DAB ∴∠=∠=°,1602DCA DCB ∠=∠=°, 180D DAC DCA ∠+∠+∠=° ,180306090D ∴∠=°−°−°=°;【小问2详解】证明:36060120D DAB ABC DCBDAB DCB ∠+∠+∠+∠=°∠=°∠=°,, , 36060120180D ABC ∴∠+∠=°−°−°=°.180CBF ABC ∠+∠=° ,D CBF ∴∠=∠.在CDE 和CBF 中,DC BC D CBF DE BF = ∠=∠ =, ()CDE CBF SAS ∴ ≌.CE CF ∴=.【小问3详解】解:猜想DE EG BG 、、之间的数量关系为:DE BG EG +=.理由如下:在在ABC 和ADC △中,AB AD AC AC BC DC = = =, ()ABC ADC SSS ∴ ≌,111206022BCA DCA DCB °=°∴∠=∠=∠=×. 60ECG ∠=° ,DCE ACG ACE BCG ∴∠=∠∠=∠,.由(2)可得:CDE CBF △△≌,DCE BCF ∴∠=∠.60BCG BCF ∴∠+∠=°,即60FCG ∠=°.ECG FCG ∴∠=∠.在CEG 和CFG △中,CE CF ECG FCG CG CG = ∠=∠ =, ()CEG CFG SAS ∴ ≌,EG FG ∴=.DE BF FG BF BG ==+, ,DE BG EG ∴+=.24. 在ABC 中,90ACB ∠=°,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E . (1)如图,当AC CB =,点A 、B 在直线m 的同侧时,猜想线段DE ,AD 和BE 三条线段有怎样的数量关系?请直接写出你的结论:__________;(2)如图,当AC CB =,点A 、B 在直线m 的异侧时,请问(1)中有关于线段DE 、AD 和BE 三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确的结论,并说明理由.(3)当16cm AC =,30cm CB =,点A 、B 在直线m 的同侧时,一动点M 以每秒2cm 的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒3cm 的速度从B 点出发沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作MP m ⊥于P ,NQ m ⊥于Q .设运动时间为t 秒,当t 为何值时,MPC 与NQC 全等?【答案】(1)DE AD BE =+;(2)不成立,理由见解析;(3)当9.2t =或14或16秒时,MPC 与NQC 全等【解析】【分析】(1)根据AD m ⊥,BE m ⊥,得90ADC CEB ∠=∠=°,而90ACB ∠=°,根据等角的余角相等得CAD BCE ∠=∠,然后根据“AAS”可判断()ACD CBE AAS ∆∆≌,则=AD CE ,CD BE =,于是DE CE CD AD BE =+=+;(2)同(1)易证()ACD CBE AAS ∆∆≌,则=AD CE ,CD BE =,于是DE CE CD AD BE =−=−;(3)只需根据点M 和点N 的不同位置进行分类讨论即可解决问题.【详解】(1)猜想:DE AD BE =+(2)不成立;理由:∵AD m ⊥,BE m ⊥,∴90ADC CEB ∠=∠=°,∵90ACB ∠=°,∴90ACD CAD ACD BCE ∠+∠=∠+∠=°,∴CAD BCE ∠=∠,在ACD 和CBE △中,ADC CEB CAD BCE AC CB ∠=∠ ∠=∠ =∴()ACD CBE AAS ∆∆≌,∴=AD CE ,CD BE =,∴DE CE CD AD BE =−=−;(3)①当08t ≤<时,点M 在AC 上,点N 在BC 上,如图,此时2AM t =,3BN t =,16AC =,30CB =,则MC AC AM =−,NC BC BN =−,当MC NC =,即162303t t −=−,解得:14t =,不合题意;②当810t ≤<时,点M 在BC 上,点N 也在BC 上,此时相当于两点相遇,如图,∵MC NC =,点M 与点N 216303t t −=−,解得:9.2t =; ③当46103t ≤<时,点M 在BC 上,点N 在AC 上,如图,∵MC NC =,∴216330t t −=−,解得:14t =; ④当46233t ≤≤时,点N 停在点A 处,点M 在BC 上,如图,∵MC NC =,∴21616t −=,解得:16t =;综上所述:当9.2t =或14或16秒时,MPC ∆与NQC ∆全等.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,同角的余角相等,判断出ACD CBE ∆∆≌是解本题的关键,还用到了分类讨论的思想.25. 在平面直角坐标系中,点A (0,5),B (12,0),在y 轴负半轴上取点E ,使OA =EO ,作∠CEF =∠AEB ,直线CO 交BA 的延长线于点D .(1)根据题意,可求得OE = ;(2)求证:△ADO ≌△ECO ;(3)动点P 从E 出发沿E ﹣O ﹣B 路线运动速度为每秒1个单位,到B 点处停止运动;动点Q 从B 出发沿B ﹣O ﹣E 运动速度为每秒3个单位,到E 点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM ⊥CD 于点M ,QN ⊥CD 于点N .问两动点运动多长时间△OPM 与△OQN 全等?【答案】(1)5;(2)见解析;(3)当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等 【解析】【分析】(1)根据OA=OE 即可解决问题.(2)根据ASA 证明三角形全等即可解决问题.(2)设运动的时间为t 秒,分三种情况讨论:当点P 、Q 分别在y 轴、x 轴上时;当点P 、Q 都在y 轴上时;当点P 在x 轴上,Q 在y 轴时若二者都没有提前停止,当点Q 提前停止时;列方程即可得到结论.【详解】(1)∵A (0,5),∴OE =OA =5,故答案为5.(2)如图1中,∵OE =OA ,OB ⊥AE ,∴BA =BE ,∴∠BAO =∠BEO ,∵∠CEF =∠AEB ,∴∠CEF =∠BAO ,∴∠CEO =∠DAO ,在△ADO 与△ECO 中,CE0DA0OA 0ECOE AOD ∠=∠ = ∠=∠, ∴△ADO ≌△ECO (ASA ).(2)设运动的时间为t 秒,当PO =QO 时,易证△OPM ≌△OQN .分三种情况讨论:①当点P 、Q 分别在y 轴、x 轴上时PO =QO 得:5﹣t =12﹣3t ,解得t =72(秒), ②当点P 、Q 都在y 轴上时PO =QO 得:5﹣t =3t ﹣12,解得t =174(秒), ③当点P x 轴上,Q 在y 轴上时,若二者都没有提前停止,则PO =得:t ﹣5=3t ﹣12,解得t =72(秒)不合题意; 当点Q 运动到点E 提前停止时,有t ﹣5=5,解得t =10(秒), 综上所述:当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等. 【点睛】本题属于三角形综合题,考查了全等三角形的判定,坐标与图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.在。

