工程力学第6章习题

合集下载

工程力学习题答案6廖明成

工程力学习题答案6廖明成

工程力学习题答案6廖明成第六章 杆类构件的内力分析习 题6.1 试求图示结构1-1和2-2截面上的内力,指出AB 和CD 两杆的变形属于哪类基本变形,并说明依据。

(a )(b )题6.1图解:(a )应用截面法:对题的图取截面2-2以下部分为研究对象,受力图如图一所示:BM图一图二由平衡条件得:0,AM=∑6320N F ⨯-⨯=解得:NF =9KNCD 杆的变形属于拉伸变形。

应用截面法,取题所示截面1-1以右及2-2以下部分作为研究对象,其受力图如图二所示,由平衡条件有: 0,OM =∑ 6210NF M ⨯-⨯-= (1)0,yF =∑ 60NSF F --=(2)将NF =9KN 代入(1)-(2)式,得:M=3 kN·mSF =3 KNAB 杆属于弯曲变形。

(b )应用截面法 ,取1-1以上部分作为研究对象,受力图如图三所示,由平衡条件有:0,Fx =∑20NF -=图三F NMNF =2KN0,DM =∑ 210M -⨯=M=2KNAB 杆属于弯曲变形6.2 求图示结构中拉杆AB 的轴力。

设由AB 连接的1和2两部分均为刚体。

题6.2图解:首先根据刚体系的平衡条件,求出AB杆的内力。

刚体1的受力图如图一所示D图一 图二平衡条件为:0,CM=∑104840D N F F ⨯-⨯-⨯=(1)刚体2受力图如图二所示,平衡条件为:0,EM =∑ 240NDF F ⨯-⨯=(2)解以上两式有AB 杆内的轴力为:NF =5KN6.3 试求图示各杆件1-1、2-2和3-3截面上的轴力,并做轴力图。

(a )C(b )(c )(d )题6.3图解:(a ) 如图所示,解除约束,代之以约束反力,做受力图,如图1a 所示。

利用静力平衡条件,确定约束反力的大小和方向,并标示在图1a 中,作杆左端面的外法线n ,将受力图中各力标以正负号,轴力图是平行于杆轴线的直线,轴力图线在有轴向力作用处要发生突变,突变量等于该处总用力的数值,对于正的外力,轴力图向上突变,对于负的外力,轴力图向下突变,轴力图如2a 所示,截面1和截面2上的轴力分别为1N F =-2KN2N F =-8KN ,(a )nkN(a 1)(2)C(b )CBkNb 1)(b 2)((b )解题步骤和(a )相同,杆的受力图和轴力图如(1b )(2b )所示,截面1和截面2上的轴力分别为1N F =4KN 2N F =6KN(c )解题步骤和(a )相同,杆的受力图和轴力图如(1c )(2c )所示,截面1,截面2和截面3上的轴力分别为1N F =3F 2N F =4F ,3NF =4FB C(c )4F(c 1)(c 2)(d)A D(d 1)(d 2)(d )解题步骤和(a )相同,杆的受力图和轴力图如(1d )(2d )所示,截面1和截面2上的轴力分别为1N F =2KN 2N F =2KN6.4 求图示各轴1-1、2-2截面上的扭矩,并做各轴的扭矩图。

工程力学(静力学与材料力学)第四版习题答案

工程力学(静力学与材料力学)第四版习题答案

静力学部分 第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P Nθ==+=∑故: 161.2R F N==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有故:3R F KN== 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ cos 450RA F P -=由Y =∑ sin 450RA RB F F P +-=(b)解:受力分析如图所示:由 联立上二式,得:2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=由0Y =∑sin 0AC N F F W α+-=2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程 (1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:取E 为研究对象:由0Y =∑cos 0NH CEF F α'-=CECE F F '= 故有:2-11解:取A 点平衡:联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:由对称性及ADAD F F '=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡联立上二式得:1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡联立方程后解得: RD F = (2)取ABCE 部分,对C 点列平衡且RE REF F '=联立上面各式得: RA F = (3)取BCE 部分。

