【冲刺卷】高考数学试卷(带答案)
2024年高考数学冲刺真题整理题型一及答案

冲刺2024年高考数学真题重组卷真题重组卷01(考试时间:120分钟 试卷满分:150分)第I 卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.(2023新课标全国Ⅰ卷)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .22.(2023新课标全国Ⅱ卷)在复平面内,()()13i 3i +-对应的点位于( ). A .第一象限B .第二象限C .第三象限D .第四象限3.(2022•新高考Ⅰ)在ABC ∆中,点D 在边AB 上,2BD DA =.记CA m = ,CD n = ,则(CB = )A .32m n- B .23m n-+C .32m n +D .23m n+ 4.(2023全国乙卷数学(理))甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A .30种B .60种C .120种D .240种5.(2022•甲卷)函数()(33)cos x x f x x -=-在区间[2π-,]2π的图像大致为( )A .B .C .D .6.(全国甲卷数学(理))“22sin sin 1αβ+=”是“sin cos 0αβ+=”的( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充要条件D .既不是充分条件也不是必要条件7.(全国甲卷数学(文)(理))已知双曲线22221(0,0)x y a b a b-=>>渐近线与圆22(2)(3)1x y -+-=交于A ,B 两点,则||AB =( )A .15B C D 8.(2023全国乙卷数学(文))函数()32f x x ax =++存在3个零点,则a 的取值范围是( )A .(),2-∞-B .(),3-∞-C .()4,1--D .()3,0-二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
高三数学冲刺试卷及答案

一、选择题(每题5分,共50分)1. 已知函数$f(x) = 2x^3 - 3x^2 + 4$,则$f'(x)$的零点个数是()。
A. 1个B. 2个C. 3个D. 4个2. 若$a, b, c$是等差数列的连续三项,且$a + b + c = 12$,则$ab + bc +ca$的值是()。
A. 36B. 24C. 18D. 123. 已知复数$z = 2 + 3i$,则$|z|^2$的值是()。
A. 13B. 23C. 5D. 14. 函数$y = \frac{1}{x}$的图像在()象限。
A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限5. 下列不等式中正确的是()。
A. $x^2 > 4$B. $x^2 < 4$C. $x^2 \leq 4$D. $x^2 \geq 4$6. 在直角坐标系中,点$A(2, 3)$关于直线$x + y = 5$的对称点$B$的坐标是()。
A. $(3, 2)$B. $(1, 4)$C. $(4, 1)$D. $(5, 0)$7. 已知数列$\{a_n\}$的通项公式为$a_n = 2^n - 1$,则数列的前$n$项和$S_n$是()。
A. $2^n - n - 2$B. $2^n - n - 1$C. $2^n - n$D. $2^n - n + 2$8. 若直线$y = kx + b$经过点$(1, 2)$和$(2, 3)$,则$k$的值是()。
A. 1B. 2C. 0.5D. -19. 已知函数$y = \log_2(x - 1)$,则函数的定义域是()。
A. $x > 1$B. $x \geq 1$C. $x < 1$D. $x \leq 1$10. 下列命题中正确的是()。
A. 两个等差数列一定是等比数列B. 两个等比数列一定是等差数列C. 两个等差数列的公差一定相等D. 两个等比数列的公比一定相等二、填空题(每题5分,共50分)1. 函数$f(x) = x^2 - 4x + 3$的对称轴方程是__________。
高三数学模拟冲刺试卷答案

一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x + 2,则f(x)的对称中心为()A. (0, -1)B. (0, 2)C. (1, 0)D. (1, 2)答案:A解析:函数f(x) = x^3 - 3x + 2的对称中心可以通过求导找到极值点,然后求出对称中心。
f'(x) = 3x^2 - 3,令f'(x) = 0,解得x = ±1。
由于f(x)在x = 0处取得极小值,故对称中心为(0, -1)。
2. 下列不等式中正确的是()A. a > b 且 c > d 则 ac > bdB. a > b 且 c < d 则 ac > bdC. a > b 且 c > d 则 ac < bdD. a > b 且 c < d 则 ac < bd答案:A解析:由不等式的乘法性质,当a > b且c > d时,两边同时乘以正数,不等号方向不变,故ac > bd。
3. 已知等差数列{an}的首项为a1,公差为d,则第10项与第15项之和为()A. 10a1 + 14dB. 15a1 + 14dC. 10a1 + 15dD. 15a1 + 15d答案:C解析:等差数列的第n项公式为an = a1 + (n-1)d,所以第10项与第15项之和为a10 + a15 = (a1 + 9d) + (a1 + 14d) = 2a1 + 23d = 10a1 + 15d。
4. 下列函数中,在定义域内单调递增的是()A. y = 2x - 1B. y = -x^2 + 1C. y = x^3D. y = e^x答案:D解析:函数y = e^x在定义域内是单调递增的,因为其导数y' = e^x始终大于0。
5. 已知等比数列{bn}的首项为b1,公比为q,则第5项与第8项之比为()A. q^4B. q^3C. q^2D. q^5答案:A解析:等比数列的第n项公式为bn = b1 q^(n-1),所以第5项与第8项之比为b5 / b8 = b1 q^4 / (b1 q^7) = q^4。
【冲刺卷】高考数学试题(及答案)

【冲刺卷】高考数学试题(及答案)一、选择题1.在复平面内,O 为原点,向量OA 对应的复数为12i -+,若点A 关于直线y x =-的对称点为点B ,则向量OB 对应的复数为( )A .2i -+B .2i --C .12i +D .12i -+ 2.设是虚数单位,则复数(1)(12)i i -+=( )A .3+3iB .-1+3iC .3+iD .-1+i 3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙 4.若满足sin cos cos A B C a b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30的直角三角形C .等腰直角三角形D .有一个内角为30的等腰三角形 5.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A .54钱 B .43钱 C .32钱 D .53钱 6.如图所示,程序据图(算法流程图)的输出结果为( )A .34B .16C .1112 D .25247.下列四个命题中,正确命题的个数为( )①如果两个平面有三个公共点,那么这两个平面重合;②两条直线一定可以确定一个平面;③若M α∈,M β∈,l αβ= ,则M l ∈;④空间中,相交于同一点的三直线在同一平面内.A .1B .2C .3D .48.已知向量()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b =( )A .312⎫⎪⎪⎝⎭ B .132⎛ ⎝⎭ C .1334⎛ ⎝⎭ D .()1,09.已知,m n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若m α,m n ⊥,则n α⊥;②若m α⊥,n α,则m n ⊥;③若,m n 是异面直线,m α⊂,m β,n β⊂,n α,则αβ∥;④若,m n 不平行,则m 与n 不可能垂直于同一平面.其中为真命题的是( )A .②③④B .①②③C .①③④D .①②④ 10.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则CM = A 53B .532 C 53D 1311.由a2,2﹣a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是()A.1 B.﹣2 C.6 D.212.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为()A .43πB.83πC.163πD.203π二、填空题13.在区间[1,1]-上随机取一个数x,cos2xπ的值介于1[0,]2的概率为.14.函数()23s34f x in x cosx=+-(0,2xπ⎡⎤∈⎢⎥⎣⎦)的最大值是__________.15.若,满足约束条件则的最大值.16.设复数1(z i i=--虚数单位),z的共轭复数为z,则()1z z-⋅=________.17.若x,y满足约束条件22010x yx yy--≤⎧⎪-+≥⎨⎪≤⎩,则32z x y=+的最大值为_____________.18.如图,圆C(圆心为C)的一条弦AB的长为2,则AB AC⋅=______.19.已知集合P中含有0,2,5三个元素,集合Q中含有1,2,6三个元素,定义集合P+Q中的元素为a+b,其中a∈P,b∈Q,则集合P+Q中元素的个数是_____.20.三个数成等差数列,其比为3:4:5,又最小数加上1后,三个数成等比数列,那么原三个数是三、解答题21.设椭圆22221(0)x ya ba b+=>>的左焦点为F,右顶点为A,离心率为12.已知A是抛物线22(0)y px p=>的焦点,F到抛物线的准线l的距离为12.(I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为6,求直线AP 的方程. 22.已知向量()2sin ,1a x =+,()2,2b =-,()sin 3,1c x =-,()1,d k =(),x R k R ∈∈(1)若,22x ππ⎡⎤∈-⎢⎥⎣⎦,且()//a b c +,求x 的值. (2)若函数()f x a b =⋅,求()f x 的最小值.(3)是否存在实数k ,使得()()a d b c +⊥+?若存在,求出k 的取值范围;若不存在,请说明理由.23.已知2256x ≤且21log 2x ≥,求函数22()log log 22x x f x =⋅的最大值和最小值. 24.设()34f x x x =-+-.(Ⅰ)求函数()2()g x f x =-的定义域;(Ⅱ)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围.25.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程.(2)求经过两圆交点的直线的极坐标方程.26.已知函数()()2f x x 2a 1x 2alnx(a 0)=-++>. ()1求()f x 的单调区间;()2若()f x 0≤在区间[]1,e 上恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】首先根据向量OA 对应的复数为12i -+,得到点A 的坐标,结合点A 与点B 关于直线y x =-对称得到点B 的坐标,从而求得向量OB 对应的复数,得到结果.