八年级数学上册月考题

八年级数学上册月考题八年级月考试题一、填空(每项1分,共15分)1、25的算术平方根是______2、若x2-49=0,则x=________。

3.在实数3.14,-0.36,-26,0.13241324..., 39,-π,无理数的个数是__364.等腰三角形的两条边长分别为23和52,那么这个三角形的周长等于______5、.若|x-2|+Y3=0,那么X2Y=___6、如果x?3=2,那么(x+3)2=______.7、3?13的相反数是______,-的倒数是______.2648、(2-3)20022(2+3)2022=______. 9.在RT中△ 美国广播公司,∠ C是直角,B=8,C=17,然后是s△ ABC=。

10、x2=(-7)2,则x=______11、.若x?2=2,则2x+5的平方根是______.12、.已知某数有两个平方根分别是a+3与2a-15,这个数是。

.如果我们知道RT两边的长度△ 分别为3和4,则第三条边长度的平方为。

14.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的是正方形的正方形的边长为7cm,则正方形a,b,c,d的面积之和为___________cm2。

cdbA.第二选择题(每小题2分共30分)1.在以下几组数字中,不能使用的直角三角形的三条边的长度为7cm()a.a=7,b=24,c=25b.a=1.5,b=2,c=2.525摄氏度。

a=,b=2,c=d.a=15,b=8,c=17d342、如图小方格都是边长为1的正方形,则四边形abcd的面积是()aca.25b.12.5c.9d.8.53、如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是()文学士。

12米b.13厘米14米d.15米144、小强量得家里新购置的彩电荧光屏的长为58厘米,宽为46厘米,则这台电视机的尺寸是(实际测量的误差可不计)()a、 9英寸(23厘米)b.21英寸(54厘米)c.29英寸(74厘米)d.34英寸(87厘米)5、下列说法中,正确的是()a、任何实数的平方都是正的。

