数学人教版《正多边形和圆》课件详解
合集下载
人教版数学《正多边形和圆》_精美课件

【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
1.半径为R的圆内接正三角形的面积是 ( D )
A. 3 R 2
B.πR2
C.3 3 R2 2
D.3 3 R2 4
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
写出答案). (般的正n
边形情况(n为大于2的偶数)?若能,写出推广问题和结论;若不 能,请说明理由.
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
由勾股定理,得OG= 3 . ∴正六边形ABCDEF的各个顶点的坐标分别为 A(-2,0),B(-1,- 3 ),C(1,- 3 ),D(2,0),E(1, 3 ),F(-1,3 ).
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
解:如图24 - 111所示,连接OE, 设EF交y轴于点G. 由于正六边形是轴对称图形, ∴在Rt△OGE中,∠GOE=30°,OE=2, ∴GE=1.
解:(1)如图(1)所示,连接OA,OB, 过点O作OM⊥AB,垂足为M.
2.(常德中考)阅读理解:如图(1)所示,在平面内选一
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
1.半径为R的圆内接正三角形的面积是 ( D )
A. 3 R 2
B.πR2
C.3 3 R2 2
D.3 3 R2 4
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
写出答案). (般的正n
边形情况(n为大于2的偶数)?若能,写出推广问题和结论;若不 能,请说明理由.
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
由勾股定理,得OG= 3 . ∴正六边形ABCDEF的各个顶点的坐标分别为 A(-2,0),B(-1,- 3 ),C(1,- 3 ),D(2,0),E(1, 3 ),F(-1,3 ).
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
解:如图24 - 111所示,连接OE, 设EF交y轴于点G. 由于正六边形是轴对称图形, ∴在Rt△OGE中,∠GOE=30°,OE=2, ∴GE=1.
解:(1)如图(1)所示,连接OA,OB, 过点O作OM⊥AB,垂足为M.
2.(常德中考)阅读理解:如图(1)所示,在平面内选一
(人教版)正多边形和圆 PPT优秀课件1

第二十四章 圆
24.3 正多边形和圆
知识点1:正多边形的有关概念 1.下列说法:①各角相等的多边形是正多边形;②各边相等的多边形 是正多边形;③各角相等的圆内接多边形是正多边形;④各顶点等分圆
周的多边形是正多边形.其中正确的有( A)
A.1个 B.2个 C.3个 D.4个
2.下列图形中,既是轴对称图形,又是中心对称图形的有( C)
17.如图1,2,3,…,n,M,N分别是⊙O的内接正三角形ABC,正方形ABCD, 正五边形ABCDE,…,正n边形ABCDE…的边AB,BC上的点,且BM=CN,连 接OM,ON. (1)求图1中∠MON的度数; (2)图2中∠MON的度数是________;图3中∠MON的度数是________; (3)试探究∠MON的度数与正n边形边数n的关系.(直接写出答案)
解:在△ ABC 中,∵AB=AC,∴∠ABC=∠ACB,又∵BD, CE 分别平分∠ABC,∠ACB,∴∠ABD=∠DBC=∠ACE= ∠ECB,∴A︵D=C︵D=A︵E=B︵E,又∵BE=BC,∴B︵E=B︵C,即A︵D =D︵C=C︵B=B︵E=E︵A,∴点 A,E,B,C,D 把⊙O 五等分,∴ 五边形 AEBCD 是正五边形
①正三角形;②正方形;③正五边形;④正六边形;⑤线段;⑥圆;⑦ 菱形;⑧平行四边形. A.3个 B.4个 C.5个 D.6个
3.如果一个四边形的外接圆与内切圆是同心圆,那么这个四边形一定
是( C )
A.矩形 B.菱形 C.正方形 D.不能确定
4.如图,已知⊙O的内接等腰△ABC,AB=AC,弦BD,CE分别 平分∠ABC,∠ACB,BE=BC,求证:五边形AEBCD是正五边 形.
9.如图,正△ABC内接于⊙O,⊙O的半径为R,试分别计算△ABC的 边长、边心距及面积.
