苏科版八年级数学下册第9章 中心对称图形—平行四边形 综合测试卷(B)附答案

合集下载

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A. B.2 C. D.2、如图所示,正方形中,E为边上一点,连接,作的垂直平分线交于G,交于F,若,,则的长为( )A. B. C.10 D.123、▱ABCD中,∠A:∠B:∠C:∠D的值可以等于()A.1:2:3:4B.3:4:4:3C.3:3:4:4D.3:4:3:44、下列命题中,正确命题的序号是()①一组对边平行且相等的四边形是平行四边形②一组邻边相等的平行四边形是正方形③对角线互相垂直且相等的四边形是菱形④任何三角形都有外接圆,但不是所有的四边形都有外接圆A.①②B.②③C.③④D.①④5、如图所示,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心是( )A.点AB.点BC.点CD.点D6、如图1所示的四张牌,若将其中一张牌旋转180后得到图2,则旋转的牌是()A.第一张B.第二张C.第三张D.第四张7、如图,过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD 边于点F,分别连接AE、CF,若AB=2 ,∠DCF=30°,则EF的长为()A.4B.6C.D.28、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9、如图,AC,BD是平行四边形ABCD的对角线,AC与BD交于点O,若AC=4,BD=5,BC=3,则△BOC的周长是()A.7.5B.6C.12D.1010、已知平行四边形ABCD的周长为32cm,△ABC的周长为20cm,则AC=()A.8cmB.4cmC.3cmD.2cm11、如图,正方形 ABCD 的边长为 5,点 M 是边 BC 上的点,DE⊥AM 于点E,BF∥DE,交 AM 于点 F.若E 是 AF 的中点,则 DE 的长为()A. B.2 C.4 D.12、下列图形中既是中心对称又是轴对称的是()A.可回收垃圾B.其他垃圾C.有害垃圾D.厨余垃圾13、如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°14、如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是()A.40°B.50°C.60°D.70°15、下面的图形中,是中心对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、在中,,,连接,若,则线段的长为________.17、证明命题“直角三角形中的两个锐角中至少有一个角不小于45°”时,如果用反证法证明,应先假设________.18、如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D=70°,则∠ECF的度数是________.19、如图,点E在正方形ABCD的边CD上,若△ABE的面积为32,CE=6,则线段BE的长为________.20、“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”,图①是由边长的正方形薄板分成7块制作成的“七巧板”图②是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为________ (结果保留根号).21、如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=125°,则∠BCE=________度.22、如图,折线中,,,将折线绕点A按逆时针方向旋转,得到折线,点B的对应点落在线段上的点D处,点C的对应点落在点E处,连接,若,则________°.23、请写出一个不是轴对称图形但是是中心对称图形的几何图形名称:________.24、如图,在矩形ABCD中,E为AB的中点,P为BC边上的任意一点,把沿PE折叠,得到,连接CF.若AB=10,BC=12,则CF的最小值为________.25、如图,在Rt△ABC中,ABC=90°,AB=2,BC=4,点P在边BC上,联结AP,将△ABP绕着点A旋转,使得点P与边AC的中点M重合,点B的对应点是点B',延长AB'交BC于E,则EP的长等于________。

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°2、如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.BD⊥ACB.MB=MOC.OM= ACD.∠AMB=∠CND3、如图在Rt△ABC中,∠BAC= ,AD是斜边BC上的高,BE为∠ABC的角平分线交AC于E,交AD于F,FG∥BD,交AC于G,过E作EH⊥CD于H,连接FH,下列结论:①四边形CHFG是平行四边形,②AE=CG,③FE=FD,④四边形AFHE是菱形,其中正确的是( )A.①②③④B.②③④C.①③④D.①②④4、如图,在平面直角坐标系中,矩形OABC的对角线OB、AC相交于点D,BE∥AC,AE∥OB.函数(k>0,x>0)的图象经过点E.若点A、C的坐标分别为(3,0)、(0,2),则k的值为()A.3B.4C.4.5D.65、下列图形中,是中心对称图形的是()A. B. C. D.6、下列图形中,既是中心对称图形又是轴对称图形的是()A.等腰三角形B.平行四边形C.矩形D.正五边形7、如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y= (k≠0)中k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大8、如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A. B. C.2 D.9、下列图形中,中心对称图形的个数是()A.1个B.2个C.3个D.4个10、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.11、如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图像经过点A,与BC交于点F,则△AOF的面积等于()A.60B.80C.30D.4012、如图,平行四边形ABCD的顶点A(﹣2,3),B(﹣3,1),C(0,1),规定“平行四边形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,则连续经过2017次变换后,平行四边形ABCD的对角线的交点M的坐标为()A.(﹣2017,2)B.(﹣2017,﹣2)C.(﹣2018,﹣2)D.(﹣2018,2)13、四边形ABCD的对角线相交于点O,能判定它是正方形的条件是()A.AB=BC=CD=DAB.AO=CO,BO=DO,AC⊥BDC.AC=BD,AC⊥BD且AC、BD互相平分D.AB=BC,CD=DA14、如图,在正方形中,为对角线,点E在边上,于点F,连接的周长为12,则EB的长为()A. B. C. D.515、下列命题是真命题的是()A.对角线互相垂直且相等的四边形是正方形B.对角线相互平分的四边形是菱形C.对角线相互垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形二、填空题(共10题,共计30分)16、如图,△ABC中,∠B=90°,AB=4, BC=3,点D是AC上的任意一点,过点D作DE⊥AB于点E,DF⊥BC于点F,连接EF,则EF的最小值是________。