【详解】复数12i -+对应的点为(1,2)A -,点A 关于直线y x =-的对称点为(2,1)B -,所以向量OB 对应的复数为2i -+.故选A .【点睛】该题是一道复数与向量的综合题,解答本题的关键是掌握复数在平面坐标系中的坐标表示.2.C解析:C【解析】因为2(1)(12)1223i i i i i i -+=+--=+,故选 C.考点:本题主要考查复数的乘法运算公式. 3.A解析:A【解析】【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.4.C解析:C【解析】【分析】由正弦定理结合条件可得tan tan 1B C ==,从而得三角形的三个内角,进而得三角形的形状.【详解】 由正弦定理可知sin sin sin A B C a b c ==,又sin cos cos A B C a b c==, 所以cos sin ,cos sin B B C C ==,有tan tan 1B C ==. 所以45B C ==.所以180454590A =--=.所以ABC ∆为等腰直角三角形.故选C.【点睛】本题主要考查了正弦定理解三角形,属于基础题.5.B解析:B【解析】设甲、乙、丙、丁、戊所得钱分别为2,,,,2a d a d a a d a d --++,则22a d a d a a d a d -+-=++++,解得6a d =-,又225,a d a d a a d a d -+-+++++=1a ,则4422633a a d a a ⎛⎫-=-⨯-== ⎪⎝⎭,故选B. 6.C解析:C【解析】由算法流程图知s =0+12+14+16=1112.选C. 7.A解析:A【解析】【分析】【详解】试题分析:如果两个平面有三个公共点,那么这两个平面重合或者是相交,故(1)不正确;两条异面直线不能确定一个平面,故(2)不正确;若M ∈α,M ∈β,α∩β=l ,则M ∈l ,故(3)正确;空间中,相交于同一点的三直线不一定在同一平面内(如棱锥的3条侧棱),故(4)不正确,综上所述只有一个说法是正确的,故选A .8.B解析:B【解析】【分析】设()(),0b x y y =≠,根据题意列出关于x 、y 的方程组,求出这两个未知数的值,即可得出向量b 的坐标.【详解】设(),b x y =,其中0y ≠,则3a x y b ⋅=+=由题意得2210x y y y ⎧+=+=≠⎪⎩,解得12x y ⎧=⎪⎪⎨⎪=⎪⎩13,22b ⎛= ⎝⎭. 故选:B.【点睛】本题考查向量坐标的求解,根据向量数量积和模建立方程组是解题的关键,考查方程思想的应用以及运算求解能力,属于基础题.9.A解析:A【解析】【分析】根据空间中点、线、面位置关系,逐项判断即可.【详解】①若m α,m n ⊥,则n 与α位置关系不确定;②若n α,则α存在直线l 与n 平行,因为m α⊥,所以m l ⊥,则m n ⊥; ③当m α⊂,m β,n β⊂,n α时,平面α,β平行;④逆否命题为:若m 与n 垂直于同一平面,则,m n 平行,为真命题.综上,为真命题的是②③④.故选A【点睛】本题主要考查空间中点线面位置关系,熟记线面关系、面面关系,即可求解,属于常考题型.10.C解析:C【解析】试题分析:先求得M (2,32,3)点坐标,利用两点间距离公式计算得CM =,故选C .考点:本题主要考查空间直角坐标系的概念及空间两点间距离公式的应用.点评:简单题,应用公式计算. 11.C解析:C【解析】试题分析:通过选项a 的值回代验证,判断集合中有3个元素即可.解:当a=1时,由a 2=1,2﹣a=1,4组成一个集合A ,A 中含有2个元素,当a=﹣2时,由a 2=4,2﹣a=4,4组成一个集合A ,A 中含有1个元素,当a=6时,由a 2=36,2﹣a=﹣4,4组成一个集合A ,A 中含有3个元素,当a=2时,由a 2=4,2﹣a=0,4组成一个集合A ,A 中含有2个元素,故选C .点评:本题考查元素与集合的关系,基本知识的考查.12.C解析:C【解析】【分析】根据三视图知几何体是三棱锥,且一侧面与底面垂直,结合图中数据求出三棱锥外接球的半径,从而求出球的表面积公式.【详解】由三视图知,该几何体是如图所示的三棱锥,且三棱锥的侧面SAC ⊥底面ABC ,高为3SO =;其中1OA OB OC ===,SO ⊥平面ABC ,其外接球的球心在SO 上,设球心为M ,OM x =,根据SM=MB 得到:在三角形MOB 中,21SM 3x x +=,213x x +=, 解得3x = ∴外接球的半径为33333R ==; ∴三棱锥外接球的表面积为223164(3S ππ=⨯=. 故选:C .【点睛】本题考查了三视图复原几何体形状的判断问题,也考查了三棱锥外接球的表面积计算问题,是中档题.一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.二、填空题13.【解析】试题分析:由题意得因此所求概率为考点:几何概型概率 解析:13 【解析】 试题分析:由题意得1220cos ,[1,1]112232222333xx x x x x πππππππ≤≤∈-⇒≤≤-≤≤-⇒≤≤-≤≤-或或,因此所求概率为22(1)13.1(1)3-=--考点:几何概型概率 14.1【解析】【详解】化简三角函数的解析式可得由可得当时函数取得最大值1解析:1【解析】【详解】化简三角函数的解析式,可得()22311cos 3cos cos 3cos 44f x x x x x =-+-=-++= 23(cos )12x --+, 由[0,]2x π∈,可得cos [0,1]x ∈,当3cos x =时,函数()f x 取得最大值1. 15.3【解析】作出可行域如图中阴影部分所示由斜率的意义知yx 是可行域内一点与原点连线的斜率由图可知点A (13)与原点连线的斜率最大故yx 的最大值为3考点:线性规划解法解析:【解析】作出可行域如图中阴影部分所示,由斜率的意义知,是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故的最大值为3.考点:线性规划解法16.【解析】分析:由可得代入利用复数乘法运算法则整理后直接利用求模公式求解即可详解:因为所以故答案为点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算属于中档题解题时一定要注意和 10【解析】分析:由1i z =--,可得1i z =-+,代入()1z z -⋅,利用复数乘法运算法则整理后,直接利用求模公式求解即可.详解:因为1i z =--,所以1i z =-+,()()()()()111121z z i i i i ∴-⋅=++⋅-+=+⋅-+39110i =-+=+=10.点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++17.6【解析】【分析】首先根据题中所给的约束条件画出相应的可行域再将目标函数化成斜截式之后在图中画出直线在上下移动的过程中结合的几何意义可以发现直线过B 点时取得最大值联立方程组求得点B 的坐标代入目标函数 解析:6【解析】【分析】 首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式3122y x z =-+,之后在图中画出直线32y x =-,在上下移动的过程中,结合12z 的几何意义,可以发现直线3122y x z =-+过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值.【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由32z x y =+,可得3122y x z =-+, 画出直线32y x =-,将其上下移动, 结合2z 的几何意义,可知当直线3122y x z =-+在y 轴截距最大时,z 取得最大值, 由2200x y y --=⎧⎨=⎩,解得(2,0)B , 此时max 3206z =⨯+=,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.18.2【解析】【分析】过点C 作CD ⊥AB 于D 可得Rt △ACD 中利用三角函数的定义算出再由向量数量积的公式加以计算可得的值【详解】过点C 作CD ⊥AB 于D 则D 为AB 的中点Rt △ACD 中可得cosA==2故答解析:2【解析】【分析】过点C 作CD⊥AB 于D ,可得1AD AB 12==,Rt△ACD 中利用三角函数的定义算出1cos A AC= ,再由向量数量积的公式加以计算,可得AB AC ⋅的值. 【详解】过点C 作CD ⊥AB 于D ,则D 为AB 的中点.Rt△ACD中,1AD AB12==,可得cosA=11,cosAADAB AC AB AC AB AC ABAC AC AC =∴⋅=⋅=⋅⋅==2.故答案为2【点睛】本题已知圆的弦长,求向量的数量积.着重考查了圆的性质、直角三角形中三角函数的定义与向量的数量积公式等知识,属于基础题.19.8【解析】【详解】由题意知a∈Pb∈Q则a+b的取值分别为123467811故集合P+Q中的元素有8个点睛:求元素(个数)的方法根据题目一一列举可能取值(应用列举法和分类讨论思想)然后根据集合元素的解析:8【解析】【详解】由题意知a∈P,b∈Q,则a+b的取值分别为1,2,3,4,6,7,8,11.故集合P+Q中的元素有8个.点睛:求元素(个数)的方法,根据题目一一列举可能取值(应用列举法和分类讨论思想),然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数.20.2025【解析】设这三个数:()则成等比数列则或(舍)则原三个数:152025解析:20 25【解析】设这三个数:、、(),则、、成等比数列,则或(舍),则原三个数:15、20、25三、解答题21.(Ⅰ)22413yx+=,24y x=.(Ⅱ)3630x+-=,或3630x-=.【解析】试题分析:由于A为抛物线焦点,F到抛物线的准线l的距离为12,则12a c-=,又椭圆的离心率为12,求出,,c a b,得出椭圆的标准方程和抛物线方程;则(1,0)A,设直线AP 方程为设1(0)x my m =+≠,解出P Q 、两点的坐标,把直线AP 方程和椭圆方程联立解出B 点坐标,写出BQ 所在直线方程,求出点D 的坐标,最后根据APD △的面积为m ,得出直线AP 的方程. 试题解析:(Ⅰ)解:设F 的坐标为(),0c -.依题意,12c a =,2p a =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=. 所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =. (Ⅱ)解:设直线AP 的方程为()10x my m =+≠,与直线l 的方程1x =-联立,可得点21,P m ⎛⎫-- ⎪⎝⎭,故21,Q m ⎛⎫- ⎪⎝⎭.将1x my =+与22413y x +=联立,消去x ,整理得()223460m y my ++=,解得0y =,或2634m y m -=+.由点B 异于点A ,可得点222346,3434m m B m m ⎛⎫-+- ⎪++⎝⎭.由21,Q m ⎛⎫- ⎪⎝⎭,可学*科.网得直线BQ 的方程为()222623*********m m x y m m m m ⎛⎫--+⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,令0y =,解得222332m x m -=+,故2223,032m D m ⎛⎫- ⎪+⎝⎭.所以222223613232m m AD m m -=-=++.又因为APD 的面积为2,故22162232m m m ⨯⨯=+,整理得2320m -+=,解得m =m =.