《工程力学》课后习题答案全集

《工程力学》课后习题答案全集

工程力学习题答案第一章 静力学基础知识思考题:1. ×;2. √;3. √;4. √;5. ×;6. ×;7. √;8. √习题一1.根据三力汇交定理,画出下面各图中A 点的约束反力方向。

解:(a )杆AB 在A 、B 、C 三处受力作用。

由于力p 和B R的作用线交于点O 。

如图(a )所示,根据三力平衡汇交定理,可以判断支座A 点的约束反力必沿通过A 、O 两点的连线。

(b )同上。

由于力p 和B R的作用线交于O 点,根据三力平衡汇交定理,可判断A 点的约束反力方向如下图(b )所示。

2.不计杆重,画出下列各图中AB 解:(a )取杆AB 为研究对象,杆除受力p外,在B 处受绳索作用的拉力B T ,在A 和E 两处还受光滑接触面约束。

约束力A N 和E的方向分别沿其接触表面的公法线,并指向杆。

其中力E N与杆垂直,力A N通过半圆槽的圆心O 。

AB 杆受力图见下图(a )。

(b)由于不计杆重,曲杆BC 只在两端受铰销B 和C 对它作用的约束力B N 和C N ,故曲杆BC 是二力构件或二力体,此两力的作用线必须通过B 、C 两点的连线,且B N =C N 。

研究杆A N 和B N,以及力偶m 的作用而平衡。

根据力偶的性质,A N 和B N必组成一力偶。

(d)由于不计杆重,杆AB 在A 、C 两处受绳索作用的拉力A T 和C T,在B 点受到支座反力B N 。

A T 和C T相交于O 点,根据三力平衡汇交定理,可以判断B N必沿通过B 、O 两点的连线。

见图(d).第二章力系的简化与平衡思考题:1. √;2. ×;3. ×;4. ×;5. √;6. ×;7. ×;8. ×;9. √.1.平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm ,求此力系向O 点简化的结果,并确定其合力位置。

工程力学(第二版)习题册答案

工程力学(第二版)习题册答案

一、填空题
1. 相 对 滑 动 相 对 滑 动 趋 势 接触面的切线 相反 2. 10N 20N 30N 30N 30N 3. 100N 竖直向上 平衡 4. 平稳无冲击 自锁
阻碍物体相对滑动
相对滑动趋势
二、选择题
1. A
三、简答题
1. ①问题中含有可能发生相对滑动的摩擦面,因此,存在摩擦力; ②受力图中要画出摩擦力,摩擦力总是沿着接触面的切线方向并与物体相对滑
7.
8.
9.
第二章 平面力系
第一节 共线力系的合成与平衡
一、填空题
1. 在同一条直线上
2. FR Fi FR 0
二、计算题
设向右为正方向。 则 FR=120+40-80-200=-120N 方向:水平向左
第二节 平面汇交力系的合成
一、填空题
1. 作用于同一平面内且各力作用线相交于一点的力系 共线力系 力的作用点 2. -F 或 F 0 0 -F 或 F 3. 合力在任一坐标轴上的投影 各分力在同一轴上投影的代数和 4. F4 F3 5. 自行封闭 6. 所有各力在 x 轴上投影的代数和为零 所有各力在 y 轴上投影的代数和为零 Fx 0 Fy 0
3. 后轮:摩擦力向前 前轮:摩擦力向后
4. 不下滑,处于自锁状态
四、计算题
FT 60 18 3N
五、应用题
1. (提示)从摩擦力与 F 对 B 点的力矩大小的比较进行考虑
第三章 空间力系 第一节 力在空间坐标轴上的投影与合成
一、填空题
1. 力的作用线不都在同一平面内呈空间分布的力系 2. 一次投影法 二次投影法
二、选择题
1. A 2.B
它所限制物体
三、简答题
1.柔性体约束只能承受拉力,不能承受压力。 2.被约束物体可以沿约束的水平方向自由滑动,也可以向离开约束的方向运动, 但不能向垂直指向约束的方向运动。 3.剪刀的两半部分可以绕销钉轴线相对转动,但不能在垂直销钉轴线的平面内沿 任意方向做相对移动。 4.木条不能沿圆柱销半径方向移动,但可以绕销轴做相对转动。 5.固定端约束既限制物体在约束处沿任何方向的移动,也限制物体在约束处的转 动。

