李贤平 《概率论与数理统计 第一章》答案
概率论与数理统计第1章习题答案

20 21
2
2 第十页,共十四页。
26(.1)设有4个独立工作的元件1,2,3,4.它们的可靠 性分别为p1,p2,p3,p4,将它们按右图的方式(fāngshì)
联接(称为并串联系统);
2
3
1
4
(2)设有5个独立工作的元件1,2,3,4,5.它们的可 靠性均为p,将它们按右图的方式联接(称为(chēnɡ wéi)桥式系统);试分别求这两个系统的可靠性.
7
6
5 P171
第四页,共十四页。
14. 已知P(A)=1/4,P(B|A)1/3,P(A|B)=1/2,求P(A∪B).
解 P(A∪B)=P(A)+P(B)-P(AB)
P(AB)=P(A)P(B|A)=P(B)P(A|B)
故 P( AB) 1 1 1 P(B) P( AB) 1 12 1
第五页,共十四页。
16. 据以往资料(zīliào)表明,某一3口之家,患某种传染病的概率有以下规律:
P{孩子得病(dé bìnɡ)}=0.6, P{母亲得病|孩子得病}=0.5,
P{父亲得病|母亲(mǔ qīn)及孩子得 求病母}=亲0.及4,孩子得病但父亲未得病的概率.
解 设事件A={孩子得病},B={母亲得病},C={父亲得病}
(1)求恰有90个次品的概率;(2)求至少有2个次品的概率.
解 基本事件是从1500个产品中取200个,
基本事件总数n= 1250000
(1)从400个次品中取90个, 1100个正品中取110个的事件总数
n(1)
49000
1100 110
故恰有90个次品的概率
p(1)
n(1)
/
n
49000
概率论与数理统计第一章习题解答

《概率论与数量统计》第一章习题解答1、写出下列随机试验的样本空间:(1)记录一个班一次数学考试的平均分数(设以百分制记分)。
(2)生产产品直到有10件正品为止,记录生产产品的总件数。
(3)对某工厂出厂的产品进行检查,合格的产品记上“正品”,不合格的记上“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果。
(4)在单位圆内任意取一点,记录它的坐标。
解:(1)设该班有n人,则该班总成绩的可能值是0,1,2,……,100n。
故随机试验的样本空间S={i/n|i=0,1,2,……,100n}。
(2)随机试验的样本空间S={10,11,12,……}。
(3)以0表示检查到一个次品,1表示检查到一个正品,则随机试验的样本空间S={00,0100,0101,0110,0111,100,1010,1011,1100,1101,1110,1111}。
(4)随机试验的样本空间S={(x,y)|x2+y2<1}。
2、设A,B,C为三个事件,用A,B,C的运算关系表示下列各事件:(1)A发生,B 与C都不发生。
(2)A与B都发生,而C不发生。
(3)A,B,C中至少有一个发生。
(4)A,B,C都发生。
(5)A,B,C都不发生。
(6)A,B,C中不多于一个发生。
(7)A,B,C中不多于两个发生。
(8)A,B,C中至少有两个发生。
解:(1)A B C(2)AB C(3)A∪B∪C (4)ABC(5)A B C(6)A B C∪A B C∪A B C∪A B C(7)S-ABC (8)ABC∪AB C∪A B C∪A BC3、(1)设A,B,C为三个事件,且P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求A,B,C至少有一个发生的概率。
(2)已知P(A)=1/2,P(B)=1/3,P(C)=1/5,P(AB)=1/10,P(AC)=1/15,P(BC)=1/20,P(ABC)=1/30,求A∪B,A B,A∪B∪C,A B C,A B C,A B∪C的概率。
《概率论与数理统计答案》第一章

4/15,刮风(记作事件 B )的概率为 7/15,刮风又下雨(记作事件 C )的概率为
网 1/10。求 P( A | B) , P(B | A) , P( A ∪ B) 。
案 提示与答案: P(A | B) = 3 , P(B | A) = 3 , P(A ∪ B) = 19 。
6.已知事件 A 、 B 满足 P( AB) = P( A ∩ B ) 且 P( A) = 1/ 3 ,求 P(B) 。
解法一:由性质(5)知
m P(B) = P( A ∪ B) − P( A) + P( AB)
(性质 5)
co =1− P( A∪ B) − P( A) + P( AB)
(性质 3)
球,也可能是黑球),并且也只有这两种可能。因此若把这两种可能看成两个事
件,这两个事件的和事件便构成了一个必然事件。
若设 A 表示:“由甲袋取出的球是白球”; B 表示:“由甲袋取出的球是黑 球”; C 表示:“从乙袋取出的球是白球”。则 P(C) = 5 /12 。
18.设有一箱同类产品是由三家工厂生产的,其中 1 是第一家工厂生产的, 2
16.一机床有 1/3 的时间加工零件 A ,其余时间加工零件 B ,加工零件 A 时, 停机的概率是 3/10,加工零件 B 时,停机的概率是 4/10,求这台机床停机的概 率。
提示与答案:依题意,这是一全概率问题。若设 A 事件表示:“加工零件 A ”; B 事件表示:“加工零件 B ; C 事件表示:“机床停机”。 则 P(C) = 11/ 30 。
相同”; B 表示事件:“这 n 个人至少有两个人生日在同一天”。
李贤平《概率论与数理统计第一章》规范标准答案

