李贤平《概率论与数理统计》标准答案

合集下载

概率论基础(第2版)李贤平 全部习题解答

概率论基础(第2版)李贤平 全部习题解答

即得 Cn 2Cn 3Cn nCn n2
1 2 3 n
n 1
(2)在上式中令 x=-1 即得 Cn 2Cn 3Cn (1)
1 2 3 n 1 n nCn 0
(3)要原式有意义,必须 0 r a 。由于 Cab Cab , Cb Cb
m
~m
这个公式的证明思路是,把 n 个不同的元素编号为1,2, ,n,再把重复组合的每一组中 数从小到大排列,每个数依次加上 0,1,, m 1 ,则这一组数就变成了从 1,2,, n m 1 共
m
m

3 10 7 6 15 9 207 . 25 25 25 25 25 25 625
14.由盛有号码 1,2, ,N 的球的箱子中有放回地摸了 n 次球,依次记下其号码,试求这些 号码按严格上升次序排列的概率。 解:若取出的号码是按严格上升次序排列,则 n 个号码必然全不相同, n N 。N 个不同号 码可产生 n ! 种不同的排列,其中只有一个是按严格上升次序的排列,也就是说,一种组 合对应一种严格上升排列, 所以共有 C N 种按严格上升次序的排列。 总可能场合数为 N n , 故题中欲求的概率为 P
解: (1) ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};
ABC ={抽到的是男同学,又爱唱歌,又是运动员}。
(2) ABC A BC A ,当男同学都不爱唱歌且是运动员时成立。 (3)当不是运动员的学生必是不爱唱歌的时, C B 成立。 (4)A=B 及 A C A B C ,当男学生的全体也就是不爱唱歌的学生全体,也就不是 运动员的学生全体时成立。也可表述为:当男学生不爱唱歌且不爱唱歌的一定是男学生,并 且男学生不是运动员且不是运动员的是男学生时成立。 5.用摸球模型造一例,指出样本空间及各种事件运算。 解: 设袋中有三个球,编号为 1,2,3,每次摸一个球。样本空间共有 3 个样本点(1) , ( 2) , 1,2, B 1,3, C 3, (3)设 A 则 A {3}, A B 1,2,3, A B 1 , A B {2},

概率论答案 - 李贤平版 - 第三章

概率论答案 - 李贤平版 - 第三章

第三章 随机变量与分布函数1、直线上有一质点,每经一个单位时间,它分别以概率p 或p -1向右或向左移动一格,若该质点在时刻0从原点出发,而且每次移动是相互独立的,试用随机变量来描述这质点的运动(以n S 表示时间n 时质点的位置)。

2、设ξ为贝努里试验中第一个游程(连续的成功或失败)的长,试求ξ的概率分布。

3、c 应取何值才能使下列函数成为概率分布:(1);,,2,1,)(N k Nck f Λ==(2),,2,1,!)(Λ==k k c k f k λ 0>λ。

4、证明函数)(21)(||∞<<-∞=-x e x f x 是一个密度函数。

5、若ξ的分布函数为N (10,4),求ξ落在下列范围的概率:(1)(6,9);(2)(7,12);(3)(13,15)。

6、若ξ的分布函数为N (5,4),求a 使:(1)90.0}{=<a P ξ;(2)01.0}|5{|=>-a P ξ。

7、设}{)(x P x F ≤=ξ,试证)(x F 具有下列性质:(1)非降;(2)右连续;(3),0)(=-∞F 1)(=+∞F 。

8、试证:若αξβξ-≥≥-≥≤1}{,1}{12x P x P ,则)(1}{21βαξ+-≥≤≤x x P 。

9、设随机变量ξ取值于[0,1],若}{y x P <≤ξ只与长度x y -有关(对一切10≤≤≤y x ),试证ξ服从[0,1]均匀分布。

10、若存在Θ上的实值函数)(θQ 及)(θD 以及)(x T 及)(x S ,使)}()()()(ex p{)(x S D x T Q x f ++=θθθ,则称},{Θ∈θθf 是一个单参数的指数族。

证明(1)正态分布),(20σm N ,已知0m ,关于参数σ;(2)正态分布),(200σm N ,已知0σ,关于参数m ;(3)普阿松分布),(λk p 关于λ都是一个单参数的指数族。