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、下列图形中,是中心对称图形的是()A. B. C. D.2、如图,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件,下列错误的是()A.AB=DCB.AD//BCC.∠A+∠B=180°D.∠A+∠D=180°3、下列图形中是中心对称图形的是()A. B. C. D.4、下列说法中,错误的是().A.一组对边平行且相等的四边形是平行四边形B.两条对角线互相垂直且平分的四边形是菱形C.四个角都相等的四边形是矩形D.四条边相等的四边形是正方形5、下列关于矩形的说法中正确的是( )A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线互相垂直且平分D.矩形的对角线相等且互相平分6、3张扑g牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,则她所旋转的牌从左数起是()A.第一张B.第二张C.第三张D.第四张7、如图,在中,是边的中点,交对角线于点,若,则等于()A. B. C. D..8、如图,点E,F 是▱ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AEB=∠CFD 中,添加一个条件,使四边形DEBF 是平行四边形,可添加的条件是( )A.①②③B.①②④C.①③④D.②③④9、如图汽车标志中不是中心对称图形的是()A. B. C. D.10、如图,矩形ABCD的对角线AC=8 cm,∠AOD=120°,则AB的长为( )A. cmB.4 cmC. cmD.2cm11、如图,矩形的顶点,,分别落在的边,上,若,要求只用无刻度的直尺作的平分线.小明的作法如下:连接,交于点,作射线,则射线平分.有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是()A.①②B.①③C.②③D.①②③12、如图,在中,,将绕点逆时针旋转得到,其中点与点是对应点,且点在同一条直线上;则的长为( )A. B. C. D.13、下列图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.14、平面直角坐标系中一个平行四边形的三个顶点的坐标分别(0,0),(3,0),(1,3),则第四个顶点的坐标可能是下列坐标:①(4,3)②(﹣2,3)③(﹣1,﹣3)④(2,﹣3)中的哪几个()A.①②③B.②③④C.①②④D.①③④15、如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()A.圆形铁片的半径是4cmB.四边形AOBC为正方形 C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm 2二、填空题(共10题,共计30分)16、一个长方形的面积为a2﹣4b2,若一边长为2a+4b,则周长为________.17、如图,点A、A′关于点O对称,点B、B′关于O点对称,那么线段AB与A′B′的关系是________,四边形ABA′B′是 ________形.18、矩形的一个角的平分线分一边为2和4两部分,则这个矩形的对角线的长________.19、在边长为的正方形中,放入两张边长为的正方形纸片( ),如图①所示,阴影部分面积记为;若放入三张边长为的正方形纸片,如图②所示,阴影部分面积和记为.若,则的数量关系为________.20、已知为⊙O的直径且长为,为⊙O上异于A,B的点,若与过点C的⊙O的切线互相垂直,垂足为D.①若等腰三角形的顶角为120度,则;②若为正三角形,则;③若等腰三角形的对称轴经过点D,则;④无论点C在何处,将沿折叠,点D一定落在直径上,其中正确结论的序号为________.21、如图,四边形为正方形,点分别为的中点,其中,则四边形的面积为________。

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2、如图,四边形ABCD中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A 1、B1、C1、D1,顺次连接得到四边形A1B1C1D1,再取各边中点A2、B2、C2、D 2,顺次连接得到四边形A2B2C2D2,…,依此类推,这样得到四边形A n BnCnDn,则四边形AnBnCnDn的面积为()A. B. C. D.不确定3、如图,正方形ABCD中,分别以A、C为圆心,以正方形的边长2为半径面弧,形成树叶形(阴影部分)图案,则树叶形图案的面积是()A.2π﹣4B.4﹣πC.π+4D.4﹣2π4、如图是两张全等的图案,它们完全重合地叠放在一起,按住下面的图案不动,将上面图案绕点O顺时针旋转,使得两张图案构成的图形是中心对称图形.那么它至少旋转()A.30°B.60°C.120°D.180°5、在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A. B. C.D.6、如图,将绕点逆时针旋转70°到的位置,若,则()A.45°B.40°C.35°D.30°7、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.8、如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于( )A.2B.3C.4D.69、下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个10、用反证法证明“四边形中至少有一个角是钝角或直角”时,第一步应先假设命题不成立,则下列各备选项中,第一步假设正确的是( )A.假设四边形中没有一个角是钝角或直角B.假设四边形中有一个角是钝角或直角C.假设四边形中每一个角均为钝角D.假设四边形中每一个角均为直角11、如图,在平面直角坐标系xOy中,△A'B'C'由△ABC绕点P旋转得到,则点P 的坐标为( )A.(0,1)B.(1,-1)C.(0,-1)D.(1,0)12、下列四个条件中,不能判断四边形是平行四边形的条件是()A.两组对边分别平行B.对角线互相平分C.两组对角分别相等 D.一组对边平行,另一组对边相等13、如图,点E是▱ABCD中边BC延长线上一点,下列结论不一定成立的是()A.AB=CDB.∠ABD+∠ADB=∠DCEC.∠BAD=∠BCDD.∠ABD=∠CBD14、下列图案中,是中心对称图形但不是轴对称图形的是()A. B. C. D.15、如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC 交AB与E,交AC于F,过点O作OD⊥AC于D,下列四个结论:其中正确的结论是()①EF=BE+CF;②∠BOC=90°+∠A;=mn.③设OD=m,AE+AF=n,则S△AEF④EF不能成为△ABC的中位线.A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,在平行四边形ABCD中,按以下步骤作图:①以点A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以点M,N为圆心,以大于MN 的长为半径作弧,两弧相交于点P;③作射线AP交CD于点Q.若DQ=2QC,BC =3,则平行四边形ABCD的周长为________.17、顺次连接对角线互相垂直且相等的四边形中点所得到的四边形是________.18、如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合.若AB=4,则菱形ABCD的面积为________.19、矩形ABCD的对角线相交于O , AC=2AB ,则△COD为________三角形.20、如图,将△ABC绕点A顺时针旋转40°得到△ADE,AE与BC交于点F,若∠C=20°,则∠CFE的大小是________.21、若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是________㎝2.22、在△ABC中,∠C=90°,AC=4,BC=3,如图1,四边形DEFG为△ABC的内接正方形,则正方形DEFG的边长为________.如图2,若三角形ABC内有并排的n个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为________.23、如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA 的中点,则EG2+FH2=________.24、如图,把菱形ABCD沿折痕AH翻折,使B点落在BC延长线上的点E处,连结DE,若∠B=30°,则∠CDE=________°.25、在锐角三角形ABC中,AH是边BC的高,分别以AB,AC为边向外作正方形ABDE和正方形ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC.其中正确的是________.三、解答题(共5题,共计25分)26、如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.27、已知,如图,点D是△ABC的边AB的中点,四边形BCED是平行四边形,(1)求证:四边形ADCE是平行四边形;(2)当△ABC满足什么条件时,平行四边形ADCE是矩形?28、已知:如图,矩形ABCD中,DE交BC于E,且DE=AD,AF⊥DE于F.求证:AB=AF.29、如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC的边BC=15,高AH=10,求正方形DEFG的边长和面积.30、如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、B5、D6、D7、D8、C9、B10、A11、B12、D13、D14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。

苏科版数学八年级下册第9章 中心对称图形——平行四边形综合素质评价(含答案)

苏科版数学八年级下册第9章 中心对称图形——平行四边形综合素质评价(含答案)