所以,直线AP 的方程为330x -=,或330x -=.【考点】直线与椭圆综合问题【名师点睛】圆锥曲线问题在历年高考都是较有难度的压轴题,不论第一步利用椭圆的离心率及椭圆与抛物线的位置关系的特点,列方程组,求出椭圆和抛物线方程,还是第二步联立方程组求出点的坐标,写直线方程,利用面积求直线方程,都是一种思想,就是利用大熟地方法解决几何问题,坐标化,方程化,代数化是解题的关键.22.(1)6x π=-;(2)0;(3)存在[]5,1k ∈-- 【解析】【分析】(1)由向量平行的坐标表示可求得sin x ,得x 值;(2)由数量积的坐标表示求出()f x ,结合正弦函数性质可得最值;(3)计算由()()0a d b c +⋅+=得k 与sin x 的关系,求出k 的取值范围即可.【详解】(1)()sin 1,1b c x +=--,()//a b c +, ()2sin sin 1x x ∴-+=-,即1sin 2x =-.又,22x ππ⎡⎤∈-⎢⎥⎣⎦,6x π∴=-. (2)∵()2sin ,1a x =+,()2,2b =-,()()22sin 22sin 2f x a b x x ∴=⋅=+-=+. x R ∈,1sin 1x ∴-,()04f x ∴,()f x ∴的最小值为0.(3)∵()3sin ,1a d x k +=++,()sin 1,1b c x +=--,若()()a d b c +⊥+,则()()0a d b c +⋅+=,即()()()3sin sin 110x x k +--+=, ()22sin 2sin 4sin 15k x x x ∴=+-=+-,由[]sin 1,1x ∈-,得[]5,1k ∈--, ∴存在[]5,1k ∈--,使得()()a d b c +⊥+【点睛】本题考查平面得数量积的坐标运算,考查正弦函数的性质.属于一般题型,难度不大.23.最小值为14-,最大值为2. 【解析】【分析】 由已知条件化简得21log 32x ≤≤,然后化简()f x 求出函数的最值 【详解】由2256x ≤得8x ≤,2log 3x ≤即21log 32x ≤≤ ()()()222231log 1log 2log 24f x x x x ⎛⎫=-⋅-=-- ⎪⎝⎭. 当23log ,2x =()min 14f x =-,当2log 3,x = ()max 2f x =. 【点睛】熟练掌握对数的基本运算性质是转化本题的关键,将其转化为二次函数的值域问题,较为基础.24.(Ⅰ)59[,]22;(Ⅱ)1(,2[,)2-∞-⋃+∞). 【解析】【分析】【详解】试题分析:(Ⅰ)先用零点分段法将()f x 表示分段函数的形式,然后再求定义域;(Ⅱ)利用函数图象求解.试题解析:(Ⅰ)72,3 ()34{1,3427,4x xf x x x xx x-<=-+-=->,它与直线2y=交点的横坐标为52和92,∴不等式()2()g x f x=-的定义域为59[,]22.(Ⅱ)函数1y ax=-的图象是过点(0,1)-的直线,结合图象可知,a取值范围为1(,2)[,)2-∞-⋃+∞.考点:1、分段函数;2、函数的定义域;3、函数的图象.25.(1) x2+y2-2x-2y-2=0 (2) ρsin(θ+)=【解析】(1)∵ρ=2,∴ρ2=4,即x2+y2=4.∵ρ2-2ρcos(θ-)=2,∴ρ2-2ρ (cosθcos+sinθsin)=2.∴x2+y2-2x-2y-2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x+y=1.化为极坐标方程为ρcosθ+ρsinθ=1,即ρsin(θ+)=.26.(1)见解析;(2)2e2ea2e2-≥-.【解析】【分析】()1求函数的导数,利用函数单调性和导数之间的关系,即可求()f x的单调区间;()2若()0f x≤在区间[]1,e上恒成立,则只需求出()f x的最大值即可,求实数a的取值范围.【详解】()()()21f x x 2a 1x 2alnx(a 0)=-++>.()()()()22x 2a 1x 2a2x 1x a f'x (x 0)x x -++--∴==>, 由得1x a =,2x 1=,当0a 1<<时,在()x 0,a ∈或()x 1,∞∈+时, 在()x a,1∈时,()f x ∴的单调增区间是()0,a 和()1,∞+,单调减区间是()a,1;当a 1=时,在()x 0,∞∈+时,()f x ∴的单调增区间是()0,∞+;当a 1>时,在()x 0,1∈或()x a,∞∈+时,在()x 1,a ∈时. ()f x ∴的单调增区间是()0,1和()a,∞+,单调减区间是()1,a .()2由()1可知()f x 在区间[]1,e 上只可能有极小值点,()f x ∴在区间[]1,e 上的最大值在区间的端点处取到,即有()()f 112a 10=-+≤且()()2f e e 2a 1e 2a 0=-++≤,解得2e 2e a 2e 2-≥-. 即实数a 的取值范围是2e 2e a 2e 2-≥-. 【点睛】本题主要考查函数单调性和导数之间的关系,以及不等式恒成立问题,将不等式恒成立转化为求函数的最值是解决本题的关键.。
【冲刺卷】高考数学试题(含答案)

【冲刺卷】高考数学试题(含答案)一、选择题1.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( )A .{}22x x -≤< B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<2.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A .15B .20C .30D .35 3.已知平面向量a =(1,-3),b =(4,-2),a b λ+与a 垂直,则λ是( ) A .2 B .1 C .-2 D .-1 4.设是虚数单位,则复数(1)(12)i i -+=( )A .3+3iB .-1+3iC .3+iD .-1+i5.已知函数()()sin f x A x =+ωϕ()0,0A ω>>的图象与直线()0y a a A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递减区间是( )A .[]6,63k k ππ+,k Z ∈B .[]63,6k k ππ-,k Z ∈C .[]6,63k k +,k Z ∈D .[]63,6k k -,k Z ∈6.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A .54钱 B .43钱 C .32钱 D .53钱 7.函数()1ln 1y x x=-+的图象大致为( ) A . B .C .D .8.设i 为虚数单位,复数z 满足21ii z=-,则复数z 的共轭复数等于( ) A .1-iB .-1-iC .1+iD .-1+i9.正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF =( )A .1123AB AD - B .1142AB AD + C .1132AB DA + D .1223AB AD -. 10.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为( )A .相交B .平行C .异面而且垂直D .异面但不垂直11.设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则( )A .当101,102b a => B .当101,104b a => C .当102,10b a =-> D .当104,10b a =->12.已知tan 212πα⎛⎫+=- ⎪⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭( ) A .13-B .13C .-3D .3二、填空题13.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件.14.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.15.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3A π=,3a =,b=1,则c =_____________16.已知0x >,0y >,0z >,且36x y z ++=,则323x y z ++的最小值为_________.17.若,满足约束条件则的最大值 .18.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.19.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.20.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.三、解答题21.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:喜欢游泳不喜欢游泳合计男生10女生20合计已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为. (1)请将上述列联表补充完整;(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率. 下面的临界值表仅供参考: P(K 2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828(参考公式:22n(ad bc)K (a b)(c d)(a c)(b d)-=++++,其中n=a+b+c+d )22.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000步,(说明:“02000”表示大于或等于0,小于2000,以下同理),B 、20005000步,C 、50008000步,D 、800010000步,E 、1000012000步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率. 23.已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围. 24.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由.25.已知()f x 是二次函数,不等式()0f x <的解集是0,5,且()f x 在区间[]1,4-上的最大值是12.(1)求()f x 的解析式;(2)设函数()f x 在[],1x t t ∈+上的最小值为g t ,求g t 的表达式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】求解出集合M ,根据并集的定义求得结果. 【详解】(){}{}{}2log 1001112M x x x x x x =-<=<-<=<< {}2M N x x ∴⋃=≥-本题正确选项:B 【点睛】本题考查集合运算中的并集运算,属于基础题.2.C解析:C 【解析】 【分析】利用多项式乘法将式子展开,根据二项式定理展开式的通项即可求得2x 的系数. 