山东省聊城市东阿县姜楼中学2024-2025学年八年级上学期11月月考数学试题

山东省聊城市东阿县姜楼中学2024-2025学年八年级上学期11月月考数学试题一、单选题1.某班开展了以迎2022年北京冬奥为主题的海报评比活动.下列海报设计中,属于轴对称图形的是()A .B .C .D .2.如图,已知BA AE ⊥且BA AE =,BC CD ⊥且BC CD =,连接D ,分别过点E ,B ,D 作经过A ,C 两点的直线l 的垂线,垂足分别为F ,G ,H ,则按图中所标注的数据可计算图中实线围成的面积S ()A .50B .62C .65D .683.根据下列已知条件,不能画出唯一ABC V 的是()A .6AB =,7BC =,8CA =B .6AB =,50B ∠=︒,8BC =C .4AB =,3BC =,40A ∠=︒D .60A ∠=︒,40B ∠=︒,8AB =4.如图,用直尺和圆规作一个角A O B '''∠,等于已知角AOB ∠,能得出A O B AOB '''∠=∠的依据是()A .SASB .ASAC .AASD .SSS5.若点A (﹣4,m ﹣3),B (2n ,1)关于x 轴对称,则()A .m =2,n =0B .m =2,n =﹣2C .m =4,n =2D .m =4,n =﹣26.如图,在△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若AB =5,AC =8,BC =10,则△AEF 的周长为()A .5B .8C .10D .137.如图,已知ABC V 的周长是36cm ,ABC ∠和ACB ∠的角平分线交于点O ,OD BC ⊥于点D ,若3cm OD =,则ABC V 的面积是()A .248cm B .254cm C .260cm D .266cm 8.若把分式3a b ab+中的a ,b 都扩大为原来的3倍,则分式的值()A .扩大为原来的3倍B .扩大为原来的9倍C .缩小为原来的13D .不变9.已知30AOB ∠=︒,在AOB ∠内有一定点P ,点M ,N 分别是OA ,OB 上的动点,若PMN 的周长最小值为3,则OP 的长为()A .1.5B .3C .D .10.如图,已知C 是线段AB 上的任意一点(端点除外),分别以AC 、BC 为斜边并且在AB 的同一侧作等边ACD 和等边BCE ,连接AE 交CD 于点M ,连接BD 交CE 于点N ,给出以下五个结论:①AE BD =;②60EFB ∠=︒;③CM CN =;④MF NF =;⑤MN AB ∥.其中正确的有()个.A .2个B .3个C .4个D .5个二、填空题11.如图,CA CD =,ACD BCE ∠=∠,请添加一个条件,使ABC DEC ≅ .12.如图,BE AE ⊥,CF BE ⊥,垂足分别为E ,F ,D 是线段EF 的中点,CF BF =,若4AE =,3DE =,则ABC V 的面积是.13.若点()11A m n +-,与点()32B -,关于y 轴对称,则()2023m n +的值是.14.如图,在ABE 中,AE 的垂直平分线MN 交BE 于点C ,连接AC .若,5AB AC CE ==,6BC =,则ABC V 的周长等于.15.ABC V 中,BP 平分ABC ∠,PC 平分ACB ∠.连接AP ,6AB =,8BC =,5AC =,则::PAB PBC PAC S S S =△△△.16.若等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角的度数为17.若分式2293x x x --的值为0,则21x x -+的值为.18.如图,在ABC V 中,10cm AB AC ==,9cm BC =,AB 的垂直平分线交AB 于点M ,交AC 于点N ,在直线MN 上存在一点P ,使P 、B 、C 三点构成的PBC △的周长最小,则PBC △的周长最小值为.三、解答题19.计算:(1)223243423ab c d cd a b ⋅;(2)22234(()()a b c bc c ab a⋅÷--;(3)32222424442x x x x x x x x -+-+÷-+-.20.如图,在ABC V 中,90ACB ∠=︒,点E 在AC 的延长线上,ED AB ⊥于点D ,若BC ED =,求证:CE DB =.21.如图,AD 是ABC V 的边BC 上的高,点E 为AD 上一点,且BD AD DE DC ==,.(1)试说明DBE DAC ∠=∠;(2)若52AE CD ==,,求ABC V 的面积.22.已知,如图,在等边ABC V 中,点D 、E 分别在边BC AB 、上,且BD AE =,AD 与CE 交于点F .(1)试说明=AD CE 的理由;(2)求DFC ∠的度数.23.请同学们仅用无刻度的直尺,在正方形网格纸中完成下列几个小题:(1)在图①中,点、、A B C 在小正方形的顶点上,请画出与ABC V 关于直线l 成轴对称的ADE V ;(2)在图②中画出线段AC 的垂直平分线EF ;(3)在图③的格点中找一点G ,使得ACG 是以AC 为腰的等腰三角形,这样的G 点有______个.24.已知在等边三角形ABC 中,点E 在A 上,点D 在A 的延长线上,ED EC =.(1)【特殊情况,探索结论】如图(1),当点E 为A 的中点时,确定线段AE 与A 的大小关系:AE ______A (填“>”“<”或“=”).(2)【特例启发,解答题目】如图(2),当点E 为A 边上任意一点时,确定线段AE 与A 的大小关系,并说明理由(提示:过点E 作EF BC ∥,交AC 于点F ).(3)【拓展结论,设计新题】在等边三角形ABC 中,点E 在线段A 的延长线上,点D 在线段A 的延长线上,且ED EC =,若ABC V 的边长为1,2AE =,求B 的长(请根据题意画出相应图形,并直接写出结果).25.如图,12cm AB =,AC AB ⊥,BD AB ⊥,9cm AC BD ==,点P 在线段AB 上以3cm/s 的速度,由A 向B 运动,同时点Q 在线段BD 上由B 向D 运动.(1)如图1,若点Q 的运动速度与点P 的运动速度相等,当运动时间()1s t =,ACP △与BPQ V 是否全等?说明理由,并直接判断此时线段PC 和线段PQ 的位置关系;(2)如图2,将“AC AB ⊥,BD AB ⊥”为改“CAB DBA ∠=∠”,其他条件不变,若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能使ACP △与BPQ V 全等.(3)在图2的基础上延长AC ,BD 交于点E ,使C ,D 分别是AE ,BE 中点,如图3,若点Q 以(2)中的运动速度从点B 出发,点P 以原来速度从点A 同时出发,都逆时针沿ABE 三边运动,求出经过多长时间点P 与点Q 第一次相遇.。