24.3 正多边形和圆
知识点1:正多边形的有关概念 1.下列说法:①各角相等的多边形是正多边形;②各边相等的多边形 是正多边形;③各角相等的圆内接多边形是正多边形;④各顶点等分圆
周的多边形是正多边形.其中正确的有( A)
A.1个 B.2个 C.3个 D.4个
2.下列图形中,既是轴对称图形,又是中心对称图形的有( C)
17.如图1,2,3,…,n,M,N分别是⊙O的内接正三角形ABC,正方形ABCD, 正五边形ABCDE,…,正n边形ABCDE…的边AB,BC上的点,且BM=CN,连 接OM,ON. (1)求图1中∠MON的度数; (2)图2中∠MON的度数是________;图3中∠MON的度数是________; (3)试探究∠MON的度数与正n边形边数n的关系.(直接写出答案)
解:在△ ABC 中,∵AB=AC,∴∠ABC=∠ACB,又∵BD, CE 分别平分∠ABC,∠ACB,∴∠ABD=∠DBC=∠ACE= ∠ECB,∴A︵D=C︵D=A︵E=B︵E,又∵BE=BC,∴B︵E=B︵C,即A︵D =D︵C=C︵B=B︵E=E︵A,∴点 A,E,B,C,D 把⊙O 五等分,∴ 五边形 AEBCD 是正五边形
①正三角形;②正方形;③正五边形;④正六边形;⑤线段;⑥圆;⑦ 菱形;⑧平行四边形. A.3个 B.4个 C.5个 D.6个
3.如果一个四边形的外接圆与内切圆是同心圆,那么这个四边形一定
是( C )
A.矩形 B.菱形 C.正方形 D.不能确定
4.如图,已知⊙O的内接等腰△ABC,AB=AC,弦BD,CE分别 平分∠ABC,∠ACB,BE=BC,求证:五边形AEBCD是正五边 形.
9.如图,正△ABC内接于⊙O,⊙O的半径为R,试分别计算△ABC的 边长、边心距及面积.
数学人教版《正多边形和圆》课件详解

图24-3-3 B.12 mm D.4 3 mm
4.以半径为 2 的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,
则该三角形的面积是( A )
A.
2 2
B.
3 2
C. 2
【解析】 如答图①,∵OC=2,∴OD=1;
D. 3
第 4 题答图
如答图②,∵OB=2,∴OE= 2; 如答图③,∵OA=2,∴OD= 3, 则该三角形的三边分别为 1, 2, 3, ∵12+( 2)2=( 3)2, ∴该三角形是直角三角形, ∴该三角形的面积是12×1× 2= 22,故选 A.
A.BD2=
5-1 2 OD
C.BD2= 5OD
①
②
图 24-3-7
B.BD2=
5+1 2 OD
D.BD2=
5 2 OD
11.[2018·宜宾]刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割
圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设⊙O 的半径为
1,若用⊙O 的外切正六边形的面积来近似估计⊙O 的面积,S=__2___3__.(结果保留
又∵OC⊥AB,∴∠AOC=∠BOC=30°,
∴∠BAC=15°,D 不正确.故选 D.
2.[2019·湖州]如图 24-3-2,已知正五边形 ABCDE 内接于⊙O,连
接 BD,则∠ABD 的度数是( C )
A.60°
B.70°
C.72°
D.144°
【解析】 ∵正五边形 ABCDE 内接于⊙O,
5.[2019·衢州]如图 24-3-4,取两根等宽的纸条折叠穿插,拉紧,可得边长为 2 的 正六边形.则原来的纸带宽为( C )
A.1
人教版初中九年级上册数学课件 《正多边形和圆》圆

18
解:要使△PCD 的周长最小,即 PC+PD 的值最小.根
据正多边形的性质,得点 C 关于 BE 的对称点为点 A,连接 AD
交 BE 于点 P,那么有 PC+PD=AD 最小.易知四边形 ABCD
为等腰梯形,∠BAD=∠CDA=60°.作 BM⊥AD 于点 M,CN
⊥AD 于点 N.∵AB=2,∴AM=12AB=1,∴DN=AM=1,∴
能超过( A )
A.12 mm
B.12 3 mm
C.6 mm
D.6 3 mm
3.已知圆内接正三角形的面积为 3,则该圆的内接正六边形的边心距是( B )
A.2
B.1
C. 3
D.
3 2
7
4.【贵州贵阳中考】如图,正六边形 ABCDEF 内接于⊙O,连接 BD.则∠CBD 的度数是( A )
A.30° C.60°
10
8.【教材P106练习T3变式】如图,正八边 形ABCDEFGH的半径为2,求它的面积.