【详解】根据二项式定理展开式通项为1C r n r rr n T a b -+=()()()66622111111x x x x x ⎛⎫++=++⋅+ ⎪⎝⎭则()61x +展开式的通项为16r rr T C x +=则()62111x x ⎛⎫++ ⎪⎝⎭ 展开式中2x 的项为22446621C x C x x ⎛⎫+⋅ ⎪⎝⎭ 则()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为2466151530C C +=+= 故选:C【点睛】本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.3.D解析:D 【解析】 【详解】试题分析:()()(),34,24,32a b λλλλλ+=-+-=+--,由a b λ+与a 垂直可知()()()·0433201a b a λλλλ+=∴+---=∴=- 考点:向量垂直与坐标运算4.C解析:C 【解析】因为2(1)(12)1223i i i i i i -+=+--=+,故选 C. 考点:本题主要考查复数的乘法运算公式.5.D解析:D 【解析】 【详解】由题设可知该函数的最小正周期826T =-=,结合函数的图象可知单调递减区间是2448[6,6]()22k k k Z ++++∈,即[36,66]()k k k Z ++∈,等价于[]63,6k k -,应选答案D .点睛:解答本题的关键是充分利用题设中的有效信息“函数()()sin f x A x ωϕ=+(0,0)A ω>>的图象与直线(0)y a a A =<<的三个相邻交点的横坐标分别是2,4,8”.结合图像很容易观察出最小正周期是826T =-=,进而数形结合写出函数的单调递减区间,从而使得问题获解.6.B解析:B 【解析】设甲、乙、丙、丁、戊所得钱分别为2,,,,2a d a d a a d a d --++,则22a d a d a a d a d -+-=++++,解得6a d =-,又225,a d a d a a d a d -+-+++++=1a,则4422633a a d a a ⎛⎫-=-⨯-== ⎪⎝⎭,故选B.7.A解析:A 【解析】【分析】确定函数在定义域内的单调性,计算1x =时的函数值可排除三个选项. 【详解】0x >时,函数为减函数,排除B ,10x -<<时,函数也是减函数,排除D ,又1x =时,1ln 20y =->,排除C ,只有A 可满足.故选:A. 【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.8.B解析:B 【解析】 【分析】利用复数的运算法则解得1i z =-+,结合共轭复数的概念即可得结果. 【详解】∵复数z 满足21ii z =-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B. 【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.9.D解析:D 【解析】 【分析】用向量的加法和数乘法则运算。
【冲刺卷】高考数学试卷(及答案)

【冲刺卷】高考数学试卷(及答案)一、选择题1.函数ln ||()xx f x e =的大致图象是( ) A . B .C .D .2.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ). A . B .C .D .3.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .4.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则 A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-5.函数y =2x sin2x 的图象可能是A .B .C .D .6.对于不等式2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时,211+<1+1,不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,即2k k +<k+1. 那么当n=k+1时,()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<++++=+=(k+1)+1,所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立. 则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确7.已知复数 ,则复数在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限8.在ABC 中,若 13,3,120AB BC C ==∠=,则AC =( )A .1B .2C .3D .49.已知向量()1,1m λ=+,()2,2n λ=+,若()()m n m n +⊥-,则λ=( ) A .4-B .3-C .2-D .1-10.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则UAB =( )A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-11.已知tan 212πα⎛⎫+=- ⎪⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭( ) A .13-B .13C .-3D .312.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能二、填空题13.i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为 . 14.函数y=232x x --的定义域是 .15.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .16.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______. 17.函数log (1)1(01)a y x a a =-+>≠且的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中,0,m n >则12m n+的最小值为 18.已知样本数据,,,的均值,则样本数据,,,的均值为 .19.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.20.高三某班一学习小组的,,,A B C D四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A不在散步,也不在打篮球;②B不在跳舞,也不在散步;③“C在散步”是“A在跳舞”的充分条件;④D不在打篮球,也不在散步;⑤C不在跳舞,也不在打篮球.以上命题都是真命题,那么D在_________.三、解答题21.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:喜欢游泳不喜欢游泳合计男生10女生20合计已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为.(1)请将上述列联表补充完整;(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.下面的临界值表仅供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:22n(ad bc)K (a b)(c d)(a c)(b d)-=++++,其中n=a+b+c+d )22.已知函数2()(1)1xx f x a a x -=+>+. (1)证明:函数()f x 在(1,)-+∞上为增函数;(2)用反证法证明:()0f x =没有负数根.23.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000步,(说明:“02000”表示大于或等于0,小于2000,以下同理),B 、20005000步,C 、50008000步,D 、800010000步,E 、1000012000步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.24.四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,3BAD π∠=,PAD ∆是等边三角形,F 为AD 的中点,PD BF ⊥.(1)求证:AD PB ⊥;(2)若E 在线段BC 上,且14EC BC =,能否在棱PC 上找到一点G ,使平面DEG ⊥平面ABCD ?若存在,求四面体D CEG -的体积. 25.选修4-5:不等式选讲:设函数()13f x x x a =++-. (1)当1a =时,解不等式()23f x x ≤+;(2)若关于x 的不等式()42f x x a <+-有解,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由函数解析式代值进行排除即可. 【详解】 解:由()xln x f x =e,得()f 1=0,()f 1=0-又()1f e =0e e >,()1f e =0ee --> 结合选项中图像,可直接排除B ,C ,D 故选A 【点睛】本题考查了函数图像的识别,常采用代值排除法.2.A解析:A 【解析】 【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值,因此函数()1,0122,0xx x f x x >⎧=⊕=⎨≤⎩,只有选项A 中的图象符合要求,故选A.3.A解析:A 【解析】【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.4.C解析:C 【解析】 【分析】利用复数乘法的运算法则化简原式,利用复数相等的性质可得结果. 【详解】因为()a i i b i +=+, 即1ai b i -+=+,因为,,a b R i ∈为虚数单位,所以1,1a b ==-, 故选C. 【点睛】本题主要考查复数的乘法运算以及复数相等的性质,属于基础题.5.D解析:D 【解析】分析:先研究函数的奇偶性,再研究函数在π(,π)2上的符号,即可判断选择.详解:令()2sin 2xf x x =, 因为,()2sin 2()2sin 2()x x x R f x x x f x -∈-=-=-=-,所以()2sin 2xf x x =为奇函数,排除选项A,B;因为π(,π)2x ∈时,()0f x <,所以排除选项C ,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6.D解析:D 【解析】 【分析】 【详解】题目中当n=k+1时不等式的证明没有用到n=k 时的不等式,正确的证明过程如下: 在(2)中假设n k = 时有21k k k +<+ 成立,即2(1)(1)(1)1k k k +++<++成立,即1n k =+时成立,故选D . 点睛:数学归纳法证明中需注意的事项(1)初始值的验证是归纳的基础,归纳递推是证题的关键,两个步骤缺一不可. (2)在用数学归纳法证明问题的过程中,要注意从k 到k +1时命题中的项与项数的变化,防止对项数估算错误.(3)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.7.A解析:A 【解析】在复平面内对应的点坐标为在第一象限,故选A.8.A解析:A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.9.B解析:B 【解析】 【分析】 【详解】∵()()m n m n +⊥-,∴()()0m n m n +⋅-=. ∴,即22(1)1[(2)4]0λλ++-++=,∴3λ=-,,故选B. 【考点定位】 向量的坐标运算10.A解析:A 【解析】 【分析】本题根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】={1,3}U C A -,则(){1}U C A B =-【点睛】易于理解集补集的概念、交集概念有误.11.A解析:A 【解析】 【分析】由题意可知3124tan tan πππαα⎛⎫⎛⎫+=++ ⎪⎪⎝⎭⎝⎭,由题意结合两角和的正切公式可得3tan πα⎛⎫+ ⎪⎝⎭的值.【详解】3124tan tan πππαα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭ 112431124tan tantan tan ππαππα⎛⎫++ ⎪⎝⎭==-⎛⎫-+ ⎪⎝⎭,故选A .【点睛】本题主要考查两角和的正切公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.12.C解析:C 【解析】 【分析】ABAB 和ACAC 分别表示向量AB 和向量AC 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭表示A ∠平分线所在的直线与BC 垂直,可知ABC 为等腰三角形,再由12AB AC ABAC⋅=可求出A ∠,即得三角形形状。