第1章 事件与概率2、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A =Y Y ;(3)C AB ⊂;(4)BC A ⊂.3、试把n A A A Y ΛY Y 21表示成n 个两两互不相容事件的和.6、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。
8、证明下列等式:(1)1321232-=++++n n n n n n n nC C C C Λ;(2)0)1(321321=-+-+--n n n n n n nC C C C Λ;(3)∑-=-++=r a k r a b a k b r k a C C C0.9、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。
10、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。
11、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。
12、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。
13、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。
现从两袋中各取一球,求两球颜色相同的概率。
14、由盛有号码Λ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。
16、任意从数列Λ,2,1,N 中不放回地取出n 个数并按大小排列成:n m x x x x <<<<<ΛΛ21,试求M x m =的概率,这里N M ≤≤118、从6只不同的手套中任取4只,问其中恰有一双配对的概率是多少?19、从n 双不同的鞋子中任取2r(2r<n)只,求下列事件发生的概率:(1)没有成对的鞋子;(2)只有一对鞋子;(3)恰有两对鞋子;(4)有r 对鞋子。
《概率论与数理统计》第一章课后习题解答共16页word资料

吴赣昌编 《概率论与数理统计》(理工类)三版课后习题解答习题1-31、袋中5个白球,3个黑球,一次任取两个。
(1)求取到的两个求颜色不同的概率;(2)求取到的两个求中有黑球的概率。
解:略2、10把钥匙有3把能打开门,今取两把,求能打开门的概率。
解:设A=“能打开”,则210S n C =法一,取出的两把钥匙,可能只有一把能打开,可能两把都能打开,则112373A n C C C =+ 所以()A Sn P A n = 法二,A ={都打不开},即取得两把钥匙是从另7把中取得的,则27A n C =,所以27210()1()1C P A P A C =-=- 3、两封信投入四个信筒,求(1)前两个信筒没有信的概率,(2)第一个信筒内只有一封信的概率。
解:24S n =(两封信投入四个信筒的总的方法,重复排列)(1)设A=“前两个信筒没有信”,即两封信在余下的两个信筒中重复排列,22A n =;(2)设B=“第一个信筒内只有一封信”,则应从两封信中选一封放在第一个信筒中,再把余下的一封信放入余下的三个信筒中的任一个,1123B n C =带入公式既得两个概率。
4、一副扑克牌52张,不放回抽样,每次取一张,连续抽4张,求花色各异的概率.解:略5、袋中有红、黄、黑色求各一个,有放回取3次,求下列事件的概率。
A=“三次都是红球”;B=“三次未抽到黑球”,C=“颜色全不相同”,D=“颜色不全相同” 解:略6、从0,1,2,,9L 等10个数字中,任意选出不同的三个数字,试求下列事件的概率:1A =‘三个数字中不含0和5’,2A =‘三个数字中不含0或5’,3A =‘三个数字中含0但不含5’.解 3813107()15C P A C ==. 333998233310101014()15C C C P A C C C =+-=, 或 182231014()1()115C P A P A C =-=-=, 2833107()30C P A C ==. 7、从一副52张的扑克牌中任取3张,不重复,计算取出的3张牌中至少有2张花色相同的概率。
概率论与数理统计 习题答案 第1章

第一章概率论的基本概念1.写出下列随机试验的样本空间.⑴纪录一个小班一次数学考试的平均分数(充以百分制记分).解S={%=OJ…,100% 其中〃为小班人数.n⑵同时掷三颗骰子,纪录三颗骰子点数之和;解:S={3,4,…,18}.⑶生产产品直到得到10件正品为止,纪录生产产品的总件数;解:S={10, 11, 12,…(4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品,停止检查, 纪录检查的结果.解:S={00, 100,0100,0101, 1010,0110, 11009011151011, 1101, 111091111)9 其中。
表示次品,1表示正品.(5)在单位圆内任意取一点,纪录它的坐标;解:S={(x, y)∣x2+y2<l}.(6)将一尺之梗成三段,观看各段的长度.解:S={(x, y, z)k>09γ>09z>0, x+y+z=l},其中.χ z 分别表示第一、二、三段的长度.2.设A, B,C为三大事,用A,昆。
的运算关系表示下列各大事.(1)A发生,3与。
不发生;解表示为:ABC 或A—(A3+A。
或A—(3uC)∙(2)A,3都发生,pre不发生;解表示为:48。
或A5-A3C或48-C(3)4 B, C中至少有一个发生;解:表示为:A+3+C(4)A,民。
都发生;解:表示为:ABC(5)A,B,C都不发生;解:表示为:ABC^i S- (A+B+C)^A U B U C(6)4民C中不多于一个发生;解:即人民。