工程力学课后习题答案

工程力学课后习题答案

工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。

(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。

所有摩擦均不计,各物自重除图中已画出的外均不计。

(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。

梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。

如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。

题2-1图解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。

转动绞车,物体便能升起。

设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。

当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。

题2-2图解得: P F PF AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。

电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。

题2-3图以AC 段电线为研究对象,三力汇交2-4 图示为一拔桩装置。

在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。

然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=0.1rad (弧度)(当α很小时,tan α≈α)。

如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。

题2-4图作BD 两节点的受力图 联合解得:kN F F F A 80100tan 2=≈=α2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。

工程力学课后习题答案(2-6章版本2)

工程力学课后习题答案(2-6章版本2)

工程力学课后习题答案-秦世伦2.10工程力学课后习题答案-秦世伦2.11工程力学课后习题答案-秦世伦3.3 图3.3所示钢架的点B 作用一个水平力F ,钢架重量忽略不计。

求支座A 、D 的约束力。

解:由图3.3可以确定D 点受力的方向,这里将A 点的力分解为x 、y 方向,如图3.3.1根据力与矩平衡有(1))2(:)(0:)(0:)(=-=-=-∑∑∑FL L F A M F F y F F F x F DyDx工程力学课后习题答案-秦世伦解上面三个方程得到)(2),(2),(↑=↓=←=F F F F F F D y x3.5如图3.5铰链四杆机构ABCD 的CD 边固定,在铰链A 、B 处有力F1、F2作用,如图所示。

该机构在图示位置平衡,杆重忽略不计。

求力F1和力F2的关系。

解:(1)对A 点分析,如图3.5.1,设AB 杆的内力为T ,则将力投影到垂直于AC 方向的AM 上有①0)15cos()30cos(:)(1=︒-︒∑T F AM F 图3.5(2)对B 点分析,如图3.5.2,将力投影到垂直于BD 方向的BN有②0)30cos()60cos(:)BN (2=︒-︒∑T F F 由①、②可得22108593790.64395055332F F F ≈+=3.8如图3.8有5根杆件组成的结构在A 、B 点受力,且CA 平行于DB ,。

F=20kN,P=12kN 。

求BE 杆的受力。

CA DE BE DB ===解:(1)对A 点受力分析,将力投影到垂直于AC 方向的AN 上有①060sin :)(=-︒∑F FAN F AB(2)对B 点受力分析,如图3.8.2.将力投影到垂直于BD 方向的BM 上有②060cos 60sin 30cos :)BM (=︒-︒-︒∑P F FF BE AB由①、②可得(方向斜向上)373095kN 16.1658075kN 328≈=BE F3.9如图(见书上)所示3根杆均长2.5m ,其上端铰结于K 处,下端A 、B 、C 分别与地基铰结,且分布在半径r=1.5m 的圆周上,A 、B 、C 的相对位置如图所示。

工程力学课后答案第6章

工程力学课后答案第6章

第6章 杆件的应力与强度习题:1.【解】GPa 203,MPa 149==E σ2.【解】(1)杆件的轴力为30kN N F F ==(2)计算杆件横截面上的工作应力[]32222643010139MPa<MPa ()(3025)104150NF FD d A σσππ-⨯⨯====--⨯=由于杆件的工作应力小于许用应力,故杆件强度足够。