高三冲刺数学试题及答案
高三冲刺数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为:A. 0B. 1C. 2D. 32. 已知向量a=(2,1)和向量b=(1,-1),求向量a与向量b的数量积:A. -1B. 0C. 1D. 23. 若直线l的方程为y=2x+3,且点P(1,5)在直线l上,则直线l的斜率k为:A. 1B. 2C. 3D. 44. 已知等差数列{an}的首项a1=2,公差d=3,求该数列的第10项a10:A. 29B. 32C. 35D. 385. 函数f(x)=sin(x)+cos(x)的最大值为:A. 1B. √2C. 2D. √36. 若复数z满足|z|=1,且z的实部为1/2,则z的虚部为:A. √3/2B. -√3/2C. 1/2D. -1/27. 已知抛物线C的方程为y^2=4x,求抛物线C的焦点坐标:A. (1,0)B. (0,1)C. (1,1)D. (0,0)8. 已知函数f(x)=x^3-3x^2+2,求f(x)的单调递增区间:A. (-∞,1)B. (1,2)C. (2,+∞)D. (-∞,1)∪(2,+∞)9. 已知双曲线的方程为x^2/a^2-y^2/b^2=1,且a=2,b=1,求该双曲线的渐近线方程:A. y=±2xB. y=±xC. y=±1/2xD. y=±2/x10. 若三角形ABC的内角A、B、C的对边分别为a、b、c,且满足a^2+b^2=c^2,求角C的大小:A. 30°B. 45°C. 60°D. 90°二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项b1=3,公比q=2,求该数列的前5项和S5。
12. 若直线l1的方程为3x-4y+5=0,直线l2的方程为6x+8y-15=0,则直线l1与l2的位置关系为。
高考数学冲刺卷 (含答案)
2 sin[(x
)
]
;
2
4
④当 x [3 2k,2 2k)(k Z ) 时: 2
f (x) sin x cos x sin x cos x
2 sin[(x
3)
]
;
24
如图所示:
所以:函数
f
(x)
在
(0,
)
上单调递增,函数
f
(x)
在(, )
上单调递减;
4
42
函数 f (x) 的值域为 [1, 2] ;函数 f (x) 的周期为 ; 2
答案选 A
8、(5 分)在空间直角坐标系中,四面体 OABC 各顶点坐标分别为: O(0,0,0), A(1, 3,1),
B(1, 3,1),C(0,0,1) 。假设蚂蚁窝在 O 点,一只蚂蚁从 O 点出发,需要在 AB, AC 上分别任
意选择一点留下信息,然后再返回 O 点。那么完成这个工作所需要走的最短路径长度是( )
3、(5 分)当问到甲、乙、丙、丁四人谁吃了粽子时,回答如下;
甲:“我吃了粽子”;乙:“丁没吃粽子”;
丙:“乙没吃粽子”;丁:“我吃了粽子”。
已知他们四人中只有一个说真话,且只有一人吃了粽子。根据以上信息可以判断得吃了粽子
的人是( )
A.甲
B.乙
C.丙
D.丁
【解析】
因为:乙、丁说的话真假性相反,且四人只有一人说真话
2
cos x
所以:当 x ( ,) 时有, g(x)<0 ,函数 g(x) f (x) tan x 单调递减 2
所以: f (x) tan x≥f () tan 0 ,所以: m 的最大值为 0
答案选 B
数学试卷高三冲刺卷附答案
一、选择题(每题5分,共50分)1. 若函数f(x) = x^3 - 3x + 1在区间[0,2]上的最大值为5,则f'(x)在区间[0,2]上的零点个数为:A. 1B. 2C. 3D. 42. 下列函数中,在其定义域内单调递增的是:A. y = -x^2 + 4xB. y = 2x - x^2C. y = x^2 + 2x + 1D. y = -x^2 - 2x - 13. 已知数列{an}满足an+1 = an^2 - 2an,且a1 = 1,则数列{an}的通项公式为:A. an = 2^n - 1B. an = 2^n + 1C. an = 2^nD. an = 2^n - 24. 下列不等式中,恒成立的是:A. x^2 + 2x + 1 > 0B. x^2 - 2x + 1 > 0C. x^2 + 2x + 1 < 0D. x^2 - 2x + 1 < 05. 在三角形ABC中,若a = 3, b = 4, c = 5,则sinA + sinB + sinC的值为:A. 6B. 8C. 10D. 126. 已知复数z = 1 + i,则|z|^2的值为:A. 2B. 4C. 6D. 87. 下列各式中,表示圆的方程的是:A. x^2 + y^2 = 1B. x^2 + y^2 = 4C. x^2 + y^2 = 9D. x^2 + y^2 = 168. 下列函数中,在定义域内有两个不同零点的函数是:A. y = x^2 - 4B. y = x^2 + 4C. y = x^2 - 2x + 1D. y =x^2 + 2x + 19. 若向量a = (1, 2), b = (2, 3),则向量a与向量b的夹角θ的余弦值为:A. 1/5B. 2/5C. 3/5D. 4/510. 已知函数f(x) = ax^2 + bx + c在区间[0,1]上单调递增,且f(0) = 0,f(1) = 1,则a、b、c的取值范围分别为:A. a > 0, b > 0, c > 0B. a > 0, b < 0, c > 0C. a < 0, b > 0, c < 0D. a < 0, b < 0, c > 0二、填空题(每题5分,共25分)11. 函数f(x) = x^3 - 6x + 9的极值点为______。
2024年高考数学冲刺模拟卷(解析版)
备战2024年高考数学模拟卷(新题型)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.在ABC 中,三个内角,,A B C 成等差数列,则()sin A C +=()A.12B.2C.2D.1【答案】C【分析】由条件可知2A+C =B ,结合πA B C ++=求得A C +,从而代入得解.【详解】因为,,A B C 成等差数列,所以2A+C =B ;又πA B C ++=,所以3πB =,即π3B =,所以2π23A CB +==,所以()2sin sin π32A C +==.故选:C.2.若()20272i 3i z ⋅+=-,则z 的虚部为()A.1-B.75C.1i5-D.15-【答案】D【分析】利用复数的周期性化简2027i i =-,再利用复数的四则运算化简3i2iz +=+求出结果即可.【详解】因为()506202743i i i i =⨯=-,所以()2027i 2i 3i 3z ⋅+=-=+,所以()()()()3i 2i 3i 71i 2i 2i 2i 55z +-+===-++-,所以z 的虚部为15-,故选:D.3.已知向量m 和n都是非零向量,则“0m n > ”是“,m n 为锐角”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【分析】先由0m n > 及向量夹角范围[]0,π推断充分性,再由数量积定义以及“,m n为锐角”即可推断必要性.【详解】因为0m n > ,向量m 和n都是非零向量,则由·cos ,m n m n m n = 得cos ,0m n >,所以由向量夹角范围为[]0,π,得“,0m n =”或“,m n 为锐角”;反之,若,m n为锐角,则·cos ,0m n m n m n m n ==> ,故“0m n > ”是“,m n为锐角”的必要不充分条件.故选:B.4.数学中的数形结合也可以组成世间万物的绚丽画面,一些优美的曲线是数学形象美、对称美、和谐美的产物,曲线C :22322()16x y x y +=为四叶玫瑰线,下列结论正确的有()(1)方程22322()16(0)x y x y xy +=<,表示的曲线在第二和第四象限;(2)曲线C 上任一点到坐标原点O 的距离都不超过2;(3)曲线C 构成的四叶玫瑰线面积大于4π;(4)曲线C 上有5个整点(横、纵坐标均为整数的点).A.(1)(2)B.(1)(2)(3)C.(1)(2)(4)D.(1)(3)(4)【答案】A【分析】因为0xy <,所以x 与y 异号,从而可判断(1);利用基本不等可判断(2);将以O 为圆心,2为半径的圆的面积与曲线C 围成区域的面积进行比较即可判断(3);先确定曲线C 经过点,再将第一象限内经过的整点(1,1),(1,2),(2,1)逐一代入曲线C 的方程进行检验,根据对称性即可判断(4).【详解】对于(1):因为0xy <,所以x 与y 异号,故图象在第二和第四象限,正确;对于(2):因为222x y xy +≥()0,0x y >>,所以222x yxy ≤+,所以()()22232222222161642x y x y x y x y ⎛⎫++=≤⨯=+ ⎪⎝⎭,所以224x y +≤,正确;对于(3):以O 为圆点,2为半径的圆O 的面积为4π,结合(2)知然曲线C 围成的区域的面积小于圆O 的面积,错误;对于(4):将224x y +=和22322()16x y x y +=联立,解得222x y ==,所以可得圆224x y +=与曲线C 相切于点,(,(,,点的位置是图中的点M ,由曲线的对称性可知,只需要考虑曲线在第一象限内经过的整点即可,把()1,1,()1,2和()2,1代入曲线C 的方程验证可知,等号不成立,所以曲线C 在第一象限内不经过任何整点,再结合曲线的对称性可知,曲线C 只经过整点()0,0,错误.故选:A5.已知n S 为正项数列{}n a 的前n 项和.若121n n n S a S ++=-,且557S =,则4a =()A.7B.15C.8D.16【答案】B【分析】本题可通过题中的一般项n a 与前n 项和n S 的关系式,利用公式11n n n a S S ++=-来推导n a 和1n a +的关系,再通过构造法构造新数列{}1n a +并结合557S =来得到n a 的通项公式,算出结果.【详解】因为121n n n S a S ++=-,所以1121n n n n a S S a +++=-=,即()1211n n a a ++=+.因为0n a >,所以10n a +>,所以1121n n a a ++=+,所以数列{}1n a +是公比为2的等比数列,所以()11112n n a a -+=+⋅,则()11121n n a a -=+⋅-,所以()()51511255712a S +⋅-=-=-,解得11a =,所以21nn a =-,则442115a =-=.故选:B.6.