但],0[θ上的均匀分布,关于θ不是一个单参数的指数族。

李贤平 《概率论与数理统计 第四章》答案

李贤平 《概率论与数理统计 第四章》答案

第4章 数字特征与特征函数2、袋中有k 号的球k 只,n k ,,2,1 =,从中摸出一球,求所得号码的数学期望。

3、随机变量μ取非负整数值0≥n 的概率为!/n AB p nn =,已知a E =μ,试决定A 与B 。

7、袋中有n 张卡片,记号码1,2,…,n,从中有放回地抽出k 张卡片来,求所得号码之和μ的数学期望及方差。

9、试证:若取非负整数值的随机变量ξ的数学期望存在,则∑∞=≥=1}{k k P E ξξ。

11、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(||∞<<∞-=--x e x p x λμλ0>λ。

试求ξE ,ξD 。

13、若21,ξξ相互独立,均服从),(2σa N ,试证πσξξ+=a E ),max (21。

17、甲袋中有a 只白球b 只黑球,乙袋中装有α只白球β只黑球,现从甲袋中摸出()c c a b ≤+只球放入乙袋中,求从乙袋中再摸一球而为白球的概率。

20、现有n 个袋子,各装有a 只白球b 只黑球,先从第一个袋子中摸出一球,记下颜色后就把它放入第二个袋子中,再从第二个袋子中摸出一球,记下颜色后就把它放入第三个袋子中,照这样办法依次摸下去,最后从第n 个袋子中摸出一球并记下颜色,若在这n 次摸球中所摸得的白球总数为n S ,求n S 。

21、在物理实验中,为测量某物体的重量,通常要重复测量多次,最后再把测量记录的平均值作为该体质重量,试说明这样做的道理。

24、若ξ的密度函数是偶函数,且2E ξ<∞,试证ξ与ξ不相关,但它们不相互独立。

25、若,ξη的密度函数为22221,1(,)0,1x y p x y x y π⎧+≤⎪=⎨⎪+>⎩,试证:ξ与η不相关,但它们不独立。

27、若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立。

26、若,U aX b V cY d =+=+,试证,U V 的相关系数等于,X Y 的相关系数。

《概率论基础》(李贤平)第三版-课后答案

《概率论基础》(李贤平)第三版-课后答案

第一章事件与概率1、解:(1) P{只订购A 的}=P{A(B∪C)}=P(A)-{P(AB)+P(AC)-P(ABC)}=0.45-0.1.-0.08+0.03=0.30.(2) P{只订购A 及B 的}=P{AB}-C}=P(AB)-P(ABC)=0.10-0.03=0.07(3) P{只订购A 的}=0.30,P{只订购B 的}=P{B-(A∪C)}=0.35-(0.10+0.05-0.03)=0.23.P{只订购C 的}=P{C-(A∪B)}=0.30-(0.05+0.08-0.03)=0.20.∴P{只订购一种报纸的}=P{只订购A}+P{只订购B}+P{只订购C}=0.30+0.23+0.20=0.73.(4)P{正好订购两种报纸的}=P{(AB-C) ∪(AC-B) ∪(BC-A)}=P(AB-ABC)+P(AC-ABC)+P(BC-ABC)=(0.1-0.03)+(0.08-0.03)+.(0.05-0.03)=0.07+0.05+0.02=0.14.(5)P{至少订购一种报纸的}= P{只订一种的}+ P{恰订两种的}+ P{恰订三种的}=0.73+0.14+0.03=0.90.(6) P{不订任何报纸的}=1-0.90=0.10.2、解:(1)ABC =A ⇒BC ⊃A( A BC ⊂A显然) ⇒B ⊃A且C ⊃A ,若A发生,则B 与C 必同时发生。

(2)A ∪ B ∪ C =A ⇒B ∪ C ⊂A ⇒B ⊂A且C ⊂ A ,B 发生或C 发生,均导致A 发生。

(3)AB ⊂C ⇒A与B 同时发生必导致C 发生。

(4)A ⊂BC ⇒A ⊂B ∪ C ,A 发生,则B 与C 至少有一不发生。

3、解: A1 ∪ A2 ∪…∪ A n =A1 + ( A2 -A1 ) +… + ( A n -A1 -… -A n-1 )(或)=A1 +A2 A1 +…+A n A1 A2 … A n-1 .4、解:(1)ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};ABC ={抽到的是男同学,又爱唱歌,又是运动员}。