3.【解】B 铰链的受力图如图(b)所示,平衡条件为0x F=∑, cos300NBC NAB F F -+= (1) 0yF =∑, F NBC sin 30∘−G =0 (2) 解(1)、(2)式,得F NBC =2G ,F NAB =√3G (3)(1) 按照钢杆的强度要求确定许可吊重 钢杆的强度条件为:[]222NBC F A σσ=≤ 由上式和(3)式可得G =F NBC 2=12[σ]2A 2=12×160×106×6×10−4=48000(N )=48(kN ) (2) 按木杆的强度要求确定许可吊重 木杆的强度条件为:[]111NAB F A σσ=≤ 由上式和(3)式可得G =NAB √3=√3σ]1A 1=√37×106×100×10−4)=40415(N )=40.4(kN ) 比较上述求得的两种许可吊重值,可以确定吊车的许可吊重为[G ]=40.4(kN )。

4.【解】mm 30,63.5==σd MPa5.【解】(1)最大弯矩2max 17.5kN m 8M ql ==⋅ 矩形截面:对中性轴抗弯截面系数2312=63z bh b W =, 弯曲正应力强度条件max max 1 1z M W σ=,,223363=8416ql ql b b ⨯=[]σ≤ 得41mm b ≥=;282mm h b == 圆形截面:对中性轴抗弯截面系数332z d W π=,2弯曲正应力强度条件max max z M W σ=,2,22233324=8ql ql d d ππ⨯=[]σ≤ 得78mm d ≥=;(2),1113.67mm z W A =>,229.75mm z W A =则矩形截面较好6.【解】MPa 379.0MPa 04.6=τ=σa a ,;MPa 0MPa 94.12=τ=σa b ,7.【解】MPa 6.9MPa 1.15max max =σ=σC T ,8.【解】解题思路:(1)作梁的剪力图和弯矩图,确定剪力最大值和弯矩最大值;(2)分别写出山种截面的弯曲截面系数,应用弯曲正应力强度条件(10-10)设计三种形状的截面尺寸,并计算它们的截面面积;(3)比较三种截面的A W z /值,A W z /值较大的较为经济;(4)分别由式(10-24)、(10-22)和(10-23)计算三种截面梁的最大切应力,并与许用切应力比较作切应力强度校核。

工程力学第4版(静力学)答案

工程力学第4版(静力学)答案

第一章 习题下列习题中,凡未标出自重的物体,质量不计。

接触处都不计摩擦。

1-1试分别画出下列各物体的受力图。

1-2试分别画出下列各物体系统中的每个物体的受力图。

1-3试分别画出整个系统以及杆BD ,AD ,AB (带滑轮C ,重物E 和一段绳索)的受力图。

1-4构架如图所示,试分别画出杆HED ,杆BDC 及杆AEC 的受力图。

1-5构架如图所示,试分别画出杆BDH ,杆AB ,销钉A 及整个系统的受力图。

1-6构架如图所示,试分别画出杆AEB ,销钉A 及整个系统的受力图。

1-7构架如图所示,试分别画出杆AEB ,销钉C ,销钉A 及整个系统的受力图。

1-8结构如图所示,力P 作用在销钉C 上,试分别画出AC ,BCE 及DEH 部分的受力图。

参考答案1-1解:1-2解: 1-3解: 1-4解: 1-5解: 1-6解: 1-7解: 1-8解:第二章 习题参考答案2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑故:161.2R F N==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有故:3R F KN==方向沿OB 。