中至少有两个同时不发生相当于了反BC,入。
中至少有一个发生.故表示为:AB+BC+AC.(7)A, B, C中不多于三个发生;解:相当于:A瓦。
中至少有一个发生.故表示为:4+豆+。
或砺.(8)A, B, C中至少有二个发生.解:相当于:A民BC, AC中至少有一个发生.故表示为:AB+BC+AC.3.设4 3是两大事且P(A)=0∙6, P(3)=0.7.问:(1)在什么条件下尸(AB)取得最大值,最大值是多少?(2)在什么条件下尸(A5) 取得最小值,最小值是多少?解:⑴由于P(A3)=P(A)+P⑹-P(Au8),且P(A)<P(3)≤尸(Auδ),所以当AuB时,P(Au3)=P(B), P(A3)取到最大值,最大值为P(AB)=P(A)=0.6.⑵当A^J B=S时,P(A3)取到最小值,最小值为P(AB)=0.6+0.7-l=0.3.4.设A,民。
《概率论与数理统计 第一章》答案

第1章 事件与概率2、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A = ;(3)C AB ⊂;(4)BC A ⊂.3、试把n A A A 21表示成n 个两两互不相容事件的和.6、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。
8、证明下列等式:(1)1321232-=++++n n n n n n n nC C C C ;(2)0)1(321321=-+-+--n n n n n n nC C C C ;(3)∑-=-++=r a k r a b a k b r k a C C C0.9、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。
10、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。
11、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。
12、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。
13、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。
现从两袋中各取一球,求两球颜色相同的概率。
14、由盛有号码 ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。
16、任意从数列 ,2,1,N 中不放回地取出n 个数并按大小排列成:n m x x x x <<<<< 21,试求M x m =的概率,这里N M ≤≤118、从6只不同的手套中任取4只,问其中恰有一双配对的概率是多少?19、从n 双不同的鞋子中任取2r(2r<n)只,求下列事件发生的概率:(1)没有成对的鞋子;(2)只有一对鞋子;(3)恰有两对鞋子;(4)有r 对鞋子。
概率论与数理统计第一章答案

概率论与数理统计第⼀章答案习题1-21. 选择题(1) 设随机事件A ,B 满⾜关系A B ?,则下列表述正确的是( ). (A) 若A 发⽣, 则B 必发⽣. (B) A , B 同时发⽣.(C) 若A 发⽣, 则B 必不发⽣. (D) 若A 不发⽣,则B ⼀定不发⽣.解根据事件的包含关系, 考虑对⽴事件, 本题应选(D).(2) 设A 表⽰“甲种商品畅销, ⼄种商品滞销”, 其对⽴事件A 表⽰( ). (A) 甲种商品滞销, ⼄种商品畅销. (B) 甲种商品畅销, ⼄种商品畅销. (C) 甲种商品滞销, ⼄种商品滞销.(D) 甲种商品滞销, 或者⼄种商品畅销.解设B 表⽰“甲种商品畅销”,C 表⽰“⼄种商品滞销”,根据公式B C B C = , 本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) ⼀袋中有5只球, 其中有3只⽩球和2只⿊球, 从袋中任意取⼀球, 观察其颜⾊; (2) 从(1)的袋中不放回任意取两次球, 每次取出⼀个, 观察其颜⾊; (3) 从(1)的袋中不放回任意取3只球, 记录取到的⿊球个数; (4) ⽣产产品直到有10件正品为⽌, 记录⽣产产品的总件数. 解 (1) {⿊球,⽩球}; (2) {⿊⿊,⿊⽩,⽩⿊,⽩⽩}; (3) {0,1,2};(4) 设在⽣产第10件正品前共⽣产了n 件不合格品,则样本空间为{10|0,1,2,n n += }.3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表⽰下列各事件: (1) 仅有A 发⽣;(2) A , B , C 中⾄少有⼀个发⽣; (3) A , B , C 中恰有⼀个发⽣; (4) A , B , C 中最多有⼀个发⽣; (5) A , B , C 都不发⽣;(6) A 不发⽣, B , C 中⾄少有⼀个发⽣. 解 (1) ABC ; (2)A B C ; (3) ABC ABC ABC ;(4) ABC ABC ABC ABC ; (5) ABC ; (6) ()A B C .4. 事件A i 表⽰某射⼿第i 次(i =1, 2, 3)击中⽬标, 试⽤⽂字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3; (4) A 2-A 3;(5)23A A ; (6)12A A .解 (1) 射⼿第⼀次或第⼆次击中⽬标;(2) 射⼿三次射击中⾄少击中⽬标;(3) 射⼿第三次没有击中⽬标;(4) 射⼿第⼆次击中⽬标,但是第三次没有击中⽬标;(5) 射⼿第⼆次和第三次都没有击中⽬标;(6) 射⼿第⼀次或第⼆次没有击中⽬标.