《概率论基础》(李贤平)第三版-课后答案

《概率论基础》(李贤平)第三版-课后答案

第一章事件与概率1、解:(1) P{只订购A 的}=P{A(B∪C)}=P(A)-{P(AB)+P(AC)-P(ABC)}=0.45-0.1.-0.08+0.03=0.30.(2) P{只订购A 及B 的}=P{AB}-C}=P(AB)-P(ABC)=0.10-0.03=0.07(3) P{只订购A 的}=0.30,P{只订购B 的}=P{B-(A∪C)}=0.35-(0.10+0.05-0.03)=0.23.P{只订购C 的}=P{C-(A∪B)}=0.30-(0.05+0.08-0.03)=0.20.∴P{只订购一种报纸的}=P{只订购A}+P{只订购B}+P{只订购C}=0.30+0.23+0.20=0.73.(4)P{正好订购两种报纸的}=P{(AB-C) ∪(AC-B) ∪(BC-A)}=P(AB-ABC)+P(AC-ABC)+P(BC-ABC)=(0.1-0.03)+(0.08-0.03)+.(0.05-0.03)=0.07+0.05+0.02=0.14.(5)P{至少订购一种报纸的}= P{只订一种的}+ P{恰订两种的}+ P{恰订三种的}=0.73+0.14+0.03=0.90.(6) P{不订任何报纸的}=1-0.90=0.10.2、解:(1)ABC =A ⇒BC ⊃A( A BC ⊂A显然) ⇒B ⊃A且C ⊃A ,若A发生,则B 与C 必同时发生。

(2)A ∪ B ∪ C =A ⇒B ∪ C ⊂A ⇒B ⊂A且C ⊂ A ,B 发生或C 发生,均导致A 发生。

(3)AB ⊂C ⇒A与B 同时发生必导致C 发生。

(4)A ⊂BC ⇒A ⊂B ∪ C ,A 发生,则B 与C 至少有一不发生。

3、解: A1 ∪ A2 ∪…∪ A n =A1 + ( A2 -A1 ) +… + ( A n -A1 -… -A n-1 )(或)=A1 +A2 A1 +…+A n A1 A2 … A n-1 .4、解:(1)ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};ABC ={抽到的是男同学,又爱唱歌,又是运动员}。

概率论答案 - 李贤平版 - 第五章

概率论答案 - 李贤平版 - 第五章

第五章 有 限 定 理1、设()(0)f x x <<-∞是单调非降函数,且()0f x >,对随机变量ξ,若(||)Ef ξ<∞,则对任意x o >,1{||}(||)()P x Ef f x ξξ≥=。

2、ξ为非负随机变量,若(0)a Ee a ξ<∞>,则对任意x o >,{}ax a P x e Ee ξξ-≥≤。

3、若()0h x ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何0c >,1{()}()P h c c Eh ξξ-≥≤。

4、{}k ξ各以12概率取值s k 和sk -,当s 为何值时,大数定律可用于随机变量序列1,,,n ξξ的算术平均值?5、验证概率分布如下给定的独立随机变量序列是否满足马尔可夫条件:(1)1{2}2kk P X =±=; (2)(21)2{2}2,{0}12k k k k k P X P X -+-=±===-; (3)11221{2},{0}12kk k P X k P X k --=±===-。

6、若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而1,(||2)k k l ξξ-≥是独立的,证明这时对{}k ξ大数定律成立。

7、已知随机变量序列12,,ξξ的方差有界,n D c ξ≤,并且当||i j -→∞时,相关系数0ij r →,证明对{}k ξ成立大数定律。

8、对随机变量序列{}i ξ,若记11()n n n ηξξ=++,11()n n a E E nξξ=++,则{}i ξ服从大数定律的充要条件是22()lim 01()n n n n n a Ea ηη→∞⎧⎫-=⎨⎬+-⎩⎭。

