离散系统的稳定性分析
《离散系统的稳定性》课件

离散系统稳定性控制的方法
极点配置法
通过选择适当的系统参数, 使得系统的极点位于复平面 的某一区域,从而实现系统 的稳定性。
反馈控制
利用负反馈原理,通过将系 统输出信号的一部分或全部 反馈到输入端,对系统进行 调节,使其达到稳定状态。
状态反馈控制
根据系统当前状态变量反馈 信息,计算出控制输入信号 ,使得系统状态变量能够跟 踪设定的参考轨迹。
离散系统的应用领域
• 离散系统广泛应用于工程、科学 、经济和社会等领域。例如,数 字信号处理、控制系统、计算机 仿真、经济模型等领域中经常涉 及到离散系统的分析和设计。
02 离散系统的稳定性分析
离散系统的稳定性定义
离散系统
离散系统是指系统的状态变量只在离 散时刻发生变化,如数字电路、控制 系统等。
05 离散系统稳定性的未来研 究方向
离散系统稳定性的深入研究
深入研究离散系统的稳定性理论,包括离散系统的稳定性判据、离散系统的稳定性分析方法等,以提 高对离散系统稳定性的认识和理解。
深入研究离散系统的动态行为,包括离散系统的响应特性、离散系统的控制性能等,以揭示离散系统 稳定性的内在机制。
离散系统稳定性与其他领域的交叉研究
离散系统的稳定性分析方法
直接法
直接法是通过分析系统状态方程的解的性质,判断系统是否稳定。例如,通过 求解状态方程的解,观察其收敛性或发散性,判断系统的稳定性。
频域分析法
频域分析法是通过将离散系统转化为频域表示形式,分析系统的频率响应特性 ,判断系统的稳定性。例如,通过绘制系统的频率响应曲线,观察其穿越频率 和阻尼比等参数,判断系统的稳定性。
鲁棒控制
针对具有不确定性的离散系 统,设计一种控制策略,使 得系统在各种不确定性条件 下都能保持稳定。
第七节 离散系统的稳定性分析

离散系统如上图所示,则
E(z) R(z) 1 Go (z)
若闭环系统稳定,则由终值定理
ess
lim e(k)
k
lim (z
z 1
1) E ( z )
lim (z
z 1
1) R(z) 1 Go (z)
将离散系统仿照连续系统分为0、1、2型:
若系统开环脉冲传递函数G0 (z)中含有 i(i=0,1,2)个|z|=1的极点,则系统称为i型
第七节 离散系统的稳定性分析
如上节所讲,采样会破坏系统的稳定性,所 以在设计采样系统时最先考虑的是稳定性。 对采样系统稳定性分析主要建立在Z变换的 基础上。
连续系统的稳定性
连续系统稳定
所有特征根均具有负实部
方法:劳斯判据,Hurwitz判据及奈氏判据。
在分析采样系统时,可以利用Z变换与拉氏变 换数学上的关系,找到Z平面与S平面之间的周 期映射关系,从而利用原有的各种判据来分析
0
2型
0
2 r(t)=t*1(t)时
静态速度误差系数
R(z)
Tz (z 1)2
, ess
lim [(z
z1
1) 1 1 Go(z)
Tz (z 1)2
]
T
lim z1 (z
1 1)Go ( z)
若定义KV
1 T
lim (z 1)Go (z)
z 1
,则ess
1 Kv
Kv
ess
0型
0
1型 2型
Bode Diagrams
50 40 30 20 10
Phase (deg); Magnitude (dB)
-100 -120 -140 -160
自动控制原理 第七章 第二讲 离散系统的稳定性分析