习题1-31. 选择题 (1) 设A, B 为任⼆事件, 则下列关系正确的是( ).(A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+ .(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解由⽂⽒图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ).(A) A 和B 互不相容. (B) AB 是不可能事件.(C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解本题答案应选(C).2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ).解因()1()1()()()()P AB P A B P A P B P AB P AB =-=--+= ,故()()1P A P B +=. 于是()1.P B p =-0.4P A =,()0.3P B =,()0.4P A B = , 求()P AB .解由公式()()()()P A B P A P B P AB =+- 知()0.3P AB =. 于是()()()0.1.P AB P A P AB =-=4. 设A , B 为随机事件,()0.7P A =,()0.3P A B -=, 求()P AB .解由公式()()()P A B P A P AB -=-可知,()0.4P AB =. 于是()0.6P AB =.5. 设A , B 是两个事件, 且()0.6P A =, ()0.7P B =.问: (1) 在什么条件下()P AB 取到最⼤值, 最⼤值是多少? (2) 在什么条件下()P AB 取到最⼩值, 最⼩值是多少?解 ()()()()P AB P A P B P A B =+- =1.3()P A B - .(1) 如果A B B = , 即当A B ?时, P B A P =)( ()B =0.7, 则()P AB 有最⼤值是0.6 .(2) 如果)(B A P =1,或者A B S = 时, ()P AB 有最⼩值是0.3 .6. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发⽣的概率.解因为ABCAB ?,所以0()P ABC P AB ≤≤()=0, 即有()P ABC =0.由概率⼀般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++---+= 由对⽴事件的概率性质知A ,B , C 全不发⽣的概率是5()()1()12P ABC P A B C P A B C ==-=.习题1-41. 选择题在5件产品中, 有3件⼀等品和2件⼆等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是⼀等品. (B) 恰有1件⼀等品. (C) ⾄少有1件⼀等品. (D) ⾄多有1件⼀等品.解⾄多有⼀件⼀等品包括恰有⼀件⼀等品和没有⼀等品, 其中只含有⼀件⼀等品的113225C C C ?, 没有⼀等品的概率为023225C C C ?, 将两者加起即为0.7. 答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) ⾄少有1件次品的概率; (4) ⾄多有1件次品的概率; (5) ⾄少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )⾄少有1件次品的概率是1-03545350C C C ; (4) ⾄多有1件次品的概率是03545350C C C +12545350C C C ; (5) ⾄少有2件次品的概率是21545350C C C +30545350C C C .3. 袋中有9个球, 其中有4个⽩球和5个⿊球. 现从中任取两个球. 求:(1) 两个球均为⽩球的概率;(2) 两个球中⼀个是⽩的, 另⼀个是⿊的概率; (3)⾄少有⼀个⿊球的概率.解从9个球中取出2个球的取法有29C 种,两个球都是⽩球的取法有24C 种,⼀⿊⼀⽩的取法有1154C C 种,由古典概率的公式知道(1) 两球都是⽩球的概率是2924C C ;(2)两球中⼀⿊⼀⽩的概率是115429C C C ;(3)⾄少有⼀个⿊球的概率是12924C C -.4. 在区间(0, 1)中随机地取两个数, 求下列事件的概率:(1) 两数之和⼩于6 5;(2) 两数之积⼩于14;(3) 以上两个条件同时满⾜;(4) 两数之差的绝对值⼩于12的概率.解设X , Y 为所取的两个数, 则样本空间S = {(X , Y )|0(1) P {X +Y <65}=1441172550.68125-??=≈;(2) P {XY <14}=11411111ln 40.64444dx x+=+≈?;(3) P {X +Y <65, XY <14} =0.2680.932110.2680.932516161()()5545x dx dx x dx x ?+-++-≈0.593.(4) 解设x , y 为所取的两个数, 则样本空间Ω = {(x , y )|012}. 参见图1-1.图1-1 第2题样本空间故 111123222()14AS P A S Ω-===, 其中 S A , S Ω分别表⽰A 与Ω的⾯积.习题1-51. 