第9章中心对称图形——平行四边形综合素质评价一、选择题(每题2分,共16分)1.下列图形中,中心对称图形是()2.在▱ABCD中,添加以下哪个条件能判断其为菱形()A.AB⊥BC B.BC⊥CD C.CD⊥AC D.AC⊥BD 3.用两张边长为a的等边三角形纸片拼成的四边形是()A.等腰梯形B.菱形C.矩形D.正方形4.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下哪个条件仍不能判定△ABE≌△ADF?()A.BE=DFB.∠BAE=∠DAFC.AE=AFD.∠AEB=∠AFD5.如图所示,在矩形ABCD中,已知AE⊥BD于E,∠DBC=30°,BE=1 cm,则AE的长为()A.3 cmB.2 cmC.23cmD. 3 cm6.如图,已知在正方形ABCD中,对角线AC与BD相交于点O,AE,DF分别是∠OAD与∠ODC的平分线,AE的延长线与DF相交于点G,则下列结论:①AG⊥DF;②EF∥AB;③AB=AF;④OE∶OB=1∶2,其中正确的有() A.1个B.2个C.3个D.4个7.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC.以DE为边作正方形DEFG,点G在边CD上,则DG的长为() A.3-1B.3- 5C.5+1D.5-18.如图,矩形ABCD的面积为20 cm2,对角线交于点O;以AB,AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB,AO1为邻边作平行四边形AO1C2B,对角线交于点O2……依此类推,则平行四边形AO4C5B的面积为()A.54cm2B.58cm2C.516cm2D.532cm2二、填空题(每题2分,共20分)9.如图,在▱ABCD中,BD是对角线,E,F是对角线上的两点,要使四边形AFCE 是平行四边形,还需添加一个条件是________.10.如图,矩形ABCD中,AC的垂直平分线MN与AB交于点E,连接CE.若∠CAD=70°,则∠DCE=________°.11.如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD于点F,连接AE,若EF=3,AE=5,则AD=________.12.如图,在菱形ABCD中,∠ABC=80°,E是线段BD上一动点(点E不与点B,D重合),当△ABE是等腰三角形时,∠DAE=________.13.如图,在菱形ABCD中,E是BC的中点,AE⊥BC,则∠AFD等于________.14.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是_____________.15.如图,四边形ABCD中,∠A=90°,AB=33,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN 的中点,则EF长度的最大值为________.16.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF 的周长为________.17.如图,在矩形ABCD中,E,F分别为BC,DA的中点,以CD为斜边作Rt△GCD,GD=GC,连接GE,GF.若BC=2GC,则∠EGF=________.18.如图,E是正方形ABCD内一点,连接AE,BE,CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=________.三、解答题(19~21题每题6分,22~24题每题8分,25题10分,26题12分,共64分)19.如图,在▱ABCD中,延长AD到点E,延长CB到点F,使得DE=BF,连接EF,分别交CD,AB于点G,H,连接AG,CH.求证:四边形AGCH是平行四边形.20.如图,在平行四边形ABCD中,AE⊥BC于点E,延长BC至点F,使CF=BE,连接AF,DE,DF.(1)求证:四边形AEFD为矩形;(2)若AB=3,DE=4,BF=5,求DF的长.21.如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD =90°,E为AD的中点,连接BE.(1)求证:四边形BCDE是菱形;(2)连接AC,若AC平分∠BAD,BC=4,求AC的长.22.如图,已知在菱形ABCD中,∠B=72°,请设计三种不同的方法,将菱形ABCD 分割成四个三角形,使每个三角形都是等腰三角形.(要求画出分割线段,标出所得的三角形内角的度数.注:只要有一条分割线段位置不同,就认为是两种不同的方法)23.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O的直线EF与BA,DC的延长线分别交于点E,F.(1)求证:AE=CF;(2)如果EF⊥BD,求证:四边形BFDE是菱形.24.已知:如图,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD.25.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG,H为FG的中点,连接DH.(1)求证:四边形AFHD是平行四边形;(2)若CB=CE,∠EBC=75°,∠DCE=10°,求∠DAB的度数.26.已知,矩形ABCD中,AB=4 cm,BC=8 cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为O.(1)如图1,连接AF,CE.①求证:四边形AFCE为菱形;②求AF的长.(2)如图2,动点P,Q分别从A,C两点同时出发,沿△AFB和△CDE各边匀速运动一周后停止.即点P沿A→F→B→A运动,点Q沿C→D→E→C运动.在运动过程中,①已知点P的速度为每秒5 cm,点Q的速度为每秒4 cm,运动时间为t s,当以A,C,P,Q四点为顶点的四边形是平行四边形时,求t的值.②若点P,Q的运动路程分别为a cm, b cm(ab≠0),已知以A,C,P,Q四点为顶点的四边形是平行四边形,直接写出a与b满足的数量关系式.答案一、1.C 2.D 3.B 4.C 5.D 6.C 7.D 8.B 二、9.BF =DE (答案不唯一) 10.40 11.7 12.30°或60° 13.60° 14.对角线互相垂直的四边形 15.3 点拨:连接DN ,DB .∵点E ,F 分别为DM ,MN 的中点,∴EF =12DN ,∴DN 的值最大时,EF 的值最大.易知N 与B 重合时,DN 的值最大, 此时DN =DB =AD 2+AB 2=6, ∴EF 的最大值为3. 16.16 17.45° 18.135°三、19.证明:∵四边形ABCD 是平行四边形,∴∠EAH =∠FCG ,AD ∥BC ,AD =BC , ∴∠E =∠F .∵AD =BC ,DE =BF , ∴AD +DE =BC +BF ,即AE =CF . 在△AEH 与△CFG 中,⎩⎨⎧∠E =∠F ,AE =CF ,∠EAH =∠FCG ,∴△AEH ≌△CFG (ASA), ∴AH =CG .∵AH ∥CG , ∴四边形AGCH 是平行四边形.20.(1)证明:∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC ,∴AD =BC =EF . 又∵AD ∥EF ,∴四边形AEFD 为平行四边形. ∵AE ⊥BC ,∴∠AEF =90°,∴平行四边形AEFD 为矩形. (2)解:由(1)知四边形AEFD 为矩形,∴DF =AE ,AF =DE =4.∵AB =3,AF =4,BF =5,∴AB 2+AF 2=BF 2, ∴△BAF 为直角三角形,∠BAF =90°, ∴S △ABF =12AB ×AF =12BF ×AE ,即3×4=5AE ,∴AE =125,∴DF =AE =125. 21.(1)证明:∵AD =2BC ,E 为AD 的中点,∴DE =BC =AE .∵AD ∥BC , ∴四边形BCDE 是平行四边形. ∵∠ABD =90°,AE =DE ,∴BE =DE ,∴四边形BCDE 是菱形. (2)解:∵AD ∥BC ,AC 平分∠BAD , ∴∠BAC =∠DAC =∠BCA ,∴AB =BC =4. ∵AD =2BC =8,∴∠ADB =30°. ∵∠ABD =90°,AC 平分∠BAD ,∴∠DAC =30°.由(1)知四边形BCDE 是菱形, ∴∠ADC =60°,∴∠ACD =90°.在Rt △ACD 中,∵AD =8,∠DAC =30°, ∴CD =4,∴AC =48. 22.解:如图.(答案不唯一)23.证明:(1)∵四边形ABCD 是平行四边形,∴OA =OC ,BE ∥DF ,∴∠AEO =∠CFO .在△AOE 和△COF 中,⎩⎨⎧∠AEO =∠CFO ,∠AOE =∠COF ,OA =OC ,∴△AOE ≌△COF (AAS),∴AE =CF .(2)∵四边形ABCD 是平行四边形, ∴OB =OD .∵△AOE ≌△COF ,∴OE =OF ,∴四边形BFDE 是平行四边形, ∵EF ⊥BD ,∴四边形BFDE 是菱形. 24.证明:如图,连接MB ,MD .∵∠ABC =∠ADC =90°,M 为AC 的中点, ∴MB =MD =12AC .又∵N 为BD 的中点,∴MN ⊥BD . 25.(1)证明:∵BF =BE ,CG =CE ,∴BC 为△FEG 的中位线, ∴BC ∥FG ,BC =12FG .又∵H 是FG 的中点,∴FH =12FG ,∴BC =FH . 又∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴AD ∥FH ,AD =FH , ∴四边形AFHD 是平行四边形. (2)解:∵四边形ABCD 是平行四边形, ∴∠DAB =∠DCB .∵CE =CB , ∴∠BEC =∠EBC =75°, ∴∠BCE =180°-75°-75°=30°,∴∠DCB =∠DCE +∠BCE =10°+30°=40°, ∴∠DAB =40°.26.(1)①证明:∵在矩形ABCD 中,AD ∥BC ,∴∠EAO =∠FCO .∵EF 垂直平分AC , ∴AO =CO .又∵∠AOE =∠COF , ∴△AOE ≌△COF (ASA),∴AE =CF .又∵AE ∥CF ,∴四边形AFCE 为平行四边形. 又∵EF ⊥AC ,∴平行四边形AFCE 为菱形. ②解:由①知AF =CF .设AF=x cm,则CF=x cm,BF=BC-CF=(8-x)cm,在Rt△ABF中,AB2+BF2=AF2,∴42+(8-x)2=x2,解得x=5.∴AF=5 cm.(2)解:①情况一:当P在AF上,Q在CD上时,四边形APCQ显然不可能为平行四边形.情况二:当P在BF上,Q在ED上时,则当BP=DQ时,四边形APCQ为平行四边形,易得8-5t=4t-4,解得t=4 3.情况三:当P在AB上,Q在ED上时,四边形APCQ显然不可能为平行四边形.情况四:当P在AB上,Q在EC上时,四边形APCQ显然不可能为平行四边形.∴当t=43时,四边形APCQ为平行四边形.②a+b=12(ab≠0).。