如图所示,在边长为1⎫⎪⎪⎝⎭的正方形铁皮上剪下一个扇形和一个圆,使之恰好围成一个圆锥,则圆锥的高为()【答案】B【分析】根据扇形的弧长与圆锥底面周长的关系可求得小圆半径和扇形半径之间的关系,继而结合正方形的对角线长,列式求出底面圆的半径,继而求得圆锥的高,即得答案.【详解】如图1,过⊙F 圆心F 作EE AD ⊥于E ,FG CD ⊥于G ,则四边形EFGD 为正方形,设小圆半径为r ,扇形半径为R,则FD =,小圆周长为2πr ,扇形弧长为90πR180,∵剪下一个扇形和圆恰好围成一个圆锥,90πR2π180r ∴=,解得4R r =,即4BH r =,(45BD BH HFFD r r r r ∴=++=+=,∵正方形铁皮边长为12+,152BD ⎛⎫∴=+= ⎪ ⎪⎝⎭,(55r ∴+=+,∴1r =;在图2中,1,4EF BE ==,由勾股定理得,圆锥的高BF ===故选:B7.甲、乙两人进行一场游戏比赛,其规则如下:每一轮两人分别投掷一枚质地均匀的骰子,比较两者的点数大小,其中点数大的得3分,点数小的得0分,点数相同时各得1分.经过三轮比赛,在甲至少有一轮比赛得3分的条件下,乙也至少有一轮比赛得3分的概率为()A.209277B.210277C.211277D.212277【答案】B【分析】先根据古典概型得出一轮游戏中,甲得3分、1分、0分的概率.进而求出三轮比赛,在甲至少有一轮比赛得3分的概率,以及事件三轮比赛中,事件甲乙均有得3分的概率.即可根据条件概率公式,计算得出答案.【详解】用(),a b 分别表示甲、乙两人投掷一枚骰子的结果,因为甲、乙两人每次投掷均有6种结果,则在一轮游戏中,共包含6636⨯=个等可能的基本事件.其中,甲得3分,即a b >包含的基本事件有()()()()()()()()()()()()()()()2,1,3,1,3,2,4,1,4,2,4,3,5,1,5,2,5,3,5,4,6,1,6,2,6,3,6,4,6,5,共15个,概率为1553612p ==.同理可得,甲每轮得0分的概率也是512,得1分的概率为16.所以每一轮甲得分低于3分的概率为57111212p -=-=.设事件A 表示甲至少有一轮比赛得3分,事件B 表示乙至少有一轮比赛得3分,则事件A 表示经过三轮比赛,甲没有比赛得分为3分.则()333377C 1212P A ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()()37138511121728P A P A ⎛⎫=-=-= ⎪⎝⎭.事件AB 可分三类情形:①甲有两轮得3分,一轮得0分,概率为221355125C 1212576P ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭;②甲有一轮得3分,两轮得0分,概率为212355125C 1212576P ⎛⎫⎛⎫=⨯⨯=⎪ ⎪⎝⎭⎝⎭;③甲有一轮得3分,一轮得0分,一轮得1分,概率为33355125A 12126144P ⨯⨯⨯==.所以()12312512525175576576144288P AB P P P =++=++=175288=,所以()()()175210288|13852771728P AB P B A P A ===.故选:B.8.已知函数()1ex x f x +=,若过()1,P t -可做两条直线与函数()f x 的图象相切,则t 的取值范围为()A.4,e ⎛⎫+∞ ⎪⎝⎭B.4e ⎧⎫⎨⎬⎩⎭C.40,e ⎛⎫ ⎪⎝⎭D.{}40,0e ⎛⎫⋃ ⎪⎝⎭【答案】B【分析】根据导数几何意义求出切线方程,依题意,过点()1,P t -的直线与函数()1e xx f x +=的图象相切的切线条数即为直线y t =与曲线()2(1)eaa g a +=的图象的公共点的个数,根据导数研究函数()g a 的图象可得结果.【详解】设过点()1,P t -的直线与函数()1e x x f x +=的图象相切时的切点为(),a b ,则1e aa b +=,因为()()()2e 1e 1,e e ex x x x xx x xf x f x -++==-'=,所以切线方程为()1e ea a a ay x a +-=--,又()1,P t -在切线上,所以()11e e a a a a t a +-=---,整理得2(1)eaa t +=,则过点()1,P t -的直线与函数()1ex x f x +=的图象相切的切线条数即为直线y t =与曲线()2(1)e aa g a +=的图象的公共点的个数,因为()()()()2221e (1)e 11e ea a a aa a a a g a '+-+-+-==,令()0g a '=,得1a =±,所以,当1a <-时,()()0,g a g a '<单调递减;当11a -<<时,()()0,g a g a '>单调递增;当1a >时,()()0,g a g a '<单调递减,因为()()410,1eg g -==,当a →+∞时()0g a →,所以,函数()g a 的图象大致如图:所以当4et =时,图像有两个交点,切线有两条.故选:B.【点睛】关键点点睛:依题意求出切线方程,本题关键是将过点()1,P t -的直线与函数()1e xx f x +=的图象相切的切线条数转化为直线y t =与曲线()2(1)eaa g a +=的图象的公共点的个数,在利用导数研究函数()g a 的图象.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()cos 2cos f x x x x =-,则下列命题正确的是()A.()f x 的最小正周期为π;B.函数()f x 的图象关于π3x =对称;C.()f x 在区间2ππ,36⎡⎤--⎢⎥⎣⎦上单调递减;D.将函数()f x 的图象向左平移5π12个单位长度后所得到的图象与函数2sin 2y x =的图象重合.【答案】AB【分析】根据二倍角的正弦公式和辅助角公式可得π()2cos(2)3f x x =+,结合余弦函数的图象与性质依次判断选项即可求解.【详解】π()cos 2cos cos 222cos(2)3f x x x x x x x =-==+.A:函数()f x 的最小正周期为2ππ2T ==,故A 正确;B:πππ()2cos(2)2cos π2333f =⨯+==-,为()f x 的最小值,故B 正确;C:由2ππ36x -≤≤-,得ππ203x -≤+≤,所以函数()f x 在2ππ[,]36--上单调递增,故C 错误;D:将函数()f x 图象向左平移5π12个单位长度,得5ππ7π2π2cos[2()]2cos(2)2sin(2)12363y x x x =++=+=-+图象,与函数2sin 2y x =的图象不重合,故D 错误;故选:AB10.已知圆22:1O x y +=,圆22:()(1)4,R C x a y a -+-=∈,则()A.两圆的圆心距OC 的最小值为1B.若圆O 与圆C相切,则a =±C.若圆O 与圆Ca -<<D.若圆O 与圆C 2【答案】AD【分析】根据两点的距离公式,算出两圆的圆心距1d ≥,从而判断出A 项的正误;根据两圆相切、相交的性质,列式算出a 的取值范围,判断出B,C 两项的正误;当圆O 的圆心在两圆的公共弦上时,公共弦长有最大值,从而判断出D 项的正误.【详解】根据题意,可得圆22:1O x y +=的圆心为(0,0)O ,半径1r =,圆22:()(1)4C x a y -+-=的圆心为(,1)C a ,半径2R =.对于A,因为两圆的圆心距1d OC ==,所以A 项正确;对于B,两圆内切时,圆心距||1d OC R r ==-=1,解得0a =.两圆外切时,圆心距||3d OC R r ==+=3=,解得a =±综上所述,若两圆相切,则0a =或a =±B 项不正确;对于C,若圆O 与圆C ||(,)d OC R rR r =∈-+,(1,3),可得13<<,解得a -<<0a ≠,故C 项不正确;对于D,若圆O 与圆C 相交,则当圆22:1O x y +=的圆心O 在公共弦上时,公共弦长等于22r =,达到最大值,因此,两圆相交时,公共弦长的最大值为2,故D 项正确.故选:AD.11.大衍数列来源《乾坤诺》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项都代表太极衍生过程.已知大衍数列{}n a 满足10a =,11,,n n na n n a a n n +++⎧=⎨+⎩为奇数为偶数,则()A.46a =B.()221n n a a n +=++C.221,2,2n n n a n n ⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数D.1234567820a a a a a a a a -+-+-+-=-【答案】BCD【分析】当2n k =时,2122k k a a k +=+,当21n k =-时,2212k k a a k -=+,联立可得21214k k a a k +--=,利用累加法可得22122k a k k +=+,从而可求得n a 的通项公式,在逐项判断即可.【详解】因为10a =,11,,n n na n n a a n n +++⎧=⎨+⎩为奇数为偶数,令k *∈N 且1k ≥,当2n k =时,2122k k a a k +=+①;当21n k =-时,221212112k k k a a k a k --=+-+=+②,由①②联立得21214k k a a k +--=.所以315321214,8,,4k k a a a a a a k +--=-=-= ,累加可得()22112114844222k k k k a a a k kk +++-==+++=⨯=+ .令21k n +=(3n ≥且为奇数),得212n n a -=,当1n =时10a =满足上式,所以当n 为奇数时,212n n a -=.当n 为奇数时,()221111122n n n n a a n n ++-=++=++=,所以22n na =,其中n 为偶数.所以221,2,2n n n a n n ⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数,故C 正确.所以24482a ==,故A 错误.当n 为偶数时,()22222222n nn n a a n ++-=-=+,即()221n n a a n +=++,当n 为奇数时,()2222112222n n n n a a n ++---==+,即()221n n a a n +=++,综上可得()221n n a a n +=++,故B 正确.因为12345678a a a a a a a a -+-+-+-02481218243220=-+-+-+-=-,故D 正确.故选:BCD.第Ⅱ卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.若,a b 均为不等于1的正数,且满足2182nma b a b ⎛⎫=== ⎪⎝⎭,且,则122n m +=.【答案】3【分析】将已知条件中的指数式化为对数式求得,m n ,代入122nm +,根据对数运算,结合8a b =,即可求得结果.【详解】因malog m =212nb ⎛⎫= ⎪⎝⎭,所以22122log log n b b ==-,所以122nm +=222222log 2log 1log log log 2log 22a b b a a b b -=-=-=,因为8a b =,所以22log log 83ab==.故答案为:3.13.已知椭圆1C :221103x y +=与双曲线2C 有相同的左,右顶点A ,B ,过点A 的直线l 交1C 于点P ,交2C 于点Q .若PBQ 为等边三角形,则双曲线2C 的虚轴长为.