选择题(1) 设随机事件A , B 满⾜P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件. (C) AB B =. (D)()()P AB P B =.解由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()1P A <<, 则下列命题正确的是( ).(A) 若()()P AB P A =, 则A , B 互斥.(B) 若()1P BA =, 则()0P AB =. (C) 若()()1P AB P AB +=, 则A , B 为对⽴事件. (D) 若(|)1P B A =, 则B 为必然事件.解由条件概率的定义知选(B ).2. 从1,2,3,4中任取⼀个数, 记为X , 再从1,2,…,X 中任取⼀个数, 记为Y ,求P {Y =2}. 解解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4}=41×(0+21+31+41)=4813.3. ⼝袋中有b 个⿊球、r 个红球, 从中任取⼀个, 放回后再放⼊同颜⾊的球a 个. 设B i ={第i 次取到⿊球}, 求1234()P B B B B .解⽤乘法公式得到)|()|()|()()(32142131214321B B B B P B B B P B B P B P B B B B P =.32ar b a r a r b r a r b a b r b b +++?++?+++?+=注意, a = 1和a = 0分别对应有放回和⽆放回抽样.4. 甲、⼄、丙三⼈同时对某飞机进⾏射击, 三⼈击中的概率分别为0.4, 0.5, 0.7. 飞机被⼀⼈击中⽽被击落的概率为0.2, 被两⼈击中⽽被击落的概率为0.6, 若三⼈都击中, 飞机必定被击落. 求该飞机被击落的概率.解⽬标被击落是由于三⼈射击的结果, 但它显然不能看作三⼈射击的和事件. 因此这属于全概率类型. 设A 表⽰“飞机在⼀次三⼈射击中被击落”, 则(0,1,2,3)i B i =表⽰“恰有i 发击中⽬标”.i B 为互斥的完备事件组. 于是没有击中⽬标概率为0()0.60.50.30.09P B =??=, 恰有⼀发击中⽬标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =??+??+??=,恰有两发击中⽬标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =??+??+??=,恰有三发击中⽬标概率为3()0.40.50.70.14P B =??=.⼜已知 0123(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B ====, 所以由全概率公式得到 3()()(|)0.360.20.410.60.1410.458.iii P A P B P A B ===?+?+?=∑5. 在三个箱⼦中, 第⼀箱装有4个⿊球, 1个⽩球; 第⼆箱装有3个⿊球, 3个⽩球; 第三箱装有3个⿊球, 5个⽩球. 现任取⼀箱, 再从该箱中任取⼀球.(1) 求取出的球是⽩球的概率;(2) 若取出的为⽩球, 求该球属于第⼆箱的概率.解 (1)以A 表⽰“取得球是⽩球”,i H 表⽰“取得球来⾄第i 个箱⼦”,i =1,2,3. 则P (i H )=13, i =1,2,3, 123115(|),(|),(|)528P A H P A H P A H ===. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P (2|H A )=222()()(|)20()()53P AH P H P A H P A P A ==6. 某⼚甲、⼄、丙三个车间⽣产同⼀种产品, 其产量分别占全⼚总产量的40%, 38%, 22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取⼀件进⾏检查.(1) 求这件产品是次品的概率;(2) 已知抽得的⼀件是次品, 问此产品来⾃甲、⼄、丙各车间的概率分别是多少?解设A 表⽰“取到的是⼀件次品”, i B (i =1, 2, 3)分别表⽰“所取到的产品来⾃甲、⼄、丙⼯⼚”. 易知,123,,B B B 是样本空间S 的⼀个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,12(|)0.04,(|)0.03P A B P A B ==,3(|)0.05P A B =.(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.220.0384.=?+?+?=.(2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ?===,222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ?===,333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ?===.习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成⽴的是( ).(A) A , B 相互独⽴. (B) A , B 不相互独⽴.(C) A , B 互为对⽴事件. (D) A , B 不互为对⽴事件. 解⽤反证法, 本题应选(B).(2) 设事件A 与B 独⽴, 则下⾯的说法中错误的是( ).(A) A 与B 独⽴. (B) A 与B 独⽴. (C)()()()P AB P A P B =. (D) A 与B ⼀定互斥.