苏科版八年级数学下册第9章 中心对称图形-平行四边形 单元测试卷(含答案)

苏科版八年级数学下册第9章  中心对称图形-平行四边形  单元测试卷(含答案)

苏科版八年级数学下册第9章 中心对称图形-平行四边形 单元测试卷一、单选题1.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .2.下列结论中,正确的是( )A .四边相等的四边形是正方形B .对角线相等的菱形是正方形C .正方形两条对角线相等,但不互相垂直平分D .矩形、菱形、正方形都具有“对角线相等”的性质3.如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD BC =,136EPF ∠=︒,则EFP ∠的度数是( )A .68︒B .34︒C .22︒D .44︒4.如图,在矩形ABCD 中,AB =8,AD =6,过点D 作直线m∥AC ,点E 、F 是直线m 上两个动点,在运动过程中EF∥AC 且EF =AC ,四边形ACFE 的面积是( )A .48B .40C .24D .305.如图,四边形ABCD 中,90DAB CBA ∠=∠=︒,将CD 绕点D 逆时针旋转90︒至DE ,连接AE ,若6AD =,10BC =,则ADE ∆的面积是( )A .272B .12C .9D .86.菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( ) A .3.5 B .4 C .7 D .147.如图,在正方形ABCD 中,点M 、N 为边BC 和CD 上的动点(不含端点),45MAN ∠=︒.下列三个结论:∥当MN =时,则22.5BAM ∠=︒;∥290AMN MNC ∠-∠=︒;∥MNC ∆的周长不变,其中正确结论的个数是( )A .0B .1C .2D .38.如图,在∥ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE∥AB 于 E ,PF∥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.59.如图,在菱形ABCD 中,AC 与BD 相交于点O ,AB =4,BD =E 为AB 的中点,点P 为线段AC 上的动点,则EP+BP 的最小值为( )A .4B .C .D .810.如图,在∥ABC中,∥ACB=90o,∥B=30o,AC=1,AB=2,AC在直线l上,将∥ABC绕点A顺时针转到位置∥可得到点P1,此时AP1=2;将位置∥的三角形绕点P1顺时针旋转到位置∥,可得到点P2,此时AP2=2+∥的三角形绕点P2顺时针旋转到位置∥,可得到点P3,此时AP3,按此顺序继续旋转,得到点P2016,则AP2016=( )A.B.C.D.二、填空题11.如图,在∥ABC中,∥BAC=65°,将∥ABC绕点A逆时针旋转,得到∥AB'C',连接C'C.若C'C∥AB,则∥BAB'=_____°.12.如图,矩形ABCD的对角线AC和BD相交于点O,直线EF经过点O,交BC于点E,AD于点F,若AB=5cm,AC=13 cm,则阴影部分的面积为_________.13.在菱形ABCD中,对角线AC=2,BD=4,则菱形ABCD的周长是________.14.如图.将长方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∥EBF的大小为_____ .15.如图,在∥ABC中,∥ACB=90°,AC=BC=4,O是BC的中点,P是射线AO上的一个动点,则当∥BPC=90°时,AP的长为______.16.已知,点(,1)A a 和点(3,)B b 关于原点O 对称,则+a b 的值为__________.17.如图,∥ABC 中,AB=AC ,BE∥AC ,D 为AB 中点,若DE=5,BE=8.则EC=______.18.如图,在∥ABC 中,CD∥AB 于点D ,BE∥AC 于点E ,F 为BC 的中点,DE =5,BC =8,则∥DEF 的周长是______.19.如图,在ABC V 中,3AB =,4AC =,5BC =,P 为边BC 上一动点,PE AB ⊥于E ,PF AC ⊥于F ,M 为EF 的中点,则AM 的最小值为________.20.如图,在一张矩形纸片ABCD 中,AB=4,BC=8,点E ,F 分别在AD ,BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:∥四边形CFHE是菱形;∥EC平分∥DCH;∥线段BF的取值范围为3≤BF≤4;∥当点H与点A重合时,以上结论中,你认为正确的有.(填序号)三、解答题21.已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F.求证:四边形AECF是平行四边形.22.如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.23.如图,在边长为1的正方形网格中,∥ABC 的顶点均在格点上.(1)画出∥ABC 绕点O 顺时针旋转90°后的∥A′B′C′.(2)求点B 绕点O 旋转到点B′的路径长(结果保留π).24.如图,在ABCD Y 中,对角线BD 平分ABC ∠,过点A 作AE BD P ,交CD 的延长线于点E ,过点E 作EF BC ⊥,交BC 延长线于点F .(1)求证:四边形ABCD 是菱形;(2)若452ABC BC ∠︒=,=,求EF 的长.25.如图,矩形ABCD 的对角线AC ,BD 交于点O ,且DE AC P ,CE BD P .求证:四边形OCED 是菱形.26.如图,在∥ABCD 中,E ,F 分别是AD ,BC 上的点,且DE=BF ,AC∥EF .求证:四边形AECF 是菱形.27.如图,在ABCD Y 中,AE BC ⊥于点E 点,延长BC 至F 点使=CF BE ,连接AF ,DE ,DF .(1)求证:四边形AEFD 是矩形;(2)若6AB =,8DE =,10BF =,求AE 的长.28.如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(-4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)∥PBD的度数为,点D的坐标为(用t表示);(2)当t为何值时,∥PBE为等腰三角形?29.在∥ABCD中,∥BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∥ABC=90°,G是EF的中点(如图2),直接写出∥BDG的度数;(3)若∥ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∥BDG的度数.30.如图,∥ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE∥AB于E,连接PQ交AB于D.(∥)若设AP=x,则PC=,QC=;(用含x的代数式表示)(∥)当∥BQD=30°时,求AP的长;(∥)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.苏科版八年级数学下册第9章中心对称图形-平行四边形单元测试卷(含答案)一、填空题1.C 2.B 3.C 4.A 5.B6.A 7.D 8.C 9.C 10.B二、填空题11.50 12.15cm2 13.14.45° 15.±216.4-17.4 18.13 19.1.2 20.∥∥∥三、解答题21.证明见解析.【分析】求证四边形AECF是平行四边形,只要求证OE=OF,根据对角线互相平分的四边形是平行四边形即可求证,依据∥AOE∥∥COF即可证明OE=OF.【详解】证明:∥平行四边形ABCD中AB∥CD,∥∥OAE=∥OCF,又∥OA=OC,∥COF=∥AOE,∥∥AOE∥∥COF(ASA),∥OE=OF,又∥OA=OC∥四边形AECF是平行四边形.22.证明见解析.根据平行四边形的判定推出四边形OBEC 是平行四边形,根据菱形性质求出∥AOB=90°,根据矩形的判定推出即可.【详解】∥BE∥AC ,CE∥DB ,∥四边形OBEC 是平行四边形,又∥四边形ABCD 是菱形,且AC 、BD 是对角线,∥AC∥BD ,∥∥BOC =90°,∥平行四边形OBEC 是矩形.23.(1)画图见解析;(2)点B 绕点O 旋转到点B′. 【分析】(1)利用网格特点和旋转的性质画出点A 、B 、C 的对应点A′、B′、C′,从而得到∥A′B′C′;(2)先计算出OB 的长,然后根据弧长公式计算点B 绕点O 旋转到点B′的路径长.【详解】(1)如图,∥A′B′C′为所作;(2)OB =,点B 绕点O 旋转到点B′的路径长=90180π⨯⨯π.24.(1)见解析;(2)(1)证明ADB ABD ∠∠=,得出AB AD =,即可得出结论;(2)由菱形的性质得出2AB CD BC ===,证明四边形ABDE 是平行四边形,45ECF ABC ∠∠︒==,得出24AB DE CE CD DE +==,==,在Rt CEF △中,由等腰直角三角形的性质和勾股定理即可求出EF 的长.