—
1 − e −Ts s
K s( s + 1)
C(s)
解:系统的开环传递函数为 Tz 1 (1 − e−T )z G(z) = (1 − z −1 )Z 2 = (1 − z −1 ) − 2 s (s + 1) (z − 1) (z − 1)(z − e−T ) 把T=0.1代入化简得 代入化简得
整理后可得 Routh表为 表为 0.158Kω2+1.264ω+(2.736-0.158K)=0 w2 0.158K 2.736-0.158K w1 1.264 w0 2.736-0.158K
要使系统稳定, 必须使劳斯表中第一列各项大于零, 要使系统稳定 必须使劳斯表中第一列各项大于零 即 0.158K>0 和 2.736-0.158K>0 > > 所以使系统稳定的K值范围是 < < 所以使系统稳定的 值范围是0<K<17.3。 值范围是 。 结论2: 一定 一定, 越大 系统的稳定性就越差 越大, 稳定性就越差。 结论 :T一定,K越大 系统的稳定性就越差。
(1) 单位阶跃输入时 r(t)=1(t) (2) 单位斜坡输入时 r(t)=t (3) 单位加速度输入时 r(t)=t2/2
z R( z ) = z −1
z →1
K p = lim[1 + G ( z )]
Tz R( z ) = ( z − 1) 2
K v = lim( z − 1)G ( z )
π T π ω =− 0 T
Im z平平
π j T
ω=
0
σ
π
-1
ω =0 1 Re
-jT
2 、离散系统稳定的充要条件: 离散系统稳定的充要条件 稳定的充要条件:
2-d 连续-离散系统的稳定性、可控性与可观测性判据

2-d 连续-离散系统的稳定性、可控性与可观测性判据
一、稳定性
连续离散系统稳定性是指系统状态值不断变化,但随着时间的推移,系统的解不会离开某一区域或范围,满足系统的平衡。
可以用Lyapunov准则来判断一个系统的稳定性,即找出一个函数V,系统的长期行为是满足V的进行,且由此可以确定系统的长期行为的变化趋势。
此外,系统稳定性还可以通过极点分析方法来判断,即系统极值处被定义为极点,并从中探索该系统在极点上是否稳定,以及该极点处系统解是否存在漂移和消失。
二、可控性
可控性是指系统的响应是通过控制器实现的,系统可以通过增加输入电压或输出力量来改变系统的输出响应,从而达到预期的解决方案。
可控性分析要求系统具有足够的响应能力,可以通过增加输入电压来改变系统的行为,但它的响应有限制,不能随意增加,而且可能受外界环境约束。
三、可观测性
可观测性是指系统的特性是可以通过测量来获取的,即可以观察系统的特性,推断出它是如何变化的,并且根据以往所观察到的特征来推测它在将来的变化趋势。
可观测性分析可以使用状态空间方程,用于获得关于系统的当前及未来设计状态的量化描述,从而确定系统的特征及其变化趋势。
51. 如何分析离散控制系统的稳定性?

51. 如何分析离散控制系统的稳定性?嘿,咱们今天来聊聊怎么分析离散控制系统的稳定性这个事儿。
咱们先得搞清楚啥是离散控制系统。
简单说,就像咱们平时玩的跳格子游戏,一格一格的,不是连续的那种,这离散控制系统啊,也是这样,它的信号不是一直连着的,而是隔一段才有一个值。
那怎么去分析它稳不稳定呢?这可得有点小窍门。
咱们先来说说 z 变换,这可是个重要的工具。
就好比你有一堆杂乱的积木,通过 z 变换,能把它们整理得规规矩矩,更容易看出规律。
比如说,一个系统的传递函数,经过 z 变换,就能得到一个新的表达式,从这里咱们就能开始分析稳定性啦。
还有那个特征方程,这就像是系统的“密码锁”。
如果能解开这个方程,找到它的根,就能知道系统稳不稳定。
要是这些根都在单位圆内,那系统就是稳定的;要是有根跑到单位圆外面去了,那可就麻烦喽,系统就不稳定啦。
给你讲个我之前遇到的事儿吧。
有一次,我带着几个学生一起研究一个离散控制系统的稳定性。
那系统的方程复杂得让人头疼,大家一开始都有点懵。
其中有个学生特别较真儿,不停地尝试各种方法,一会儿画个图,一会儿又算一堆式子。
我就在旁边看着,偶尔给他们一点小提示。
最后啊,经过大家的努力,终于找到了关键所在,成功分析出了系统的稳定性。
那一瞬间,大家的脸上都洋溢着成就感,那种感觉可太棒了!再说说 Jury 判据,这也是个分析稳定性的好帮手。
它就像是一个精准的测量尺,能帮咱们准确判断系统的根是不是都在单位圆内。
总之啊,分析离散控制系统的稳定性,需要咱们掌握好这些工具和方法,多动手多思考。
就像解一道复杂的谜题,只要有耐心,有方法,总能找到答案的。
希望今天讲的这些能让你对分析离散控制系统的稳定性有更清楚的认识,加油哦!。
离散系统稳定性分析