9、用斯特灵公式证明:当,,n m n m →∞→∞-→∞,而0mn→时, 2221~2nmn n n m -⎛⎫⎛⎫ ⎪⎪-⎝⎭⎝⎭。

李贤平《概率论基础》第三版课后答案

李贤平《概率论基础》第三版课后答案
(3)p=P{第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁
边}= 2 + 2 − 1 = 7 . 5 5 10 10 (4)这里事件是(3)中事件的对立事件,所以 P = 1− 7 /10 = 3/10 (5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以 P = 1× 4 !/ 5 != 1/ 5
1
A + C = {1,2,3}。
6、解:(1){至少发生一个}= A ∪ B ∪ C ∪ D . (2){恰发生两个}= ABC D + ACBD + ADBC + BC AD + CD AB + BDAC .
(3){A,B 都发生而 C,D 都不发生}= ABC D . (4){都不发生}= ABC D = A ∪ B ∪ C ∪ D .
4、解:(1) ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};
ABC ={抽到的是男同学,又爱唱歌,又是运动员}。 (2) ABC = A ⇒ BC ⊃ A ,当男同学都不爱唱歌且是运动员时成立。 (3)当不是运动员的学生必是不爱唱歌的时, C ⊂ B 成立。
(4)A=B 及 A = C ⇒ A = B = C ,当男学生的全体也就是不爱唱歌的学生全体,也
(2)在上式中令 x=-1 即得所欲证。
(3)要原式有意义,必须
0

r

a
。由于
C a−r a+b
=
C b+r a+b
,
Cbk
=
C b−k b
,此题即等于
a
∑ 要证
C C k +r b−k ab
=
C b+r a+b

概率论答案-李贤平版-第三章

概率论答案-李贤平版-第三章

第三章 随机变量与分布函数1、直线上有一质点,每经一个单位时间,它分别以概率p 或p -1向右或向左移动一格,若该质点在时刻0从原点出发,而且每次移动是相互独立的,试用随机变量来描述这质点的运动(以n S 表示时间n 时质点的位置)。

2、设ξ为贝努里试验中第一个游程(连续的成功或失败)的长,试求ξ的概率分布。

3、c 应取何值才能使下列函数成为概率分布:(1);,,2,1,)(N k Nck f ==(2),,2,1,!)( ==k k ck f kλ 0>λ。

4、证明函数)(21)(||∞<<-∞=-x e x f x 是一个密度函数。

5、若ξ的分布函数为N (10,4),求ξ落在下列范围的概率:(1)(6,9);(2)(7,12);(3)(13,15)。

6、若ξ的分布函数为N (5,4),求a 使:(1)90.0}{=<a P ξ;(2)01.0}|5{|=>-a P ξ。

7、设}{)(x P x F ≤=ξ,试证)(x F 具有下列性质:(1)非降;(2)右连续;(3),0)(=-∞F1)(=+∞F 。

8、试证:若αξβξ-≥≥-≥≤1}{,1}{12x P x P ,则)(1}{21βαξ+-≥≤≤x x P 。

9、设随机变量ξ取值于[0,1],若}{y x P <≤ξ只与长度x y -有关(对一切10≤≤≤y x ),试证ξ服从[0,1]均匀分布。

10、若存在Θ上的实值函数)(θQ 及)(θD 以及)(x T 及)(x S ,使)}()()()(ex p{)(x S D x T Q x f ++=θθθ,则称},{Θ∈θθf 是一个单参数的指数族。

证明(1)正态分布),(20σm N ,已知0m ,关于参数σ;(2)正态分布),(200σm N ,已知0σ,关于参数m ;(3)普阿松分布),(λk p 关于λ都是一个单参数的指数族。

但],0[θ上的均匀分布,关于θ不是一个单参数的指数族。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

李贤平《概率论与数理统计》标准答案————————————————————————————————作者:————————————————————————————————日期:2第5章 极限定理1、ξ为非负随机变量,若(0)a Eea ξ<∞>,则对任意x o >,{}ax a P x e Ee ξξ-≥≤。

2、若()0h x ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何0c >,1{()}()P h c c Eh ξξ-≥≤。

4、{}k ξ各以12概率取值s k 和sk -,当s 为何值时,大数定律可用于随机变量序列1,,,n ξξL L 的算术平均值?6、验证概率分布如下给定的独立随机变量序列是否满足马尔可夫条件:(1)1{2}2kk P X =±=; (2)(21)2{2}2,{0}12k k k k k P X P X -+-=±===-; (3)11221{2},{0}12kk k P X k P X k --=±===-。

7、若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而1,(||2)k k l ξξ-≥是独立的,证明这时对{}k ξ大数定律成立。

8、已知随机变量序列12,,ξξL 的方差有界,n D c ξ≤,并且当||i j -→∞时,相关系数0ij r →,证明对{}k ξ成立大数定律。

9、对随机变量序列{}i ξ,若记11()n n nηξξ=++L ,11()n n a E E n ξξ=++L ,则{}i ξ服从大数定律的充要条件是22()lim 01()n n n n n a E a ηη→∞⎧⎫-=⎨⎬+-⎩⎭。