11
解:连接 AO、BO、CO、AC. ∵正八边形 ABCDEFGH 的半径为 2,∴AO= BO=CO=2,∠AOB=∠BOC=360°×18=45°,∴∠AOC=90°,∴AC=2 2,此时 AC⊥BO,∴S 四边形 ABCO=12BO·AC=12×2×2 2=2 2,∴正八边形 ABCDEFGH 的面 积为 2 2×4=8 2.
B.45° D.90°
8
5.如图,正六边形 ABCDEF 内接于半径为 4 的圆,则 B、E 两点间的距离为___8___.
9
6.将一个边长为 1 的正六边形补成如图所示的矩形,则矩形的周长等于 ___4_+__2__3____.(结果保留根号)
43 7.【山东滨州中考】若正六边形的内切圆半径为 2,则其外接圆半径为___3___.
解:要使△PCD 的周长最小,即 PC+PD 的值最小.根
据正多边形的性质,得点 C 关于 BE 的对称点为点 A,连接 AD
交 BE 于点 P,那么有 PC+PD=AD 最小.易知四边形 ABCD
为等腰梯形,∠BAD=∠CDA=60°.作 BM⊥AD 于点 M,CN
⊥AD 于点 N.∵AB=2,∴AM=12AB=1,∴DN=AM=1,∴
能超过( A )
A.12 mm
B.12 3 mm
C.6 mm
D.6 3 mm
3.已知圆内接正三角形的面积为 3,则该圆的内接正六边形的边心距是( B )
A.2
B.1
C. 3
D.
3 2
7
4.【贵州贵阳中考】如图,正六边形 ABCDEF 内接于⊙O,连接 BD.则∠CBD 的度数是( A )
A.30° C.60°
10
8.【教材P106练习T3变式】如图,正八边 形ABCDEFGH的半径为2,求它的面积.
11
解:连接 AO、BO、CO、AC. ∵正八边形 ABCDEFGH 的半径为 2,∴AO= BO=CO=2,∠AOB=∠BOC=360°×18=45°,∴∠AOC=90°,∴AC=2 2,此时 AC⊥BO,∴S 四边形 ABCO=12BO·AC=12×2×2 2=2 2,∴正八边形 ABCDEFGH 的面 积为 2 2×4=8 2.
B.45° D.90°
8
5.如图,正六边形 ABCDEF 内接于半径为 4 的圆,则 B、E 两点间的距离为___8___.
9
6.将一个边长为 1 的正六边形补成如图所示的矩形,则矩形的周长等于 ___4_+__2__3____.(结果保留根号)
43 7.【山东滨州中考】若正六边形的内切圆半径为 2,则其外接圆半径为___3___.
人教版《正多边形和圆》PPT完美课件

正多边形边数 内角 中心角 半径 边长 边心距 周长 面积
3
60° 120° 2 2 3 1 6 3 3 3
4
90° 90° 2 2
1
8
4
6
120° 60° 2 2
3
12 6 3
P108习题24.3 第2题 2.要用圆形铁片截出边长为a的正方形铁片,选用的圆形
铁片的半径至少是 周角相等(五边形的角相等)
正多边形的中心,正多边形的半径,
中心角O.. 半径R
边心距r
中心到正多边形的一边的距离.
练习 1.完成下面的表格:
正多边 形边数
3 4 6
内角
60 ° 90 ° 120 °
n
中心角
120 ° 90 ° 60 °
外角
120 ° 90 ° 60 °
正多边形的
ห้องสมุดไป่ตู้
外角=中心角
A
F
中心 B 中心角 O半径R E
正多边形的中心,正多边形的半径,
A
D
怎样找圆的内接正方形?
E
D
怎样找圆的内接正三角形?
O O 如图,☉O的半径是R,分别求它的外切正三角形、外切正方形、外切正六边形的边长.
周角相等(五边形的角相等)
F
OC
B P C BPC
A PB
拓展提升
P109 第8题
把圆分成n(n≥3)等份,经过各分点作圆的切线,以相邻 切线的交点为顶点的多边形是这个圆的外切正n边形.如图, ☉O的半径是R,分别求它的外切正三角形、外切正方形、 外切正六边形的边长.