【详解】(1)证明:∥四边形ABCD 是平行四边形,AD BC AB CD AB CD ∴P P ,=,,ADB CBD ∴∠∠=,, ∥BD 平分ABC ∠,ABD CBD ∴∠∠=,, ADB ABD ∴∠∠=,, AB AD ∴=,, ABCD ∴Y 是菱形;(2)解:∥四边形ABCD 是菱形,2AB CD BC ∴===,AB CD AE BD Q P P ,,∥四边形ABDE 是平行四边形,45ECF ABC ∠∠︒==,2AB DE ∴==,4CE CD DE ∴+==,45EF BC ECF ⊥∠︒Q ,=,CEF ∴V 是等腰直角三角形,2EF CF ∴=== 25.见解析【分析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED 是平行四边形,再根据矩形的性质可得OC=OD ,即可利用一组邻边相等的平行四边形是菱形判定出结论.【详解】证明:∥DE AC P ,CE BD P ,∥四边形OCED 是平行四边形,∥四边形ABCD 是矩形,∥AC BD =,OA OC =,OB OD =,∥OC OD =,∥四边形OCED 是菱形.26.见解析.【分析】根据对角线互相垂直的平行四边形是菱形即可证明【详解】证明:Q 四边形ABCD 是平行四边形,AD BC ∴=,//AD BC ,DE BF =Q ,AE CF ∴=,//AE CF Q ,∴四边形AECF 是平行四边形,AC EF ⊥Q ,∴四边形AECF 是菱形.27.(1)见解析;(2)245【解析】试题分析:(1)先证明四边形AEFD 是平行四边形,再证明∥AEF=90°即可.(2)证明∥ABF 是直角三角形,由三角形的面积即可得出AE 的长.试题解析:(1)证明:∥CF=BE ,∥CF+EC=BE+EC .即 EF=BC .∥在∥ABCD 中,AD∥BC 且AD=BC ,∥AD∥EF 且AD=EF .∥四边形AEFD是平行四边形.∥AE∥BC,∥∥AEF=90°.∥四边形AEFD是矩形;(2)∥四边形AEFD是矩形,DE=8,∥AF=DE=8.∥AB=6,BF=10,∥AB2+AF2=62+82=100=BF2.∥∥BAF=90°.∥AE∥BF,∥∥ABF的面积=12AB•AF=12BF•AE.∥AE=•6824105 AB AFBF⨯==.28.(1)45°(t,t);(2)t=4秒或(-4)秒【分析】(1)易证∥BAP∥∥PQD,从而得到DQ=AP=t,从而可以求出∥PBD的度数和点D的坐标.(2)由于∥EBP=45°,故图1是以正方形为背景的一个基本图形,容易得到EP=AP+CE.由于∥PBE底边不定,故分三种情况讨论,借助于三角形全等及勾股定理进行求解,然后结合条件进行取舍,最终确定符合要求的t值.【详解】(1)如图1,由题可得:AP=OQ=1×t=t(秒)∥AO=PQ .∥四边形OABC 是正方形,∥AO=AB=BC=OC ,∥BAO=∥AOC=∥OCB=∥ABC=90°.∥DP∥BP ,∥∥BPD=90°.∥∥BPA=90°-∥DPQ=∥PDQ .∥AO=PQ ,AO=AB ,∥AB=PQ .在∥BAP 和∥PQD 中,BAP PQD BPA PDQ AB PQ ∠∠∠∠⎧⎪⎨⎪⎩===∥∥BAP∥∥PQD (AAS ).∥AP=QD ,BP=PD .∥∥BPD=90°,BP=PD ,∥∥PBD=∥PDB=45°.∥AP=t ,∥DQ=t .∥点D 坐标为(t ,t ).故答案为:45°,(t ,t ).(2)∥若PB=PE ,则t=0(舍去),∥若EB=EP ,则∥PBE=∥BPE=45°.∥∥BEP=90°.∥∥PEO=90°-∥BEC=∥EBC .在∥POE 和∥ECB 中,PEO EBC POE ECB EP BE ∠∠∠∠⎧⎪⎨⎪⎩===∥∥POE∥∥ECB (AAS ).∥OE=CB=OC .∥点E 与点C 重合(EC=0).∥点P 与点O 重合(PO=0).∥点B (-4,4),∥AO=CO=4.此时t=AP=AO=4.∥若BP=BE ,在Rt∥BAP 和Rt∥BCE 中,BA BC BP BE ⎧⎨⎩== ∥Rt∥BAP∥Rt∥BCE (HL ).∥AP=CE .∥AP=t ,∥CE=t .∥PO=EO=4-t .∥∥POE=90°,4-t ).延长OA 到点F ,使得AF=CE ,连接BF ,如图2所示.在∥FAB 和∥ECB 中,90AB CB BAF BCE AF CE ⎧⎪⎨⎪∠∠⎩︒====∥∥FAB∥∥ECB .∥FB=EB ,∥FBA=∥EBC .∥∥EBP=45°,∥ABC=90°,∥∥ABP+∥EBC=45°.∥∥FBP=∥FBA+∥ABP=∥EBC+∥ABP=45°.∥∥FBP=∥EBP .在∥FBP 和∥EBP 中,BF BE FBP EBP BP BP ⎪∠⎪⎩∠⎧⎨===∥∥FBP∥∥EBP (SAS ).∥FP=EP .∥EP=FP=FA+AP=CE+AP .∥EP=t+t=2t .(4-t )=2t .解得:-4∥当t 为4秒或(-4)秒时,∥PBE 为等腰三角形.29.(1)见解析;(2)45°;(3)见解析.【分析】(1)根据AF 平分∥BAD ,可得∥BAF=∥DAF ,利用四边形ABCD 是平行四边形,求证∥CEF=∥F 即可;(2)根据∥ABC=90°,G 是EF 的中点可直接求得;(3)分别连接GB 、GC ,求证四边形CEGF 是平行四边形,再求证∥ECG 是等边三角形,由AD∥BC 及AF 平分∥BAD 可得∥BAE=∥AEB ,求证∥BEG∥∥DCG ,然后即可求得答案.【详解】(1)证明:如图1,∥AF 平分∥BAD ,∥∥BAF=∥DAF ,∥四边形ABCD 是平行四边形,∥AD∥BC ,AB∥CD ,∥∥DAF=∥CEF ,∥BAF=∥F ,∥∥CEF=∥F .∥CE=CF .(2)解:连接GC 、BG ,∥四边形ABCD 为平行四边形,∥ABC=90°,∥四边形ABCD 为矩形,∥AF 平分∥BAD ,∥∥DAF=∥BAF=45°,∥∥DCB=90°,DF∥AB ,∥∥DFA=45°,∥ECF=90°∥∥ECF 为等腰直角三角形,∥G 为EF 中点,∥EG=CG=FG ,CG∥EF ,∥∥ABE 为等腰直角三角形,AB=DC ,∥BE=DC ,∥∥CEF=∥GCF=45°,∥∥BEG=∥DCG=135°在∥BEG 与∥DCG 中,∥EG CG BEG DCG BE DC =⎧⎪∠=∠⎨⎪=⎩,∥∥BEG∥∥DCG ,∥BG=DG ,∥CG∥EF ,∥∥DGC+∥DGA=90°,又∥∥DGC=∥BGA ,∥∥BGA+∥DGA=90°,∥∥DGB为等腰直角三角形,∥∥BDG=45°.(3)解:延长AB、FG交于H,连接HD.∥AD∥GF,AB∥DF,∥四边形AHFD为平行四边形∥∥ABC=120°,AF平分∥BAD∥∥DAF=30°,∥ADC=120°,∥DFA=30°∥∥DAF为等腰三角形∥AD=DF,∥CE=CF,∥平行四边形AHFD为菱形∥∥ADH,∥DHF为全等的等边三角形∥DH=DF,∥BHD=∥GFD=60°∥FG=CE,CE=CF,CF=BH,∥BH=GF在∥BHD与∥GFD中,∥DH DFBHD GFD BH GF=⎧⎪∠=∠⎨⎪=⎩,∥∥BHD∥∥GFD,∥∥BDH=∥GDF∥∥BDG=∥BDH+∥HDG=∥GDF+∥HDG=60°.30.(∥)6﹣x,6+x;(∥)2;(∥)线段DE的长度不会改变.DE=3【分析】(1)根据等边三角形的性质可知AB=BC=AC=6,然后根据题意解答即可;(2)在(1)的基础上,再利用直角三角形30°所对的边等于斜边的一半进行解答即可.(3) 作QF∥AB,交直线AB的延长线于点F,连接QE,PF;根据题意和等边三角形的性质证明∥APE∥∥BQF(AAS),进一步说明四边形PEQF是平行四边形,最后说明DE=AB,即可说明DE的长度不变.【详解】解:(∥)∥∥ABC是边长为6的等边三角形,∥AB =BC =AC =6,设AP =x ,则PC =6﹣x ,QB =x ,∥QC =QB +BC =6+x ,故答案为:6﹣x ,6+x ;(∥)∥在Rt∥QCP 中,∥BQD =30°,∥PC =12QC ,即6﹣x =12(6+x ),解得x =2, ∥AP =2;(∥)当点P 、Q 运动时,线段DE 的长度不会改变.理由如下:作QF ∥AB ,交直线AB 的延长线于点F ,连接QE ,PF , 又∥PE ∥AB 于E ,∥∥DFQ =∥AEP =90°,∥点P 、Q 速度相同,∥AP =BQ ,∥∥ABC 是等边三角形,∥∥A =∥ABC =∥FBQ =60°,在∥APE 和∥BQF 中,∥∥AEP =∥BFQ =90°,∥∥APE =∥BQF ,∥在∥APE 和∥BQF 中,AEP BFQ A FBQ AP BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∥∥APE∥∥BQF(AAS),∥AE=BF,PE=QF且PE∥QF,∥四边形PEQF是平行四边形,∥DE=12 EF,∥EB+AE=BE+BF=AB,∥DE=12 AB,又∥等边∥ABC的边长为6,∥DE=3,∥当点P、Q运动时,线段DE的长度不会改变.。