2-3解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:联立上二式,解得:0.577AB F W =(拉力) 1.155AC F W =(压力) (b ) 由平衡方程有:联立上二式,解得:1.064AB F W =(拉力) 0.364AC F W =(压力) (c ) 由平衡方程有:联立上二式,解得:0.5AB F W =(拉力) 0.866AC F W =(压力)(d ) 由平衡方程有:联立上二式,解得:0.577AB F W =(拉力) 0.577AC F W =(拉力)2-4解:(a )受力分析如图所示:由0x =∑ cos 450RA F P =由Y =∑sin 450RA RB F F P +-=(b)解:受力分析如图所示:由 联立上二式,得:2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN =(压力)5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑ cos 0AC r F F α-=由0Y =∑ sin 0AC N F F W α+-=2-7解:受力分析如图所示,取左半部分为研究对象由cos45cos450RA CB P F F --=联立后,解得: 0.707RA F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑ cos60cos300AC AB F F W ⋅--=联立上二式,解得: 7.32AB F KN =-(受压)27.3AC F KN =(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑ sin cos 0DB T W αα-=(2)取B 点列平衡方程由0Y =∑ sin cos 0BD T T αα'-=2-10解:取B 为研究对象:由0Y =∑ sin 0BC F P α-=取C 为研究对象:由cos sin sin 0BC DC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BC BC F F '= 解得: 取E 为研究对象:由0Y =∑ cos 0NH CE F F α'-=CECE F F '=故有:2-11解:取A 点平衡:联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:由对称性及 AD AD F F '=2-12解:整体受力交于O 点,列O 点平衡由0x =∑cos cos300RADC FF P α+-=联立上二式得: 2.92RA F KN =1.33DC F KN =(压力) 列C 点平衡联立上二式得: 1.67AC F KN =(拉力)1.0BC F KN =-(压力) 2-13解:(1)取DEH 部分,对H 点列平衡联立方程后解得: RD F (2)取ABCE 部分,对C 点列平衡且 RE RE F F '=联立上面各式得: RA F =(3)取BCE 部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章杆件的内力分析6-1平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox坐标取向如图所示。

试分析下列平衡微分方程中哪一个是正确的。

dF Q(A)q(x) dx dM;F Qdx;dF Q (B)q(x)dxdM,F Qdx;dF Q (C)q(x)dxdM,F Qdx;dF Q (D)q(x)dx正确答案是B。

dM,F Qdx。

习题6-1图6-2对于图示承受均布载荷q的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。

正确答案是B、C、D。

习题6-2图6-3已知梁的剪力图以及a、e截面上的弯矩M a和M e,如图所示。

为确定b、d二截面上的弯矩M b、M d,现有下列四种答案,试分析哪一种是正确的。

(A)M b M a A ab(F Q),M d M e A ed(F Q);(B)M b M a A ab(F Q),M d M e A ed(F Q);(C)M b M a A ab(F Q),M d M e A ed(F Q);(D)M b M a A ab(F Q),M d M e A ed(F Q)。

上述各式中A ab(F Q)为截面a、b之间剪力图的面积,以此类推。

习题6-3图正确答案是B。

6-4应用平衡微分方程,试画出图示各梁的剪力图和弯矩图,并确定|F Q|max。

解:(a)M A0,M F BR(↑)2lF0,yM F RA(↓)2l|F Q|max M2l习题6-4图|M|max2Ml2qllFl(b)M A0,qlqlB20,R2FF(ql)QQ1F R B ql(↑)CABAB4111 F0,F RA ql(↓),y M2l44544112M C F B lqllql(+)R44(a-1)(b-1)M A ql 2A C DE BC ABMM 12 —50—M 2M 232 M M q l24(a-2)(b-2)WORD格式可编辑|F Q|max 54qlM2 M2|M|qlmax2 (c)F y0,F RA ql(↑)M0,A M A ql 2 l2M0,qlqllqlM0DD2M D 32ql2|F Q|max ql3|M|qlmax22 (c)(d) (d)M B01 F RA2lq3lqll2 0F Q (gl(gl))F Q1.255F RA ql(↑)43F0,F RB ql(↑)y4q22 M0,BM Bl ABDCDBCAl1(c-1)(d-1)M0,D M D2532ql2|F Q|max 54qlADBC11A DBC25|M|qlmax32 2M 2(ql) 1.52M(ql) 253212(e)F y0,F RC=0(c-2)(d-2)3lM0,qllqlM0CC22M C ql 2M0,B M B12ql2F0,F Q B qly|F Q|max ql (e)(f)WORD格式可编辑|M|qlmax 21(f)M A0,F B qlR(↑)2qlFF Q QqlD0.5EC1 F0,F RA ql(↓)y2 ABC 0.5B0.51 F0,qlqlF0 yQB2 (e-1)(f-1)1F BqlAQ21lllM0,qlqM0DD2224M(ql2) 12Mql8B0.5(e-2)C1EACDB(ql2)MM E 18ql21∴|F Q maxql|2—51—(a)(b)1 |M|qlmax82 6-5试作图示刚架的弯矩图,并确定|M|max 。