边心距r
C
D
❖ 2.正n边形的半径R,边心距r,边长a又有
人教版初中九年级上册数学课件 《正多边形和圆形》圆课件

探究四:正多边形和圆的应用
练习:正多边形的一个外角等于20°,则这个正多边形的边数是
。
解:因为外角是20°,360÷20=18,则这个多边形是18边形。
【思路点拨】根据外角和的大小与多边形的边数无关,由外角和 求正多边形的边数,是常见的题目,需要熟练掌握。
探究四:正多边形和圆的应用
活动2 提升型例题
解:如图,三角形的斜边长为a,
∴两条直角边长为,1 a
2
3a 2
∴S空白=1 a 3 a 3 a2
22 4
∵AB=a,
∴OC=,3 a
2
∴S正六边形6= 1 a 3 a 3 3 a2
22
2
∴S阴影=S正六边形﹣S空3白3=a2 3 a2 5 3 a2
2
4
4
S阴影
53 4
a2
5
S空白
3a
探究四:正多边形和圆的应用
例4.如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B
的坐标分别为(1,1),(-1,1),把正方形ABCD绕原点O逆时针
旋转45°得正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分
所形成的正八边形的边长为
。
【思路点拨】如图,首先求出正方形的边长、对角线长;进而求出OA′ 的长;证明△A′MN为等腰直角三角形,求出A′N的长度;同理求出D′M′ 的长度,即可解决问题。
探究一:从旧知识过渡到新知识
活动1 回顾旧知
观察下列图形,从这些图形中找出相应的正多边形。
(1)正六边形;(2)正八边形;(3)等边三角形;(4)正五边形。
探究一:从旧知识过渡到新知识
活动2 整合旧知
正多边形与圆有什么关系呢?
人教版数学九年级上册24.3 正多边形和圆课件

E
新知探究
知识点2
正多边形的相关概念及计算
正多边形的中心:该正多边形的外接圆的圆心.
E
正多边形的半径:外接圆的半径.
正多边形的中心角:正多边形的每一条边
所对的圆心角.
D
半径R
F
正多边形的边心距:中心到正多边形的一
边的距离.
中心角
.
C
O
边心距r
A
B
新知探究
A
正多边形中的有关概念:
中心
半径
中心角
边心距
2
面积为4×4-(48-32 2)=(32 2-32)cm2.
2
1 4 48 32 2 cm2 .
2
新知探究
综合应用
6.如图,已知正五边形ABCDE中,BF与CM相交
于点P,CF=DM.
(1)求证:△BCF≌△CDM;
(2)求∠BPM的度数.
新知探究
(1)证明:在正五边形ABCDE中,
边数是偶数的正多边形还是
是对称中心.
中心对称图形
,它的中心就
新知探究
正多边形和圆的关系非常密切,只要把一个圆分
成相等的几段弧,就可以作出这个圆的内接正多边形,
这个圆就是这个正多边形的外接圆.
A
B
E
O·
C
D
新知探究
我们以圆的接正五边形为例证明.
如图,把⊙O分成相等的5段弧,依次连接各分点得到正五边
过点O作OP⊥BC于P.
4
在Rt△OPB中,OB=4 m, PB= 2 = 2=2(m),
利用勾股定理,可得边心距 r = 42 − 2²=2 3 ,
人教版九年级数学上册《正多边形和圆形》圆PPT精品课件

第二十四章 圆
正多边形和圆
学习目标
1.理解并掌握正多边形的半径和边长、边心距、中心角
之间的关系.
(重点)
2.会进行特殊的与正多边形有关的计算,会画
某些正多边形.
(难点)
新课导入
知识回顾
圆内接四边形的性质:
1.对角互补; 2.四个内角的和是360°; 3.任一外角与其相邻的内角的对角相等(即外角等于内对角).
新课讲解
证明:如图,把⊙O分成相等的5段弧,依次连接各分点 得到五边形ABCDE. ∵A⌒B=B⌒C=C⌒D=D⌒E=E⌒A,
知识点
∴AB=BC=CD=DE=EA, BC⌒E=3A⌒B=C⌒DA.
∴∠A=∠B. 同理∠B=∠C=∠D=∠E. 又五边形ABCDE的顶点都在⊙O上, ∴五边形ABCDE是⊙O的内接正五边形, ⊙O是正五边形ABCDE的外接圆.
作OP⊥BC,垂足为P.
在Rt△OPC中,OC=4 m,
PC= BC 4 =2(m),利用勾股定理,
22
可得边心距r= 42 22 2 3(m).