浙江省义乌市绣湖中学2024—2025学年上学期八年级数学第一次月考试题

绣湖中学八年级数学学情检测卷一.选择题(本题有10个小题,每小题3分,共30分)1.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是( )A .感B .动C .中D .国 2.乐乐要从下面四组木棒中选择一组制作一个三角形作品,你认为他应该选( )A .3,5,6B .2,3,5C .2,4,7D .3,8,4 3.下列选项中,可以用来证明命题“若24a >,则2a >”是假命题的反例是( )A .3a =B .2a =−C .2a =D .3a =−4.下列命题中的真命题是( )A .相等的角是对顶角B .若两个角的和为180°,则这两个角互补C .若实数,a b 满足22a b =,则a b =D .同位角相等5.如图,ABC 中BC 边上的高是( )A .AFB .DBC .CFD .BE6.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )A .40°B .100°C .40°或100°D .50°或70°7.如图,在ABC 中,AB 的垂直平分线分别交AB BC 、于点,D E AC 、的垂直平分线分别交AC BC 、于点F G 、,若52B °∠=,30C °∠=,则EAG ∠的度数为( )A .12°B .14°C .16°D .18°8.如图,在33×的正方形方格中,每个小正方形方格的边长都为1,则1∠和2∠的关系是( )A .221∠=∠B .2190°∠−∠=C .1290°∠+∠=D .12180°∠+∠=9.点P 在AOB ∠的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,下列选项正确的是( )A .5PQ <B .5PQ >C .5PQ ≥D .5PQ ≤10.如图,在ABC 和AEF 中,AB AE =,BC EF =,ABC AEF ∠=∠,40EAB =°∠,AB EF 、交于点D ,连接EB ,下列结论中:①40FAC °∠=;②AF AC =;③AD AC =;④110EBC °∠=;⑤40EFB °∠=,其中正确的个数是( )A .1个B .2个C .3个D .4个二.填空题(本题有6小题,每小题3分,共18分)11.自行车的主框架采用了三角形结构,这样设计的依据是三角形具有______.12.如图,把一张长方形纸片ABCD 沿EF 折叠后,点D C 、分别落在D C 、的位置上,若65EFB °∠=,则AED ∠'______°.13.等腰三角形一腰上的中线将其周长分为8和12两部分,则它的底边长是______.14.如图,在ABC 中,E 是BC 上的一点,2EC BE =,点D 是AC 的中点,且18ABC S = ,则ADF BEF S S −=______.15.如图,在ABC 中,BA BC =,BD 平分ABC ∠,交AC 于点D ,点M N 、分别为BD BC 、上的动点,若10BC =,ABC 的面积为40,则CM MN +的最小值为________.16.如图所示,在等腰Rt ABC 中,90ACB °∠=,点D 为射线CB 上的动点,AE AD =,且AE AD ⊥,BE 与AC 所在的直线交于点P ,若3CD BD =,则PC 与AC 的比值为______.三.解答题(本题有8大题,17—21每题8分,22、23每题10分,24题12分,共72分)17.如图,在ABC 中,40,110B C °°∠=∠=.(1)画出下列图形:①BC 边上的高AD ;②A ∠的角平分线AE .(此小题要求尺规作图)18.如图,已知点B ,E ,C ,F 在一条直线上,AB DF =,AC DE =,A D ∠=∠.(1)求证://AC DE ;(2)若15BF =,7EC =,求BC 的长.19.如图,在正方形网格中点A ,B ,C 均为格点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B C 八年级数学上学期月考试题
班级 姓名 分数
一.选择题:(每题3分,30分)
1.等腰三角形两边长分别为 3,7,则它的周长为 ( )
A 、 13
B 、 17
C 、 13或17
D 、 不能确定
2.一个多边形内角和是5400,则这个多边形的边数为 ( )
A 、4
B 、5
C 、6
D 、7
3.若三角形三个内角的比为1:2:3,则这个三角形是 ( )
A 、 锐角三角形
B 、等腰三角形
C 、直角三角形
D 、 钝角三角形
4.图中有三角形的个数为 ( )
A 、 4个
B 、 6个
C 、 8个
D 、 10个
9题 10题
5.在△ABC 中,∠ACB=900,CD 是边AB 上的高。