解: 图(a ):M A 0,F RB 2lF P lF P l0F RB F (↑)PF0,F Ay F P (↓) yF0,F Ax F P (←) x弯距图如图(a-1),其中|M|max 2F P l ,位 于刚节点C 截面。

图(b ):F y 0,F Ay ql (↑)1M0,F R B ql (→) A21 F0,F Ax ql x2(←) (c)(d)2弯距图如图(b-1),其中 |M|ql 。

max图(c ):F x 0,F Ax ql (←)1CB 1 12BM0 2AC 22qllFl qlBR 20 DM (F P l) M) (q l 21 FRBql (↓) 21F0,F Ayql y 2 2 |M |q l 。

m a x弯距图如图(c-1),其中 (↑) A 1 (a-1)1A 1(b-1)1图(d ):F x 0,F Ax ql122M0 A l 2FlqlqlBR22 11 2F B R 3 2ql M) (ql 2M ) (q l 2 F0, y 3 2F Ay ql (↑)2ABA B1弯距图如图(d-1),其中2 |M|ql 。

max(c-1)(d-1) 6-6梁的上表面承受均匀分布的切向力作用,其集度为p 。

梁的尺寸如图所示。

若已知p 、h 、l ,试导出轴力F Nx 、弯矩M 与均匀分布切向力p 之间的平衡微分方程。

解:1.以自由端为x 坐标原点,受力图(a )F0,pxF Nx 0 x F Nx px dF N x ∴pdxh M,0MpxC2 习题6-6和6-7图dM dx 12phx12phpCMMFNx 方法2.F x0,F Nx dF Nx pdxF Nx0 xdF N x ∴pdx(a)p—52—F CNxMdMF N x dF Nxdx(b)h M0,MdMMpdx0 C2∴dMph dx2F N6-7试作6-6题中梁的轴力图和弯矩图,并确定|F Nx |max 和|M|。

maxl x解:|F Nx |max pl (固定端)p l p |M|max hl (固定端)2O lxM 1 2 p h l6-8静定梁承受平面载荷,但无集中力偶作用,其剪力图如图所示。

若已知A 端弯矩M(A)0,试确定梁上的载荷及梁的 弯矩图,并指出梁在何处有约束,且为何种约束。

解:由F Q 图线性分布且斜率相同知,梁上有向下均布q 载荷,由A 、B 处F Q 向上突变知,A 、B 处有向上集中力;又因A 、 B 处弯矩无突变,说明A 、B 处为简支约束,由A 、B 处F Q 值知F RA =20kN (↑),F RB =40kN 由F y 0,F RA F RB q40q=15kN/m 由F Q 图D 、B 处值知,M 在D 、B 处取极值 41440 2 M2015()kN ·m D 323312M B q17.5kN ·m2A 4 3 习题6-8图 7.5mBC M 梁上载荷及梁的弯矩图分别如图(d )、(c )所示。

kNm40 3(c) q15kN/mAC B (d)6-9已知静定梁的剪力图和弯矩图,如图所示,试确定梁上的载荷及梁的支承。

解:由F Q 图知,全梁有向下均布q 载荷,由F Q 图中A 、B 、C 处突变,知A 、B 、C 处有向上集中力,且F RA =0.3kN (↑) FRC=1kN (↑) FRB=0.3kN (↑)0.76(0.5) q0.2kN/m (↓)4由M A =MB=0,可知A 、B 简支,由此得梁 上载荷及梁的支承如图(a )或(b )所示。