亭子地基的面积S=
1 lr 1 24 2 3 41.6(m2 ). 22
新课讲解
正n边形的一个内角的度数是多少?中
心角呢?正多边形的中心角与外角的大小有 什么关系?
新课导入
课时导入
下面这些美丽的图案,都是在日常生活中我们经常能看到的.你 能从这些图案中找出类似的图形吗?
新课讲解
知识点1 圆内接正多边形
正三 角形
三条边相等,三个角 相等(60度).
正方形
四条边相等,四个角 相等(900).
新课讲解
什么叫做正多边形? 各边相等、各角也相等的多边形叫做正多边形.
正多边形和圆
学习目标
1.理解并掌握正多边形的半径和边长、边心距、中心角
之间的关系.
(重点)
2.会进行特殊的与正多边形有关的计算,会画
某些正多边形.
(难点)
新课导入
知识回顾
圆内接四边形的性质:
1.对角互补; 2.四个内角的和是360°; 3.任一外角与其相邻的内角的对角相等(即外角等于内对角).
新课讲解
证明:如图,把⊙O分成相等的5段弧,依次连接各分点 得到五边形ABCDE. ∵A⌒B=B⌒C=C⌒D=D⌒E=E⌒A,
知识点
∴AB=BC=CD=DE=EA, BC⌒E=3A⌒B=C⌒DA.
∴∠A=∠B. 同理∠B=∠C=∠D=∠E. 又五边形ABCDE的顶点都在⊙O上, ∴五边形ABCDE是⊙O的内接正五边形, ⊙O是正五边形ABCDE的外接圆.
作OP⊥BC,垂足为P.
在Rt△OPC中,OC=4 m,
PC= BC 4 =2(m),利用勾股定理,
22
可得边心距r= 42 22 2 3(m).
亭子地基的面积S=
1 lr 1 24 2 3 41.6(m2 ). 22
新课讲解
正n边形的一个内角的度数是多少?中
心角呢?正多边形的中心角与外角的大小有 什么关系?
新课导入
课时导入
下面这些美丽的图案,都是在日常生活中我们经常能看到的.你 能从这些图案中找出类似的图形吗?
新课讲解
知识点1 圆内接正多边形
正三 角形
三条边相等,三个角 相等(60度).
正方形
四条边相等,四个角 相等(900).
新课讲解
什么叫做正多边形? 各边相等、各角也相等的多边形叫做正多边形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学人教版《正多边形和圆》课件详 解
图 24-3-5
数学人教版《正多边形和圆》课件详 解
【解析】 设该正十二边形的外接圆圆心为 O,如 答图,连接 A10O 和 A3O. 根据题意知 A3A1A1⌒0=152×⊙O 的周长, ∴∠A3OA10=152×360°=150°, ∴∠A3A7A10=75°.
A.BD2=
5-1 2 OD
C.BD2= 5OD
①
②
图 24-3-7
B.BD2=
5+1 2 OD
D.BD2=
5 2 OD
11.[2018·宜宾]刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割
圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设⊙O 的半径为
1,若用⊙O 的外切正六边形的面积来近似估计⊙O 的面积,S=__2___3__.(结果保留
24.3 正多边形和圆
1.如图 24-3-1,在⊙O 中,OA=AB,OC⊥AB,则下列结论错误的是( D )
A.弦 AB 的长等于圆内接正六边形的边长
B.弦 AC 的长等于圆内接正十二边形的边长
C.A︵C=B︵C
D.∠BAC=30° 【解析】 ∵OA=AB=OB,
图24-3-1
∴△OAB 是等边三角形.
∴∠ABC=∠C=(5-2)5 ×180°=108°,CB=CD.
∴∠CBD=∠CDB=180°-2 108°=36°.
∴∠ABD=∠ABC-∠DBC=108°-36°=72°.
3.如图 24-3-3,要拧开一个边长为 a=6 mm 的正六边形螺帽,扳手张开的开口 b 至少为( C )
A.6 2 mm C.6 3 mm
第9题答图
10.小敏在作⊙O 的内接正五边形时,进行了如下几个步骤: (1)作⊙O 的两条互相垂直的直径,再作 OA 的垂直平分线交 OA 于点 M,如图 24-3 -7①; (2)以 M 为圆心,BM 长为半径作圆弧,交 CA 于点 D,连接 BD,如图②. 若⊙O 的半径为 1,则由以上作图得到的关于正五边形边长 BD 的等式是( C )
图24-3-3 B.12 mm D.4 3 mm
4.以半径为 2 的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,
则该三角形的面积是( A )
A.