解因事件A 与B 独⽴, 故A B 与,A 与B 及A 与B 也相互独⽴. 因此本题应选(D).(3) 设事件A 与 B 相互独⽴, 且0(A)(|)()P A B P A =. (B) ()()()P AB P A P B =.(C) A 与B ⼀定互斥. (D)()()()()()P A B P A P B P A P B =+- .解因事件A 与B 独⽴, 故A B 与也相互独⽴, 于是(B)是正确的. 再由条件概率及⼀般加法概率公式可知(A)和(D)也是正确的. 从⽽本题应选(C).2.设A , B 是任意两个事件, 其中A 的概率不等于0和1, 证明 P (B |A )=)(A BP 是事件A 与B 独⽴的充分必要条件.证由于A 的概率不等于0和1, 故题中两个条件概率都存在.充分性. 因事件A 与B 独⽴, 知事件A 与B 也独⽴, 因此()(),()()P B A P B P B A P B ==,从⽽()()P B A P B A =.必要性. 已知()()P BA PB A =, 由条件概率公式和对⽴事件概率公式得到()()()()()1()()P AB P AB P B P AB P A P A P A -==-,移项得[]()1()()()()(),P AB P A P A P B P A P AB -=-化简得 P (AB )=P (A )P (B ), 因此A 和B 独⽴.3. 设三事件A , B 和C 两两独⽴, 满⾜条件:,ABC =?1()()()2P A P B P C ==<, 且9()16P A B C =,求()P A .解根据⼀般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+ .由题设可知 A , B 和C 两两相互独⽴, ,ABC =?1()()()2P A P B P C ==<, 因此有2()()()[()],()()0,P AB P AC P BC P A P ABC P ====?=从⽽29()3()3[()]16P A B C P A P A =-=,于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =.4.某⼈向同⼀⽬标独⽴重复射击, 每次射击命中⽬标的概率为p (0解 “第4次射击恰好第2次命中” 表⽰4次射击中第4次命中⽬标, 前3次射击中有⼀次命中⽬标. 由独⽴重复性知所求概率为1223(1)C p p -.5. 甲、⼄两⼈各⾃向同⼀⽬标射击, 已知甲命中⽬标的概率为 0.7, ⼄命中⽬标的概率为0.8. 求:(1) 甲、⼄两⼈同时命中⽬标的概率;(2) 恰有⼀⼈命中⽬标的概率; (3) ⽬标被命中的概率.解甲、⼄两⼈各⾃向同⼀⽬标射击应看作相互独⽴事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==?=(2)()()0.70.20.30.80.38;P AB P AB +=?+?=(3) ()()()()()0.70.80.560.94.P A B P A P B P A P B =+-=+-=总习题⼀1. 选择题:设,,A B C 是三个相互独⽴的随机事件, 且0()1P C <<, 则在下列给定的四对事件中不相互独⽴的是( ).(A)A B 与C . (B)AC 与C .(C) A B -与C . (D) AB 与C .解由于A , B , C 是三个相互独⽴的随机事件, 故其中任意两个事件的和、差、交、并与另⼀个事件或其逆是相互独⽴的, 根据这⼀性质知(A), (C), (D)三项中的两事件是相互独⽴的, 因⽽均为⼲扰项, 只有选项(B)正确..2. ⼀批产品由95件正品和5件次品组成, 先后从中抽取两件, 第⼀次取出后不再放回.求: (1) 第⼀次抽得正品且第⼆次抽得次品的概率; (2) 抽得⼀件为正品, ⼀件为次品的概率.解 (1) 第⼀次抽得正品且第⼆次抽得次品的概率为9551910099396?=.(1) 抽得⼀件为正品,⼀件为次品的概率为95559519.10099198+= 3. 设有⼀箱同类型的产品是由三家⼯⼚⽣产的. 已知其中有21的产品是第⼀家⼯⼚⽣产的, 其它⼆⼚各⽣产41. ⼜知第⼀、第⼆家⼯⼚⽣产的产品中有2%是次品, 第三家⼯⼚⽣产的产品中有4%是次品. 现从此箱中任取⼀件产品, 求取到的是次品的概率.解从此箱中任取⼀件产品, 必然是这三个⼚中某⼀家⼯⼚的产品. 设A ={取到的产品是次品},B i ={取到的产品属于第i 家⼯⼚⽣产}, i =1, 2, 3. 由于B i B j =?(i ≠j, i , j =1, 2, 3)且B 1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的⼀个划分. ⼜ P (B 1)=21, P (B 2) =41, P (B 3)=41,P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004,由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3)=100441100241100221?+?+?=0.025. 4. 某⼚⾃动⽣产设备在⽣产前须进⾏调整. 假定调整良好时, 合格品为90%; 如果调整不成功,则合格品有30%. 若调整成功的概率为75%, 某⽇调整后试⽣产, 发现第⼀个产品合格. 问设备被调整好的概率是多少?解设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|)0.750.90.250.30.75P B P A P B A P A P B A =+=?