【答案】【分析】设出,P Q 坐标,结合椭圆和双曲线的性质表示出310PA PB k k ⋅=-和210QA QB b k k ⋅=,再由图形关系得到2π3tan tan 310θθ⎛⎫⋅+=- ⎪⎝⎭,用正切展开式整理出关于tan θ的一元二次方程,解出tan θ再验证即可.【详解】由题意,得()A,)B.设双曲线2C 的方程为()2221010x y b b -=>,()()1122,,,P x y Q x y ,则22111103x y +=,所以212131010PA PB y k k x ×===--.同理,得210QA QBb k k ⋅=.如图,设PAB θ∠=,则tan PA QA k k θ==,2πtan 3PB k θ⎛⎫=+ ⎪⎝⎭,πtan 3QB k θ⎛⎫=+ ⎪⎝⎭.由310PA PB k k ⋅=-,得2π3tan tan 310θθ⎛⎫⋅+=- ⎪⎝⎭.整理,得210tan 30θθ-+=,解得tan 2θ=或tan5θ=.2πtan tan 310QA QB b k k θθ⎛⎫⋅=⋅+= ⎪⎝⎭.当tan 2θ=0<(舍去);当tan 5θ=时,29255351015b +==-,所以b =2b =.故答案为:【点睛】关键点点睛:本题关键是能够利用图形关系和斜率关系得到2π3tan tan 310θθ⎛⎫⋅+=- ⎪⎝⎭.14.已知首项为12的正项数列满足{}n a 满足11n n n n a a ++=,若存在*N n ∈,使得不等式()()3(1)(1)0nnnn m a m a +--+-<成立,则m 的取值范围为.【答案】11,24⎛⎫- ⎪⎝⎭【分析】先将已知等式两边取对数后由累乘法得到通项12nn a ⎛⎫= ⎪⎝⎭,再分n 为奇数和偶数时化简不等式后结合数列的单调性解一元二次不等式即可求出.【详解】因为()110n nn n n a a a ++=>,所以()11ln 11ln ln ln n n n n a n n a n a a n++++=⇒=,当2n ≥时,12121ln ln ln 12ln ln ln 121n n n n a a a n n a a a n n ----⋅⋅=⋅-- ,所以()1ln 2ln n a n n a =≥,又112a =,所以()12,12nn a n n ⎛⎫=≥= ⎪⎝⎭时也成立,所以12nn a ⎛⎫= ⎪⎝⎭,因为()()3(1)(1)0n n n n m a m a +--+-<,当n 为奇数时,上式变为()()30n n m a m a ++-<,所以3n n m a a +<<-,因为{}n a 为递减数列,所以解得11216m -<<;当n 为偶数时,上式变为()()30n n m a m a +-+<,所以3n n a m a +<<-,解得11324m -<<;综上,m 的取值范围为11,24⎛⎫- ⎪⎝⎭,故答案为:11,24⎛⎫- ⎪⎝⎭.【点睛】关键点点睛:本题关键在于对已知不等式的变形,通过观察分析取对数化简后再累乘是关键.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyw821()ii x x =-∑821()ii w w =-∑81()()iii x x y y =--∑81()()iii w w yy =--∑46.6563 6.8289.8 1.61469108.8表中i iw x =ˆw=1881i i w =∑(Ⅰ)根据散点图判断,y=a+bx 与x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利润z 与x、y 的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:【答案】(Ⅰ)y c x =+;(Ⅱ)ˆ100.6y x =+66.32;(ⅱ)46.24【详解】(Ⅰ)由散点图可以判断,y c d x =+适合作为年销售y 关于年宣传费用x 的回归方程类型.............3分(Ⅱ)令w x =y 关于w 的线性回归方程,由于81821()()()ˆi ii ii w w yy d w w ==--=-∑∑=108.8=681.6,∴ˆˆc y dw=-=563-68×6.8=100.6.∴y 关于w 的线性回归方程为ˆ100.668yw =+,∴y 关于x 的回归方程为ˆ100.6y x =+分(Ⅲ)(ⅰ)由(Ⅱ)知,当x =49时,年销售量y 的预报值100.89ˆ664y=+年利润的预报值ˆ576.60.24966.32z =⨯-=.(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值ˆ0.2(100.6)13.620.12zx x x x =+-=-++,x 13.6=6.82,即46.24x =时,ˆz 取得最大值.故宣传费用为46.24千元时,年利润的预报值最大..............13分16.(15分)已知函数()()22ln f x x a x a x =+--.(1)当1a =时,求函数()f x 的图象在点()()1,1f 处的切线方程;(2)当0a >时,若函数()()()2h x f x a x =+-在[]1,e 上的最小值为0,求实数a 的值.【答案】(1)2y x =;(2)2e a =.【分析】(1)根据()f x ,求得()f x ',再利用导数的几何意义,即可求得结果;(2)令()0h x '=,求得x =数的单调性和最小值,结合题意,求解即可.【详解】(1)当1a =时,()2ln f x x x x =+-,定义域为()0,∞+,()()121,12f x x f x=+-''= ,又()12f =,所以切线方程为()2212y x y x -=-⇒=(或写成20)x y -=..............5分(2)()()()22ln h x f x a x x a x =+-=-,定义域为()0,+∞,()222a x a h x x x x -=-=',令()0h x '=得2x =;①当12≤,即02a <≤时,()()0,h x h x ∴'≥在[]1,e 上单调递增,这时()min ()11h x h ==,不合题意,舍去;.............8分②当1e <<,即222e a <<时,当()(),0,x h x h x ⎛∈< ⎝'⎭单调递减()();,0,x h x h x ⎫∈>'⎪⎪⎝⎭单调递增,这时min ()ln ln 0222222a a a ah x h a ⎛==-=-= ⎝⎭,解得2e a =;.............11分e ≥,即22e a ≥时,()()0,h x h x ∴'≤在[]1,e 上单调递减,这时()2min ()e e 0h x h a ==-=,解得2e a =(舍去),.............14分综上:2e a =..............15分17.(15分)如图所示,在多面体ABCDEF 中,底面ABCD 为直角梯形,AD BC ∥,AB BC ⊥,侧面ABEF 为菱形,平面ABEF ⊥平面ABCD ,M 为棱BE 的中点.(1)若点N 为DE 的中点,求证:MN 平面ABCD ;(2)若12AB BC AD ==,60EBA ∠=︒,求平面MAD 与平面EFD 夹角的余弦值.【答案】(1)证明见解析(2)19.【分析】(1)连接BD ,MN ,证得//MN BD ,利用线面平行的判定定理,即可证得//MN 平面ABCD .(2)根据题意,证得OE ⊥平面ABCD ,以O 为原点,建立空间直角坐标系,分别求得平面MAD 和平面EFD的一个法向量(m =和(n =,结合向量的夹角公式,即可求解.【详解】(1)证明:连接BD ,MN ,因为M ,N 分别为BE ,DE 的中点,所以MN 为EBD △的中位线,所以//MN BD ,又MN ⊄平面ABCD ,BD ⊂平面ABCD ,所以//MN 平面ABCD ...............6分(2)解:取AB 的中点O ,连接OE ,因为侧面ABEF 为菱形,且60EBA ∠=︒,所以在EBO 中,2222cos 60EO BO EB BO EB =+-⋅︒,解得EO =,所以222EO OB EB +=',即OE AB ⊥,又因为平面ABEF ⊥平面ABCD ,平面ABEF ⋂平面ABCD AB =,OE ⊂平面ABEF ,所以OE ⊥平面ABCD ,过O 作AB 的垂线,交BD 于H 并延长,分别以OH ,OA ,OE 所在直线为x ,y ,z 轴建立空间直角坐标系O xyz -,如图所示,设4=AD ,则122AB BC AD ===,故(E ,()4,1,0D ,()0,1,0A,(F ,()0,1,0B -,则10,22M ⎛⎫- ⎪ ⎪⎝⎭,30,,2MA ⎛=⎝⎭,34,,2MD ⎛= ⎝⎭,()0,2,0= EF,(4,1,ED = ,设平面MAD 的法向量为()111,,m x y z =r,则1111130234022m MA y m MD x y ⎧⋅=-=⎪⎪⎨⎪⋅=+-=⎪⎩,即1110x z =⎧⎪⎨=⎪⎩,取11y =,可得(m =,设平面EFD 的法向量为()222,,n x y z =r,21212040n EF y m ED x y ⎧⋅==⎪⎨⋅=+-=⎪⎩,即22204y x =⎧⎪⎨=⎪⎩,令2z =,则23x =,所以(n =,则cos m n m n m n⋅⋅==MAD 与平面EFD夹角的余弦值为...............15分18.(17分)已知抛物线2:2(0)C x py p =>上任意一点R 满足RF 的最小值为1(F 为焦点).(1)求C 的方程;(2)过点(),1P t -的直线经过F 点且与物线交于M N 、两点,求证:211PF PM PN=+;(3)过F 作一条倾斜角为60 的直线交抛物线于A B 、两点,过A B 、分别作抛物线的切线.两条切线交于Q 点,过Q 任意作一条直线交抛物线于E H 、,交直线AB 于点G ,则QG QE QH 、、满足什么关系?并证明.【答案】(1)24x y=(2)证明见解析;(3)211QG QE QH=+,证明见解析.【分析】(1)设(),R x y ,由两点间距离公式求得RF ,结合0y ≥,得出RF 的最小值为2p,得解;(2)设()()1122,,,M x y N x y ,:1PF l y kx =+,将要证211PF PM PN=+,转化为121y y =,联立直线PF 与抛物线方程,由韦达定理可得证;(3)猜想满足211QG QE QH=+,根据题意求出点,,A B Q 坐标,设()()()(334400,,,,,,:12QG E x y H x y G x y l y k x +=-,将要证关系式等价转化为034211111y y y =++++,联立直线QG 和直线AB的方程求出0y =,得021y +,联立直线QG 和抛物线方程,由韦达定理求得341111y y +=++,得解.【详解】(1)设(),R x y,则2p RF y ===+,因为0y ≥,所以,22p py RF +≥的最小值为2,即12p =,得2p =,所以抛物线的方程为24x y =...............4分(2)由(1)得()0,1F ,设()()1122,,,M x y N x y ,:1PF l y kx =+,0k ≠,则()211PF ⎡⎤=--⎣⎦,同理())11PM y =--,())21PN y =--,所以1PF PM PN=+2⇔()()()()()()121111y y ⇔=+------()()12121221111111y y y y y y ++⇔=+=++++()()1212211y y y y ⇔++=++121y y ⇔=,又()()11:10PF l y x t t--+=--,即()21y x t t +=--,联立()2214y x t tx y⎧+=-⎪-⎨⎪=⎩,得2216210y y t ⎛⎫-++= ⎪⎝⎭,由韦达定理得121y y =,综上所述:211PF PM PN=+...............10分(3)满足的关系为:211QG QE QH=+.