2 2
B.
3 2
C. 2
【解析】 答图①,∵OC=2,∴OD=1;
D. 3
第 4 题答图
数学人教版《正多边形和圆》课件详 解
如答图②,∵OB=2,∴OE= 2; 如答图③,∵OA=2,∴OD= 3, 则该三角形的三边分别为 1, 2, 3, ∵12+( 2)2=( 3)2, ∴该三角形是直角三角形, ∴该三角形的面积是12×1× 2= 22,故选 A.
A.2
B.1
C. 3
3 D. 2
【解析】 如答图①,设△ABC 的边长为 a,易得 S△ABC= 43a2= 3,
( C)
解得 a=2 或-2(舍去),∴BC=2.
∵∠ACB=60°,∴∠BCO=30°,
∵OH⊥BC,∴BH=12BC=1,
数学人教版《正多边形和圆》课件详 解
数学人教版《正多边形和圆》课件详 解
又∵OC⊥AB,∴∠AOC=∠BOC=30°,
∴∠BAC=15°,D 不正确.故选 D.
2.[2019·湖州]如图 24-3-2,已知正五边形 ABCDE 内接于⊙O,连
接 BD,则∠ABD 的度数是( C )
A.60°
B.70°
C.72°
D.144°
【解析】 ∵正五边形 ABCDE 内接于⊙O,
第7题答图
数学人教版《正多边形和圆》课件详 解
8.若正六边形的边长为 4 cm,那么正六边形的中心角是__6_0_°___,半径是___4___cm, 边心距是__2__3____cm,它的每一个内角都是__1_2_0_°___.
9.[2018·贵阳]如图 24-3-6,点 M,N 分别是正五边形 ABCDE 的两边 AB,BC 上 的点,且 AM=BN,点 O 是正五边形的中心,则∠MON 的度数是___7_2__度.
在 Rt△BOH 中,BO=233, ∴圆的半径 r=233.
第 6 题答图 如答图②,正六边形内接于圆,EF=OE=OF=23 3,则易得 OD=1.∴边心距为 1.
数学人教版《正多边形和圆》课件详 解
数学人教版《正多边形和圆》课件详 解
7.如图 24-3-5,正十二边形 A1A2…A12,连接 A3A7,A7A10,则∠A3A7A10=___7_5_°___.
图 24-3-6
【解析】 如答图,连接 OA,OB, ∵在正五边形 ABCDE 中,O 是中心, ∴OA=OB,∠OAM=∠OBN, 又∵AM=BN, ∴△OAM≌△OBN,∴∠AOM=∠NOB, ∴∠AOM+∠MOB=∠NOB+∠MOB, 即∠AOB=∠MON, ∵∠AOB 是正五边形的中心角, ∴∠MON=∠AOB=3650°=72°.
【解析】 边长为 2 的正六边形由 6 个边长为 2 的等边三角形组成,其中等边三角形 的高为原来的纸带宽度, 所以原来的纸带宽度= 23×2= 3.
数学人教版《正多边形和圆》课件详 解
数学人教版《正多边形和圆》课件详 解
6.[2018·德阳]已知圆内接正三角形的面积为 3,则该圆的内接正六边形的边心距是
图 24-3-8
解:(1)如答图,首先作直径 AD,然后分别以 A,D 为圆心,OA 长为半径画弧,交
数学人教版《正多边形和圆》课件详 解
数学人教版《正多边形和圆》课件详 解
5.[2019·衢州]如图 24-3-4,取两根等宽的纸条折叠穿插,拉紧,可得边长为 2 的 正六边形.则原来的纸带宽为( C )
A.1
B. 2
图 24-3-4 C. 3
D.2
数学人教版《正多边形和圆》课件详 解
数学人教版《正多边形和圆》课件详 解
根号) 【解析】 如答图,根据题意可知 OH=1,∠BOC=60°,
∴△OBC 为等边三角形,
∴BH= 33, ∴S=12× 33×1×12=2 3.
第 11 题答图
12.作图与证明:如图 24-3-8,已知⊙O 和⊙O 上的一点 A,请完成下列任务: (1)作⊙O 的内接正六边形 ABCDEF; (2)连接 BF,CE,判断四边形 BCEF 的形状并加以证明.