10、用斯特灵公式证明:当,,n m n m →∞→∞-→∞,而0mn→时, 22211~2nmn n e n m n π-⎛⎫⎛⎫ ⎪⎪-⎝⎭⎝⎭。

12、某计算机系统有120个终端,每个终端有5%时间在使用,若各个终端使用与否是相互独立的,试求有10个或更多终端在使用的概率。

13、求证,在x o >时有不等式222111222211t x x x x e e dt e x x-∞--≤≤+⎰。

14、用德莫哇佛——拉普拉斯定理证明:在贝努里试验中,01p <<,则不管k 是如何大的常数,总有{||}0()n P np k n μ-<→→∞。

15之间的概率不小于90%。

并用正态逼近计算同一问题。

16、用车贝晓夫不等式及德莫哇佛——拉普拉斯定理估计下面概率:n P p n με⎧⎫-≥⎨⎬⎩⎭并进行比较。

这里n μ是n 次贝努里试验中成功总次数,p 为每次成功的概率。

17、现有一大批种子,其中良种占16,今在其中任选6000粒,试问在这些种子中,良种所占的比例与16之差小于1%的概率是多少? 18、种子中良种占16,我们有99%的把握断定,在6000粒种子中良种所占的比例与16之差是多少?这时相应的良种数落在哪个范围内?19、蒲丰试验中掷铜币4040次,出正面2048次,试计算当重复蒲丰试验时,正面出现的频率与概率之差的偏离程度,不大于蒲丰试验中所发生的偏差的概率。

20、设分布函数列{()}n F x 弱收敛于连续的分布函数()F x ,试证这收敛对1x R ∈是一致的。

22、试证若正态随机变量序列依概率收敛,则其数学期望及方差出收敛。

24、若n X 的概率分布为0111n n n ⎛⎫ ⎪⎪-⎪⎝⎭,试证相应的分布函数收敛,但矩不收敛。

25、随机变量序列{}n ξ具有分布函数{()}n F x ,且()()n F x F x →,又{}n η依概率收敛于常数0c >。

试证:(I )n n n ζξη=+的分布函数收敛于()F x c -;(II )nn nξζη=的分布函数收敛于()F cx 。

26、试证:(1)0P Pn n X X X X −−→⇒-−−→; (2),{}1PPn n X X X Y P X Y −−→−−→⇒==; (3)0(,)P Pn n m X X X X n m −−→⇒-−−→→∞; (4),PPPn n n n X X X Y X Y X Y −−→−−→⇒±−−→±; (5),P n X X k −−→是常数Pn kX kX −−→; (6)22PPn n X X X X −−→⇒−−→;(7),,,PPn n X a Y b a b −−→−−→常数Pn n X Y ab −−→; (8)111PPn n X X -−−→⇒−−→; (9),,,P Pn n X a Y b a b −−→−−→常数110Pn n b X Y ab --≠⇒−−→;(10),P n X X Y −−→是随机变量Pn X Y XY ⇒−−→; (11),P P Pn n n n X X Y Y X Y XY −−→−−→⇒−−→。

27、设Pn X X −−→。

而g 是1R 上的连续函数,试证()()Pn g X X −−→。

28、若{}n X 是单调下降的正随机变量序列,且0P n X −−→,证明0a s n X ⋅⋅−−→。

29、若12,,X X L 是独立随机变量序列,μ是整值随机变量,{}k P k p μ==,且与{}i X 独立,求1X X μη=++L 的特征函数。

30、若()f t 是非负定函数,试证(1)(0)f 是实的,且(0)0f ≥;(2)()()f t f t -=;(3)|()|(0)f t f ≤。

31、用特征函数法直接证明德莫佛——拉普拉斯积分极限定理。

33、若母体ξ的数学期望2,E m D ξξσ==,抽容量为n 的子样求其平均值ξ,为使{||0.1}95%P m ξσ-<≥,问n 应取多大值?34、若{,1,2,}n n ξ=L 为相互独立随机变量序列,具有相同分布11{1},{0}22n n P P ξξ-=-=,而12nkn k kξη==∑,试证n η的分布收敛于[0,1]上的均匀分布。