实验一 离散系统稳定性分析实验学时:2 实验类型:常规 实验要求:必作一、实验目的:(1)掌握利用MATLAB 绘制系统零极点图的方法; (2)掌握离散时间系统的零极点分析方法;(3)掌握用MATALB 实现离散系统频率特性分析的方法; (4)掌握逆Z 变换概念及MATLAB 实现方法; (5)掌握用MATLAB 分析离散系统稳定性。
二、实验原理:1、离散系统零极点图及零极点分析;线性时不变离散系统可用线性常系数差分方程描述,即()()NMiji j a y n i b x n j ==-=-∑∑ (8-1)其中()y k 为系统的输出序列,()x k 为输入序列。
将式(8-1)两边进行Z 变换的00()()()()()Mjjj Nii i b zY z B z H z X z A z a z-=-====∑∑ (8-2) 将式(8-2)因式分解后有:11()()()Mjj Nii z q H z Cz p ==-=-∏∏ (8-3)其中C 为常数,(1,2,,)j q j M =为()H z 的M 个零点,(1,2,,)i p i N =为()H z 的N个极点。
系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。
因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。
通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性:● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性;离散系统的频率特性; 1.1、零极点图的绘制设离散系统的系统函数为则系统的零极点可用MA TLAB 的多项式求根函数roots()来实现,调用格式为:p=roots(A)其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。
如多项式为231()48B z z z =++,则求该多项式根的MA TLAB 命令为为: A=[1 3/4 1/8];P=roots(A) 运行结果为: P =-0.5000 -0.2500需注意的是,在求系统函数零极点时,系统函数可能有两种形式:一种是分子、分母多项式均按z 的降幂次序排列;另一种是分子、分母多项式均按1z -的升幂次序排列。
离散时间系统的可控性及其稳定性分析研究

离散时间系统的可控性及其稳定性分析研究一、引言离散时间系统(discrete-time system)是指在时间上取样的系统,指的是在时域上离散且在幅度上是连续的信号,是一类重要的时域系统。
在日常生活中,我们常常会遇到离散时间系统,例如数字电子、数字通信、数字信号处理等领域。
离散时间系统的可控性及其稳定性是该领域热门的研究方向之一,本文将从两方面进行探讨。
二、离散时间系统的可控性1.可控性的定义可控性是指系统在一定时间内,能否通过其输入信号来达到所需状态,并且可以在该状态下保持一定的时间。
在离散时间系统中,可控性的定义与连续时间系统中的可控性类似,但并不能简单地借鉴连续时间系统的定义。
2.可控性的判定(1)Kalman条件Kalman条件是判定离散时间系统可控性的重要方法。
在离散时间系统中,若一个初态能够通过一个有限时间内的控制输入到达系统的任意状态,则称该系统是可控的。
用数学语言描述,即离散时间系统可控的条件是:矩阵 Cont(A,B) 的秩等于 n,其中 A 和B 是系统的状态矩阵和输入矩阵,n 是系统的状态维数。
(2)PBH条件PBH条件是判定离散时间系统可控性的另一种方法。
与Kalman条件相比,PBH条件更加简便,适用于各种规范矩阵A和B.给定一个离散时间系统,我们可以将可控性矩阵写成:$$ \begin{bmatrix} A - \lambda_i I & B \end{bmatrix} $$式中,I 是单位矩阵,λi 是系统的特征值,B 是系统的输入矩阵。
若该矩阵的秩等于系统状态维数 n,则该系统可控。
三、离散时间系统的稳定性1.稳定性的定义稳定性是指系统输入和状态状态在有限范围内的变化,系统的输出也会随之保持在一个有限的范围。
2.稳定性的性质(1)稳定性的充分条件离散时间系统可控的充分条件是系统的特征值均在单位圆内。
(2)稳定性的判定常用的离散时间系统稳定性判定方法有 Jury准则和Nyquist准则。
第七章--线性离散系统的稳定性分析