+?=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ?====.5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02,⽽B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解以D 表⽰事件“将信息A 传递出去”,以D 表⽰事件“将信息B 传递出去”,以R 表⽰事件“接收到信息A ”,以R 表⽰事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====.由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 事件与概率2、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A = ;(3)C AB ⊂;(4)BC A ⊂.3、试把n A A A 21表示成n 个两两互不相容事件的和.6、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。
8、证明下列等式:(1)1321232-=++++n n n n n n n nC C C C ;(2)0)1(321321=-+-+--n n n n n n nC C C C ;(3)∑-=-++=r a k r a b a k b r k a C C C0.9、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。
10、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。
11、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。
12、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。
13、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。
现从两袋中各取一球,求两球颜色相同的概率。
14、由盛有号码 ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。
16、任意从数列 ,2,1,N 中不放回地取出n 个数并按大小排列成:n m x x x x <<<<< 21,试求M x m =的概率,这里N M ≤≤118、从6只不同的手套中任取4只,问其中恰有一双配对的概率是多少?19、从n 双不同的鞋子中任取2r(2r<n)只,求下列事件发生的概率:(1)没有成对的鞋子;(2)只有一对鞋子;(3)恰有两对鞋子;(4)有r 对鞋子。
20、袋中有n 只球,记有号码n ,,2,1 ,求下列事件的概率:(1)任意取出两球,号码为1,2;(2)任意取出3球,没有号码1;(30任意取出5球,号码1,2,3,中至少出现一个。
21、袋中装有N ,,2,1 号的球各一只,采用(1)有放回;(1)不放回方式摸球,试求在第k 次摸球时首次摸到1号球的概率。
24、从52张扑克牌中任意抽取13张来,问有5张黑桃,3张红心,3张方块,2张草花的概率。
25、桥牌游戏中(四人各从52张纸牌中分得13张),求4张A 集中在一个人手中的概率。
26、在扑克牌游戏中(从52张牌中任取5张),求下列事件的概率:(1)以A 打头的同花顺次五张牌;(2)其它同花是非曲直次五比重牌;(3)有四张牌同点数;(4)三张同点数且另两张也同点数;(5)五张同花;(6)异花顺次五张牌;(7)三张同点数;(8)五比重中有两对;(9)五张中有一对;(10)其它情况。
27、某码头只能容纳一只船,现预知某日将独立来到两只船,且在24小时内各时刻来到有可能性都相等,如果它们需要停靠的时间分别为3小时及4小时,试求有一船要在江中等待的概率。
28、两人约定于7点到8点在某地会面,试求一人要等另一人半小时以上的概率。
33、设n A A A ,,,21 是随机事件,试用归纳法证明下列公式:∑∑=≥>≥--++-=n i i j n n n j i i n A A A P A A P A P A A A P 1121121)()1()()()( 。
36、考试时共有N 张考签,n 个学生参加考试)(N n ≥,被抽过的考签立刻放回,求在考试结束后,至少有一张考签没有被抽过的概率。
37、甲,乙丙三人按下面规则进行比赛,第一局由甲,乙参加而丙轮空,由第一局的优胜者与丙进行第二局比赛,而失败者则轮空,比赛用这种方式一直进行到其中一个人连胜两局为止,连胜两局者成为整场比赛的优胜者。
若甲,乙,丙胜每局的概率各为1/2,问甲,乙,丙成为整场比赛优胜者的概率各是多少?39、给定()()()B A P r B P q A P p ===,,,求()AB P 及()B A P 。
40、已知:()()()B A C AB C B P A P AB P ⊃⊃=,,,证明:)()()(C P A P AC P ≥。
43、利用概率论的想法证明下列恒等式: aA a a A a A A A a A a A A a A =+-⋅-++-----+--+)1()1(12)()2)(1()1)((11 其中A ,a 都是正整数,且a A >。
46、证明Ω的一切子集组成的集类是一个-σ域。
47、证明:-σ域之交仍为-σ域。
48、证明:包含一切形如),(x -∞的区间的最小-σ域是一维波雷尔-σ域。