由题意,直线:31AB y =+,联立23+14y x x y ⎧=⎪⎨=⎪⎩,得((234,73,34,743A B +-,由214y x =,得12y x '=,所以抛物线C 在A 处的切线斜率为32k =,所以抛物线C 在A 处的切线为()()()1:74332234l y x -+=-,同理,在B 处的切线为()()()2:74332234l y x --=-,联立12l l 、可得()23,1Q -,设()()()(334400,,,,,,:123QG E x y H x y G x y l y k x +=-,则211||||||QG QE QH =+()()()0342221111(1)1(1)1(1)y y y k k k ⇔=+--+--+--()()()034211111y y y ⇔=+------034211111y y y ⇔=++++(*),联立(:123:13QG AB l y k x l y ⎧+=-⎪⎨⎪-=⎩,得0733k y k +=-,则02314k y k =+,联立(2:1234QG l y k x x y⎧+=-⎪⎨=⎪⎩,得()2222434(123)0y k y k ++-++=,所以()()(3434234343434432211311111164k k y y y y k y y y y y y y y k ++++-+====+++++++所以340112111y y y +=+++,即211QG QE QH =+...............17分【点睛】关键点睛:本题第二问关键是将要证的关系式211PF PM PN=+,等价转化为121y y =,结合韦达定理证明.第三问,同理转化证明.19.(17分)给定正整数2n ≥,任意的有序数组()12,,,n x x x α=⋅⋅⋅,()12,,,n y y y β=⋅⋅⋅,定义:1122n n x y x y x y αβ⋅=++⋅⋅⋅+,ααα=⋅(1)已知有序数组()2,1,0,1α=-,()1,0,1,0β=-,求α及αβ⋅;(2)定义:n 行n 列的数表A ,共计2n 个位置,每个位置的数字都是0或1;任意两行都至少有一个同列的数字不同,并且有只有一个同列的数字都是1;每一行的1的个数都是a ;称这样的数表A 为‘n a -表’.①求证:当4n =时,不存在‘n a -表’;②求证:所有的‘n a -表’的任意一列有且只有a 个1.【答案】(1)6α=、2αβ⋅=;(2)①证明见解析;②证明见解析【分析】(1)根据新定义,代入数值计算即可.(2)①根据题中‘n a -表’的定义,由0a =,1,2,3,4逐个判断推出矛盾,即可证明当4n =时,不存在‘n a -表’;②根据‘n a -表’的定义,由当0a =或1时,当2a ≥时推出矛盾证明即可.【详解】(1)由题意可得,221100(1)(1)6ααα=⋅=⨯+⨯+⨯+-⨯-=20002αβ⋅=+++=,所以2αβ⋅=...............4分(2)数表A 的第i 行构成一个有序数组记为i r ,则i r a =,()1i j r r i j ⋅=≠;①当4n =时,0a =,1,2,3,40a =,{|1,2,3,4}{0000}i M r i ==⊆,这与M 有4个元素矛盾;同理4a =,{}1111M ⊆,矛盾;1a =,{}0001,0010,0100,1000M ⊆,()01i j r r i j =⋅=≠矛盾;同理3a =,{}0111,1011,1101,1110M ⊆,()21i j r r i j =⋅=≠,矛盾;2a =,{}0011,0101,0110,1001,1010,1100M ⊆,M 也不能满足()1i j r r i j ⋅=≠.故知,4n =时,不存在n a -表...............10分②数表A 中只有0或1,每一行的1的个数都是a ,故数表中的1的总数是na .第i 行组成有序数组记为i r ,第j 列构成有序数组记为j c .i r a =,1ni i r na ==∑,下证j c a =,首先,0a =或1时,有i j ≠时01i j r r ⋅=≠,不合题意.其次,2a ≥时,若存在1j c a ≥+.不妨记为11c a ≥+,则第一列至少有1a +个1,不妨记为前1a +行的第一列都是1;这1a +行的每一行都另有1a -个1,并且这()()2111a a a +-=-个1都在不同列中.于是数表至少有2211a a -+=列,即2n a ≥,故第一列不是1的行至少有21a a --行;取第一列不是1的某行(不妨记为第i 行),则它与前1a +行中的每一行都有且只有1个同列的1;又前1a +行的第一列之外的所有1(共21a -个)都在不同列中,故第i 行就出现了1a +个1,与i r a =矛盾.故存在1j c a ≥+不成立,即{}1,2,3,,j n ∀∈⋅⋅⋅,j c a ≤成立,由11nnj i j i c r na ====∑∑,故j c a =,需证成立...............17分【点睛】关键点点睛:本题考查新定义问题.本题的关键点是根据题中所给的运算公式和‘n a -表’等定义,分析a 在不同取值时,均不符合题意,推出矛盾,进而证明结论即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
∵复数 满足 ,∴ ,
∴复数 的共轭复数等于 ,故选B.
【点睛】
本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.
6.C
解析:C
【解析】
【分析】
求得函数的导数 ,根据函数 在 上有两个极值点,转化为 在 上有不等于 的解,令 ,利用奥数求得函数的单调性,得到 且 ,又由 在 上单调递增,得到 在 上恒成立,进而得到 在 上恒成立,借助函数 在 为单调递增函数,求得 ,即可得到答案.
A. B. C. D.
5.设i为虚数单位,复数z满足 ,则复数z的共轭复数等于()
A.1-iB.-1-iC.1+ NhomakorabeaD.-1+i
6.已知函数 在 上有两个极值点,且 在 上单调递增,则实数 的取值范围是( )
A. B.
C. D.
7.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。老师说:你们四人中有两位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )
∴P= .
故选D
2.C
解析:C
【解析】
【分析】
分别作出角 的正弦线、余弦线和正切线,结合图象,即可求解.
【详解】
如图所示,在单位圆中分别作出 的正弦线 、余弦线 、正切线 ,
很容易地观察出 ,即 .
故选C.
【点睛】
本题主要考查了三角函数线的应用,其中解答中熟记三角函数的正弦线、余弦线和正切线,合理作出图象是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.
(2)记 为数列 的前 项和,是否存在正整数 ,使得 ?若存在,求 的最小值;若不存在,说明理由.
23.已知 为圆 上一点,过点 作 轴的垂线交 轴于点 ,点 满足
(1)求动点 的轨迹方程;
(2)设 为直线 上一点, 为坐标原点,且 ,求 面积的最小值.
24.(辽宁省葫芦岛市2018年二模)直角坐标系 中,直线 的参数方程为 ( 为参数),在极坐标系(与直角坐标系 取相同的长度单位,且以原点为极点,以 轴正半轴为极轴)中,圆 的方程为 .
二、填空题
13.函数 的零点个数是________.
14.已知圆台的上、下底面都是球 的截面,若圆台的高为 ,上、下底面的半径分别为 , ,则球 的表面积为__________.
15.在平行四边形ABCD中, ,边AB,AD的长分别为2和1,若M,N分别是边BC,CD上的点,且满足 ,则 的取值范围是_________.
(1)求圆 的直角坐标方程;
(2)设圆 与直线 交于点 ,若点 的坐标为 ,求 的最小值.
25.已知数列{ }的前n项和Sn=n2-5n (n∈N+).
(1)求数列{ }的通项公式;
(2)求数列{ }的前n项和Tn .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
掷骰子共有36个结果,而落在圆x2+y2=9内的情况有(1,1),(1,2),(2,1),(2,2)这4种,
16.函数 的定义域是________.
17.设复数 虚数单位), 的共轭复数为 ,则 ________.
18.如图,已知P是半径为2,圆心角为 的一段圆弧AB上一点, ,则 的最小值为_______.
19. ________.
20.三个数成等差数列,其比为3:4:5,又最小数加上1后,三个数成等比数列,那么原三个数是
A.乙、丁可以知道自己的成绩B.乙可以知道四人的成绩
C.乙、丁可以知道对方的成绩D.丁可以知道四人的成绩
8.对于不等式 <n+1(n∈N*),某同学应用数学归纳法的证明过程如下:
(1)当n=1时, <1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即 <k+1.
那么当n=k+1时, =(k+1)+1,
三、解答题
21.已知直线 ( 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线 的极坐标方程为 .
(1)将曲线C的极坐标方程化为直角坐标方程;
(2)设点 的直角坐标为 ,直线 与曲线C的交点为 , ,求 的值.
22.已知等差数列 满足: ,且 , , 成等比数列.
(1)求数列 的通项公式;
A. B. C. D.
11.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()
A.108cm3B.100cm3C.92cm3D.84cm3
12.已知抛物线 交双曲线 的渐近线于 , 两点(异于坐标原点 ),若双曲线的离心率为 , 的面积为32,则抛物线的焦点为( )
A. B. C. D.
3.B
解析:B
【解析】
【分析】
本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由 得出向量 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.
【详解】
因为 ,所以 =0,所以 ,所以 = ,所以 与 的夹角为 ,故选B.
【点睛】
对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为 .
4.D
解析:D
【解析】
【分析】
对函数求导,让函数的导函数小于零,解不等式,即可得到原函数的单调减区间.
【详解】
,所以函数的单调减区间为 ,故本题选D.
【点睛】
本题考查了利用导数求函数的单调减区间问题,正确求出导函数是解题的关键.
5.B
解析:B
【解析】
【分析】
利用复数的运算法则解得 ,结合共轭复数的概念即可得结果.
所以当n=k+1时,不等式也成立.
根据(1)和(2),可知对于任何n∈N*,不等式均成立.
则上述证法( )
A.过程全部正确B.n=1验得不正确
C.归纳假设不正确D.从n=k到n=k+1的证明过程不正确
9. 的展开式中 的系数为
A.10B.20C.40D.80
10.已知 ,则 , 不可能满足的关系是()
【冲刺卷】高考数学试卷(带答案)
一、选择题
1.若以连续掷两颗骰子分别得到的点数m,n作为点P的横、纵坐标,则点P落在圆 内的概率为()
A. B. C. D.
2.如果 ,那么下列不等式成立的是( )
A. B.
C. D.
3.已知非零向量 满足 ,且 ,则 与 的夹角为
A. B. C. D.
4.函数 的单调减区间为