完整版苏科版八年级下册数学第9章 中心对称图形——平行四边形含答案

完整版苏科版八年级下册数学第9章 中心对称图形——平行四边形含答案

苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、如图,以矩形OABC的两边OA和OC所在直线为x轴、y轴建立平面直角坐标系。

将矩形OABC绕点O逆时针旋转30°,得到矩形ODEF,若当点A的坐标为(-,0)时,反比例函数的图象恰好经过B、F两点,则此时k的值为().A. B.-6 C. D.-32、如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路程长为()A.20cmB. cmC.10πcmD. πcm3、已知▱ABCD中,若∠A+∠C=120°,则∠B的度数是()A.100°B.120°C.80°D.60°4、如图,在边长为的正方形中,把边绕点逆时针旋转,得到线段.连接并延长交于点,连接,则的面积为()A. B. C. D.5、下列几何图形是中心对称图形的是()A. B. C. D.6、已知:在平面直角坐标系中,菱形ABCD三个顶点的坐标分别是A(﹣2,0)、B(0,1)、C(2,0),则点D的坐标是()A.(﹣4,﹣1)B.(4,﹣1)C.(0,﹣1)D.(0,﹣2)7、如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:①∠AED+∠EAC+∠EDB=90°,②AP=FP,③AE=AO,④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⑤CE•EF=EQ•DE.其中正确的结论有()A.5个B.4个C.3个D.2个8、如图,▱ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cmB.8cmC.10cmD.12cm9、下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B. C. D.10、如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°11、如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结若,,则的度数为( )A. B. C. D.12、下列语句中正确的个数是()①矩形的四边中点在同一个圆上;②菱形的四边中点在同一个圆上;③等腰梯形的四边中点在同一个圆上;④平行四边形的四边中点在同一个圆上.A.1B.2C.3D.413、下列四个命题:①对角线互相垂直的平行四边形是正方形;② ,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1B.2C.3D.414、下列关于矩形的说法中正确的是( )A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线互相垂直且平分D.矩形的对角线相等且互相平分15、下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC ,将△ABC绕点C旋转180°得到△FEC ,连接AE、BF .当∠ACB为________ 度时,四边形ABFE为矩形.17、四边形ABCD为菱形,该菱形的周长为16,面积为8,则∠ABC为________度.18、如图,在等腰Rt△ABC中,∠C=90°,AC=7.点O在BC上,且CO=1,点M 是AC上一动点,连接OM,将线段OM绕点O逆时针旋转90°,得到线段OD,要使点D恰好落在AB上,CM的长度为________19、用反证法证明:已知直线a、b被直线c所截,∠1+∠2≠180°.求证:a 与b不平行.证明:假设________,则:∠1+∠2=180°(________)这与________矛盾,故假设不成立.所以a与b不平行.20、如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的的长度为________.21、如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE +S△ADF=S△CEF,其中正确的是________(只填写序号).22、已知菱形的周长为40cm,两个相邻角度数比为1:2,则较短的对角线长为________,面积为________.23、如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为________.24、如图,在△ABC中,AB=2,BC=4,∠B=45°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为________.25、如图,在矩形ABCD中,AB=3,AD=4,点E是AD边上一动点,将△ABE 沿BE折叠,使点A的对应点A′恰好落在矩形ABCD的对角线上,则AE的长为________.三、解答题(共5题,共计25分)26、如图,方格纸上每个小正方形的面积为1.⑴在方格纸上,以线段AB为边画正方形ABCD,并计算所画正方形ABCD的面积.⑵请你在图上分别画出面积为5正方形A1B1C1D1和面积为10的正方形A 2B2C2D2,正方形的各个顶点都在方格纸的格点上.27、如图,矩形ABCD中,AB=10,AD=4,点P在边DC上,且△PAB是直角三角形,请在图中标出符合题意的点P,并直接写出PC的长.28、如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.29、如图,在△ABC中,∠C=90°,CB=6,CA=8,将△ABC绕点B顺时针旋转得到△DBE,使点C的对应点E恰好落在AB上,求线段AE的长.30、如图,平行四边形中,、分别是边、的中点,求证:.参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、C5、D6、C7、B8、C9、A10、C11、B13、C14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、。

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿QC翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为()A. B.2 C. D.32、如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC于点F,则DF:( )A.1:4B.1:3C.1:2D.2:13、剪纸是中国特有的民间艺术,在如图所示的四个剪纸图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4、已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()A.OE= DCB.OA=OCC.∠BOE=∠OBAD.∠OBE=∠OCE5、在▱ABCD中,∠A=50°,则∠C=()A.130°B.50°C.40°D.25°6、正方形具有而菱形不具有的性质是( )A.四边相等B.对角线互相垂直C.对角线相等D.对角线互相平分7、下列说法中不正确的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.四个角都相等的四边形是矩形D.对角线互相垂直平分的四边形是正方形8、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9、如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰直角三角形有()A.4个B.6个C.8个D.10个10、下列图形中,是中心对称图形的是()A. B. C. D.11、如图,在菱形ABCD中,∠A=60°,AD=4,点F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A'E'F',设点P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.7B.6C.8D.8 ﹣412、如图,把△AOB绕点O顺时针旋转得到△COD,则旋转角是()A.