解答2、解:(1)ABC A C A B A ABC A BC A ⊃⊃⇒⊂⊃⇒=且显然)(,若A 发生,则B 与C 必同时发生。
(2)A C ⊂⊂⇒⊂⇒=且A B A C B A C B A ,B 发生或C 发生,均导致A 发生。
(3)A C AB ⇒⊂与B 同时发生必导致C 发生。
(4)C B A BC A ⊂⇒⊂,A 发生,则B 与C 至少有一不发生。
3、解:n A A A 21)()(11121----++-+=n n A A A A A A(或)=121121-+++n n A A A A A A A .6、解:(1){至少发生一个}=D C B A .(2){恰发生两个}=C A BD B A CD D A BC C B AD D B AC D C AB +++++.(3){A ,B 都发生而C ,D 都不发生}=D C AB .(4){都不发生}=D C B A D C B A =.(5){至多发生一个}=C B A D D B A C D C A B D C B A D C B A ++++CD BD BC AD AC AB =.8、解:(1)因为n n n n n n x nC x C x C x ++++=+ 2211)1(,两边对x 求导得12112)1(--+++=+n n n n n n x nC x C C x n ,在其中令x=1即得所欲证。
(2)在上式中令x=-1即得所欲证。
(3)要原式有意义,必须a r ≤≤0。
由于k b b k b r b b a r a b a C C C C -++-+==,,此题即等于要证∑=++-+≤≤=a k r b b a k b b r k a a r C C C00,.利用幂级数乘法可证明此式。
因为b a b a x x x ++=++)1()1()1(,比较等式两边r b x +的系数即得证。
9、解:15.0335/311151516===A A A A P10、解:(1)第一卷出现在旁边,可能出现在左边或右边,剩下四卷可在剩下四个位置上任意排,所以5/2!5/!42=⨯=p(2)可能有第一卷出现在左边而第五卷出现右边,或者第一卷出现在右边而第五卷出现在左边,剩下三卷可在中间三人上位置上任意排,所以10/1!5/!32=⨯=p(3)p P ={第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁边}=1071015252=-+. (4)这里事件是(3)中事件的对立事件,所以 10/310/71=-=P(5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以5/1!5/!41=⨯=P11、解:末位数吸可能是2或4。
当末位数是2(或4)时,前两位数字从剩下四个数字中选排,所以 5/2/23524=⨯=A A P12、解:m n m n m n m n C C C C P 33/321=13、解:P{两球颜色相同}=P{两球均白}+P{两球均黑}+P{两球均红}33.062520725925152562572510253==⨯+⨯+⨯=.14、解:若取出的号码是按严格上升次序排列,则n 个号码必然全不相同,N n ≤。
N 个不同号码可产生!n 种不同的排列,其中只有一个是按严格上升次序的排列,也就是说,一种组合对应一种严格上升排列,所以共有n N C 种按严格上升次序的排列。
总可能场合数为n N ,故题中欲求的概率为n n N N C P /=.16、解:因为不放回,所以n 个数不重复。
从}1,,2,1{-M 中取出m-1个数,从},1{N M +中取出m n -个数,数M 一定取出,把这n 个数按大小次序重新排列,则必有M x m =。
故n N m n M N m M C C C C P /1111----=。
当11-<-m M 或m n M N -<-时,概率0=P .18、解:有利场合是,先从6双中取出一双,其两只全取出;再从剩下的5双中取出两双,从其每双中取出一只。
所以欲求的概率为48.03316/4121212252216===C C C C C C P19、解:(1)有利场合是,先从n 双中取出2r 双,再从每双中取出一只。
)2(,/)(222122n r C C C P r n r r n <=(2)有利场合是,先从n 双中取出一双,其两只全取出,再从剩下的1-n 双中取出22-r 双,从鞭每双中取出一只。
r n r n r r n r r n n C C n C C C C C P 2222122222212221221/2/)(------==.(3)r n r n n r C C C P 22422242/2---=.(4)r n r r n C C C P 2222/)(=r n r n C C 22/=.20、解:(1)P{任意取出两球,号码为1,2}=2/1n C .(2)任取3个球无号码1,有利场合是从除去1号球外的1-n 个球中任取3个球的组合数,故 P{任取3球,无号码1}331/n n C C -=.(3)P{任取5球,号码1,2,3中至少出现1个}=P -1{任取5球,号码1,2,3不出现}553/1n n C C --=.其中任取5球无号码1,2,3,有利场合是从除去1,2,3号球外的3-n 个球中任取5个球的组合数。
21、解:(1)有利场合是,前1-k 次从1-N 个号中(除1号外)抽了,第k 次取到1号球, k k k k N N N N P /)1(/1)1(11---=⋅-=(2)考虑前k 次摸球的情况,N A A P k N k N /1/111=⋅=--。