q0.2kN/mABC1kN习题6-9图(a)1.6kN/m ABC—53—0.3kN(b)6-10静定梁承受平面载荷,但无集中力偶作用,其剪力图如图所示。

若已知截面E上的弯矩为零,试:1.在Ox坐标中写出弯矩的表达式;2.画出梁的弯矩图;3.确定梁上的载荷;4.分析梁的支承状况。

解:由F Q图知,全梁有向下均布q;B、D处有相等的向上集中力4ql;C处有向下的集中力2ql;结合M,知A、E为自由端,由F Q线性分布知,M为二次抛物线,B、C、D处F Q变号,M在B、C、D处取极值。

12M B M D ql,FQB=4ql21272MCq(3l)4ql2lql22习题6-10图1.弯矩表达式:0.512M(x)qx0,(0xl)C 2AB12,(lx2l)M(x)qx04qlxl212M(ql)20.77M(x)qx04qlxl2qlx3l2(a)(3lx5l)1.7D EM(x)12q x 0 24ql x l q2qlx3l(5lx6l)4ql x 5lADBCE即M(x)12q x 024ql x l2ql(b)2qlx3l4qlx5l(0x6l)2.弯矩图如图(a);3.载荷图如图(b);4.梁的支承为B、D处简支(图b)。

6-11图示传动轴传递功率P=7.5kW,轴的转速n=200r/min。

齿轮A上的啮合力F R与水F Q 平切线夹角20°,皮带轮B上作用皮带拉力F S1和F S2,二者均沿着水平方向,且F S1=2F S2。

试:(分轮B重F Q=0和F Q=1800N两种情况)1.画出轴的受力简图;习题6-11图2.画出轴的全部内力图。

解:1.轴之扭矩:0.6M9549358N·m x200 T A TM358N·mBxFFτzzyADBCTAFrT BF Q3FS2xTA F2387N τ0.62F r Ftan20869NτTBF1432Ns20.6F Qzy2387ACDB(N)(a)x2轴的受力简图如图(a)。

(b )2.①F Q=0时,FQy (N) 864—54—ACD BxF0Q 434(c)M0 Cz02F r F Dy F Q .0.40.6 0 F434N Dy F0 y F1303N Cy②F Q =1800N 时, M0 Cz F1254N Dy F Q y (N ) F0 y 8691800546F323N Cy M0 CyACDBxF 1800N Q 1.26F τ0.4F Dz 0.33F S20 (d)1335F5250N DzF0,F Cz 1432N zM(Nm) x1335M Cy 0.2F τ477N ·mx M Dy N ·m3F s20859.2358 M Cz F0.2173N ·mr(e ) F Q =0时,M Dz 0477859 FQ=1800N 时,M Dz 360N ·mM (N y m ) ACDBCDx (f)M (N z m ) 173F 0QACDx CD(g)M(Nm) z173F 1800NQACDBx 360(h)6-12传动轴结构如图所示,其一的A 为斜 齿轮,三方向的啮合力分别为F a =650N ,F τ=650N ,Fr=1730N ,方向如图所示。

若已知D= 50mm ,l=100mm 。

试画出:1.轴的受力简图; 2.轴的全部内力图。

解:1.力系向轴线简化,得受力图(a )。

习题6-12图503M6501016.25N ·m x2M6500.02516.25N ·mF AxM xy FBy 1730NF M Ay z650NzF0,F Ax650N x ABxMCxM0,F By784N AzF AzFBz zF0,F Ay946Ny M,F Az F Bz0 Cy(a) 650F0,F Az F325NzBz22.全部内力图见图(a)、(b)、(c)、(d)、F NxC BA(N)650—55—(b)WORD 格式可编辑(e )、(f )、(g )所示。

相关文档
最新文档