∠AOCB.∠AODC.∠AOBD.∠BOC13、下列图案中,不是中心对称图形的是()A. B. C. D.14、已知△ABC的面积为36,将△ABC沿BC的方向平移到△A'B 'C '的位置,使B '和C重合,连结AC '交A'C于D,则△C'DC的面积为()A.6B.9C.12D.1815、菱形具有而平行四边形不具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分 D.对角线互相垂直二、填空题(共10题,共计30分)16、如图,已知反比例函数y= (x>0)与正比例函数y=x(x≥0)的图象,点A(1,5)、点A′(5,b)与点B′均在反比例函数的图象上,点B在直线y=x上,四边形AA′B′B是平行四边形,则B点的坐标为________.17、如图,在平面直角坐标系中,,,,,…,以为对角线作第一个正方形,以为对角线作第二个正方形,以为对角线作第三个正方形,…,如果所作正方形的对角线都在轴上,且的长度依次增加1个单位长度,顶点都在第一象限内(,且为整数)那么的纵坐标为________;用的代数式表示的纵坐标________.18、已知菱形 ABCD的边长是4cm,对角线 AC=4cm,则菱形的面积是________cm2.19、如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别是2 m和4m,上部是圆心为0的劣弧CD,圆心角∠COD=120°.现欲以B点为支点将拱门放倒;放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示记拱门上的点到地面的最大距离hm,则h的最大值为________m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 中心对称图形—平行四边形 综合测试卷(B )
一、精选择题(每题3分,共24分)
1.下列图形中,是中心对称图形,但不是轴对称图形的是 ( )
2.对角线互相垂直平分的四边形是 ( )
A .平行四边形、菱形
B .矩形、菱形
C .矩形、正方形
D .菱形、正方形
3.用两块边长为a 的等边三角形纸片拼成的四边形是 ( )
A .等腰梯形
B .菱形
C .矩形
D .正方形
4.下列图形:①等腰三角形;②平行四边形;③矩形;④菱形;⑤正方形.用两个全等但不是等腰的直角三角形,一定能拼成的是 ( )
A .①②③
B .②③④
C .①③⑤
D .①②③④⑤
5.如图,已知矩形纸片ABCD ,点E 是AB 的中点,点G 是BC 上的一点,∠BEG ﹥60⁰,现沿直线EG 将纸片折叠,使点B 落在纸片上的点H 处,连接AH ,则与∠BEG 相等的角的个数为 ( )
A .4个
B .3个
C .2个
D .1个
6.如图,在边长为2的正方形ABCD 中,M 为边AD 的中点,延长MD 至点E ,使ME=MC .以DE 为边作正方形DEFG ,点G 在边CD 上,则DG 的长为 ( )
A 1
B .3
C 1
D 1
7.如图,OA ⊥OB ,等腰Rt △CDE 的腰CD 在OB 上,∠ECD=45⁰.将△CDE 绕点C 逆 时针旋转75⁰,点E 的对应点N 恰好落在OA 上,则OC CD
的值为 ( )
A .12
B .13
C . 2
D 8.如图,矩形ABCD 的面积为20 cm 2,对角线交于点O ;以AB 、AO 为邻边作平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO ,为邻边作平行四边形AO 1C 2B ...;依此类推,则平行四边形AO 4 C 5B 的面积为 ( )
A .54 cm 2
B .58 cm 2
C .516 cm 2
D .532
cm 2
二、填空题(每题2分,共20分)
9.如图,平行四边形ABCD中,AE=CG,DH=BF,连接E、F、G、H、E,则四边形EFGH 是.
10.如图,两个完全相同的三角尺ABC和DEF在直线L上滑动.要使四边形CBFE为菱形,还需添加的一个条件是.(填一个即可)
11.如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD交AD于点F,若EF=3,AE=5,则AD .
12.如图,在矩形ABCD中,AE⊥BD.若∠DAE:∠BAE=3:1,则∠EAO= .
13.如图,四边形ABCD是菱形,对角线AC=8 cm,BD=6 cm,DH⊥AB于点H,则DH =
14.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是.
15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90⁰,若AB=5,BC=8,则EF的长为.
16.如图,菱形ABCD中,∠B=60⁰,AB= 4,则以AC为边长的正方形ACEF的周长为.
17.如图,△ACE是以□ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对
称,CE交x轴于点H.若E点的坐标是(7,一,则D点的坐标是.
18.如图,E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90⁰到△CBE’的位置.若AE=I,BE=2,CE=3,则么BE’C=.
三、解答题(共56分)
19.(本题8分)如图,在□ABCD中,直线EF∥BD,并且与CD、CB的延长线分别交于E、F,交AD于M,交AB于N.求证:.EN=FM
20.(本题7分)已知:如图,△ABC中,∠C=90⁰,CD平分∠ACB,DE⊥BC于E,DF⊥AC 于F.求证:四边形CFDE是正方形.
21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD≠BC,∠B=90⁰,AG∥CD交BC 于点G,点E、F分别为AG、CD的中点,连接DE、FG.
(1)求证:四边形DEGF是平行四边形;
(2)当点G是BC的中点时,求证:四边形DEGF是菱形.
22.(本题9分)如图,已知在菱形ABCD中,∠B=72⁰,请设计三种不同的方法,将菱形ABCD 分割成四个三角形,使每个三角形都是等腰三角形.(要求画出分割线段,标出所得的三角形内角的度数.两种分法只要有一条分割线段位置不同,就认为是两种不同的分法)
23.(本题12分)如图,在口ABCD中,AB⊥AC,AB=1,BD、AC交于
点O.将直线AC绕点O顺时针旋转分别交BC、AD于点E、F.
(1)试说明在旋转过程中,AF与CE总保持相等;
(2)证明:当旋转角为90⁰时,四边形ABEF是平行四边形;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,求
出此时AC绕点O顺时针旋转的角度.
24.(本题12分)已知,矩形ABCD中,AB=4 cm,BC=8 cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一
周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5 cm,点Q的速度为每秒4 cm,运动时间为t秒,当A、C、
P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,a b≠0),已知A、C、P、Q四点为
顶点的四边形是平行四边形,求a与b满足的数量关系式.
参考答案
一、1.B 2.D 3.B 4.A 5.B 6.D 7.C 8.B
二、9.平行四边形 10.BE ⊥CF(答案不唯一) 11.7 12.45。