那么图中与∠A 相等的角是( )
A 、 ∠
B B 、 ∠ACD
C 、 ∠BC
D D 、 ∠BDC
6.下列命题中正确的是 ( )
A .全等三角形的高相等
B .全等三角形的中线相等
C .全等三角形的角平分线相等
D .全等三角形对应角的平分线相等
7. 下列各条件中,不能作出惟一三角形的是 ( )
A .已知两边和其中一边的对角
B .已知两角和夹边
C .已知两边和夹角
D .已知三边
8.△ABC≌△A′B′C′,其中∠A′=35°,∠B′=70°则∠C 的度数为 ( )
A 、55° B、60° C、70° D、75°
9.如图,AB⊥BF,ED⊥BF,CD=CB ,判定△EDC≌△ABC 的理由是 ( )
A 、ASA
B 、SAS
C 、SSS
D 、HL
10.如图,△ABC≌△CDA,AB=5,BC=6,AC=7,则AD 的边长是 ( )
A 、 5
B 、6
C 、7
D 、不能确定
第(4)题E D C B A 第(5)题D C B A
B F
E C
图19
图15
二.填空题:(每空3分, 共30分)
11.一个多边形的内角和是外角和的2倍,则它是边形.
12.如图所示,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2
等于.
12题13题
13. 如图,在△ABC中,AD=DE,AB=BE,∠A=80°,则∠CED=___ __.
14. 如图,已知: AC =DB,∠ACB=∠DBC,则判断ABC
∆≌DCB
∆的依据是____ _ 15. 如图,已知:ABC
∆中,0
90
=
∠C,AM平分CAB
∠,CM =20cm,那么M到AB 的距离是;
16. 如图,△ABC≌△DBC,∠A=1200,∠ABC=250,则∠
DCB= .
16题
17. 如图,已知△ABC≌△ADE,∠BAC=130°,∠C=25°,∠D= .
18. 如图,AD与BC交于O点,若AO=DO,BO=CO,则△AOB≌.
19. 如图,已知:在ABC
∆和DEF
∆中,如果AB =DE,BC =EF,只要添加条件(填写一个就可以) ,就可证得A B C
∆≌∆
20.角的内部到角的两边相等的点在上.
三.解答题:(共60分)(要求:解题步骤清晰、书写工整)
21.(6分)一个三角形ABC,三个内角的度数比为1:2:3 ,求三角形三个内角的度数.
C
22.(6分)尺规作图:已知∠AOB ,求作∠AOB 的角平分线(保留作图痕迹并写出结论)
23. (6分)如图, CE=DE ,EA=EB ,CA=DB ,求证:C D ∠=∠
证明∵CE=DE , EA=EB (已知) ∴CE+EB=DE+EA ,(等式性质)
即: =
∴在△ABC 和△BAD .中,
()()()
__________________________
_____________⎧=⎪⎪=⎨⎪=⎪⎩已知已证公共边 ∴△ABC ≌△BAD .( )
∴C D ∠=∠ ( )
24.(6分)已知:如图,D 在AB 上,E 在AC 上,AB=AC ,AD=AE ;求证:∠B=∠C
25.(8分)已知:如图,AB ⊥BC , AD ⊥DC , ∠1=∠2. 求证:AB=AD
26.(8分)已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .
27.(10分)如图,要测量河两岸相对的两点A 、B 的距离,可以在AB 的垂线BF 上取两
点C 、D ,使CD =BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,这时测得的DE 的长就是AB 的长,请说明理由.
28.(10分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长
线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F

求证:BD =2CE
.(提示:通过两步全等证明)
F E D
C B A。

相关文档
最新文档