35、用特征函数法证明二项分布的普阿松定理。

36、用特征函数法证明,普阿松分布当λ→∞时,渐近正态分布。

计算n Y 的特征函数,并求n →∞时的极限。

38、设n X 独立同分布,2{2}2k kn P X --== (1,2,)k =L ,则大数定律成立。

39、若{}i X 是相互独立的随机变量序列,均服从(0,1)N ,试证1221nn nX X W nX X ++=++L L 及1221n n nX X U X X++=++L L 渐近正态分布(0,1)N 。

40、设12,,X X L 是独立随机变量序列,均服从[0,1]均匀分布,令11nnn i i Z X =⎛⎫= ⎪⎝⎭∏,试证Pn Z c →,这里c 是常数,并求c 。

41、若{}i X 是独立同分布随机变量序列,i EX m =,若()f x 是一个有界的连续函数,试证1lim ()n n X X E f f m n →∞⎡++⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦L 。

42、若{}i X 是独立同分布、具有有限二阶矩的随机变量序列,试证12(1)nPi i i iX EX n n =−−→+∑。

44、设()f x 是[0,1]上连续函数,利用概率论方法证明:必存在多项式序列{()}n B x ,在[0,1]上一致收敛于()f x 。

45、设{}i X 是独立随机变量序列,试证0a s n X ⋅⋅−−→的充要条件为,对任意0ε>有1{||}nn P Xε∞=≥<∞∑。

46、试证独立同分布随机变量序列,若存在有限的四阶中心矩,则强大数定律成立。

48、举例说明波雷尔——康特拉引理(i )之逆不成立。

49、设是相互独立且具有方差的随机变量序列,若21k n DX k ∞=<∞∑,则必有21lim 0k n DX n →∞=。

53、若{}k ξ是独立随机变量序列,方差有限,记n 11(),nn k k n k S E S nξξη==-=∑。

(1)利用柯尔莫哥洛夫不等式证明{}1n 22221max (2)m m mm jm n j p PD ηεξε+>≥<=≥≤∑(2)对上述m p ,证明若21kk D k ξ∞=<∞∑,则1m m p ∞=∑收敛;(3)利用上题结果证明对{}n ξ成立柯尔莫哥洛夫强大数定律。

54、(1)设{}k c 为常数列,令{}1,sup ||,1,2,n k m m k m k s c b s s k ∞+===-=∑L inf{,1,2,}m b b m ==L ,试证1kk c∞=∑收敛的充要条件是0b =;(2)(Kronecker 引理)对实数列{}k c ,若1k k c k∞=∑收敛,则110nkk cn =→∑。

56、设12,,X X L 是独立随机变量序列,对它成立中心极限定理,则对{}n X 成立大数定律的充要条件为()21()n D X X o n ++=L 。

57、设12,,X X L 是独立同分布随机变量序列,且1nkk X n=∑对每一个1,2,n =L 有相同分布,那么,若0,1i i EX DX ==,则i X 必须是(0,1)N 变量。

58、设{}k X 是独立随机变量序列,且k X 服从(0,2)kN -,试证序列{}k X :(1)成立中心极限定理;(2)不满足费勒条件;(3)不满足林德贝格条件,从而说明林德贝格条件并不是中心极限定理成立的必要条件。

59、若{}k X 是独立随机变量序列,i X 服从[1,1]-均匀分布,对2,3,,k k X =L 服从1(0,2)k N -,证明对{}k X 成立中心极限定理,但不满足费勒条件。

60、在普阿松试验中,第i 次试验时事件A 出现的概率为i p ,不出现的概率为i q ,各次试验是独立的,以n v 记前n 次试验中事件A 出现的次数,试证:(1)()0P n n v Ev n-−−→;(2)对11nn i i n i ii v p p q ==⎛⎫- ⎪⎝⎭∑∑成立中心极限定理的充要条件是1i ii p q∞==+∞∑。

61、设{}k X 独立,k X 服从[,]k k -均匀分布,问对{}k X 能否用中心极限定理? 62、试问对下列独立随机变量序列,李雅普诺夫定理是否成立?(1):1122k kk X ⎛⎫- ⎪ ⎪ ⎪⎝⎭; (2)0:,0111333a a k k k X a ⎛⎫- ⎪> ⎪ ⎪⎝⎭。

65、求证:当n →∞时,01!2k nnk n e k -=→∑。

相关文档
最新文档