13.4.8 14.对角线
互相垂直的四边形 15.1.5 16.16 17.(5,0) 18.135。

三、19.证明:∵在平行四边形ABCD 中,AB ∥CD .AD ∥BC ,又∵EF ∥BD ,∴四边形BNED
和四边形FBDM 为平行四边形,∴FM=BD 。

EN=BD 。

∴EN=FM .
20.∵ DE ⊥BC .DF ⊥AC ∴∠CFD=∠CED=90。

,又∵∠ACB=90。

,∴四边形CFDE 是矩形.又
∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,∴DF=DE ,∴矩形CFDE 是正方形.
21.(1)证明:∵AD ∥BC ,AG ∥CD ,∴四边形AGCD 为平行四边形,∴AG=CD ,又∵点
E 、
F 分别为A
G 、CD 的中点,∵EG=12AG=12
Dc=DF ,∴四边形DEGF 是平行四边形. (2)连接DG ,∵G 为BC 中点,∴BG=CG ,由(1)得:AD=CG ,∴AD=BG ,又∵AD ∥BC ,
∴四边形ABGD 为平行四边形,∴AB ∥DC ,又∠B=90。

,∴∠DGC=∠B=90。


∴GF=12
CD=DF ,∴平行四边形DEGF 为菱形. 22.方法多样,提供几例仅供参考
23.解:(1)在□ABCD 中,AD ∥BC ,OA=OC ,
∴∠1=∠2.在△AOF 和△COEE 中,∠1=
∠2,OA=OC ,∠3=∠4,.∴△AOF ≌
△COE(ASA),∴AF=CE
(2)由题意,∠AOF=90。

(如图1),
又∵AB ⊥AC ,∴∠BAO=90︒,∠AOF=90︒,∴∠BAO=∠AOF 壬,∴BA ∥EF .∵四边形ABCD 是平行四边形,∴AD ∥BC ,即AF ∥BE .
∵BA ∥EF ,AF ∥BE ,∴四边形ABEF 是平行四边形.
(3)当EF ⊥BD 时,四边形BEDF 是菱形
(如图2).
∵AF=CE ,AD ∥BC ,AD=BC ,∴ FD ∥BE ;DF —BE ,∴四边形
BEDF 是平行四边形.又∵EF ⊥BD ,∴口BEDF 是菱
形.∵AB ⊥AC ,∴∠BAC=90︒,∴BC 2=AB 2+AC 2.
∵∴∵四边形ABCD 是平行四边形。

∴OA=12AC=12
×2=1 ∵在△AOB 中,AB=AO=1, ∠BAO=90︒
∴∠1=45︒
∵EF ⊥BD, ∴∠BOF=90︒
∴∠2=∠BOD-∠1=90︒-45︒=45︒,即旋转角为45︒
24.(1)证明:∵在矩形ABCD中,AD∥BC,∴∠EAO=∠FCD,又∵EF垂直平分AC.∴AO=CO,又∠AOE=∠COF,∴△AOE≌△COF(ASA),∴AE=CF,
∴四边形AFCE为平行四边形.又∵EF⊥ AC,∴平行四边形AFCE为菱形.∴AF
=CF.设AF=x,则CF=x,BF=BC-CF=8-x,在Rt△ABF中,AB2+BF2=AF2,42+(8--x)2=x2,x=5.∴AF=5.
(2)①情况一:当P在AF上,Q在CD上时,四边形APCQ显然不可能是平行四边形.情况二:当P在BF上,Q在ED上时,则当BP=DQ时,四边形APCQ为平行四
边形,即8--5=4t一4,t=4
3
.情况三:当P在AB上,Q在ED上时,显然四边形
APCQ不可能为平行四边形;情况四:当P在AB上,Q在EC上时,四边形APCQ显
然不可能为平行四边形.∴当t=4
3
时,四边形APCQ为平行四边形.
②a+b=12.。

相关文档
最新文档