T
Gh s
G0 s
Y s
1 eTs 4 其中连续部分的传递函数为 Gh (s)G0 (s) s s(0.5s 1)
已知T=0.5s,试求在单位斜坡输入下,最小拍系统数字 控制器的脉冲传递函数. 解:由图可知
0.736 z 1 (1 0.717 z 1 ) G( z ) L Gh ( s)G0 (s) (1 z 1 )(1 0.368 z 1 )
态分量也不同。
• 实数极点:若实数极点分布在单位圆内,其对应的分量呈衰
减变化。正实数极点对应的单调衰减,负实数极点对应的振 荡衰减; • 共轭极点: 有一对共轭复数极点i与i,即
i i e j , i i e j
i i
Cy(k)) 2 Ai i k cos(ki i ) i i (k 当|i|>1时,Ci(k)为发散振荡函数;当|i|<1时,Ci(k)为衰减 振荡函数,振荡角频率为
T=0.2s时 G( z )
1.2 z 0.8 ( z 1) 2
2 系统特征方程为 z 0.8 z 0.2 0
1,2 0.4 j0.2
所以采样时刻的稳态误差为
1 T T2 e() 0.1 K p Kv Ka
所以系统稳定
离散系统的暂态分析
上式右边第一项为系统的稳态响应分量,第二项为暂态 响应分量。显然,随极点在平面位置的不同,它所对应的暂
劳斯判据 劳斯判据可用于判断一个复变量代数方程的根是否全在复
平面的左半平面,但不能判断这些根是否全在单位圆内。为了利
用劳斯判据分析离散系统的稳定性,需对Z平面进行一次线性变 换,即将Z平面的单位圆内部映射到一个复平面的左半平面,该 变换被称之为W变换,也称为双线性变换。 W变换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验名称:离散系统的稳定性分析
系专业班
姓名学号授课老师
预定时间2014-5-27
实验时
间
2014-5-27 实验台号
一、目的要求
1.掌握香农定理,了解信号的采样保持与采样周期的关系。
2.掌握采样周期对采样系统的稳定性影响。
二、原理简述
1.信号的采样保持:
电路图:
连续信号x(t) 经采样器采样后变为离散信号x*(t),香农(Shannon) 采样定理指出,离散信号x*(t)可以完满地复原为连续信号条件为:ωs≥2ωmax
式中ωS 为采样角频率,且,(T 为采样周期),ωmax为连续信号x (t)
的幅频谱| x (jω)| 的上限频率T s
若连续信号x (t) 是角频率为ωS = 2π ⨯ 2.5 的正弦波,它经采样后变为x*(t),则x*(t) 经保持器能复原为连续信号的条件是采样周期,[正弦波
ωmax=ωS=5 π ],所以
2、闭环采样控制系统
电路图:
闭环采样系统的开环脉冲传递函数为:
闭环脉冲传递函数为:
闭环采样系统的特征方程式为:
特征方程式的根与采样周期T 有关,若特征根的模均小于1,则系统稳定,若有一个特征根的模大于1,则系统不稳定,因此系统的稳定性与采样周期T 的大小有关。
三、仪器设备
PC机一台,TD-ACC+(或TD-ACS)教学实验系统一套。
四、内容步骤
1.准备:将信号源单元的“ST”的插针和“+5V”插针用“短路块”短接。
2.信号的采样保持实验步骤
(1) 按图接线。
检查无误后开启设备电源。
(2) 将正弦波单元的正弦信号(将频率调为2.5HZ) 接至LF398 的输入端“IN1”。
(3) 调节信号源单元的信号频率使“S”端的方波周期为20ms 即采样周期T =
20ms。
(4) 用示波器同时观测LF398 的OUT1 输出和IN1 输入,此时输出波形和输入波形一致。
(5) 改变采样周期,直到200ms,观测输出波形。
此时输出波形仍为输入波形的采样波形,还未失真,但当T > 200ms 时,没有输出波形,即系统采样失真,从而验证了香农定理。
3.闭环采样控制系统实验步骤
(1) 按图接线。
检查无误后开启设备电源。
(2) 取“S”端的方波信号周期T = 20ms。
(3) 阶跃信号的产生:产生1V 的阶跃信号。
(4) 加阶跃信号至r (t),按动阶跃按钮,观察并记录系统的输出波形c (t),测量超调量Mp。
(5) 调节信号源单元的“S”信号频率使周期为50ms 即采样周期T = 50ms。
系统
加入阶跃信号,观察并记录系统输出波形,测量超调量Mp。
(6) 调节采样周期使T = 120ms,观察并记录系统输出波形。
五、数据处理
1、信号的采样保持
采样周期T=1ms:
采样周期T=100ms:
采样周期T=200ms:
2、闭环采样控制系统方波信号周期T=20ms:
方波信号周期T=50ms:
方波信号周期T=120ms:
六、分析讨论
当选取的采样周期瞒足香农采样周期的条件是,系统不是真,当选取的采样周期不满足香浓采样周期是,系统产生较大的失真。