英文食品科学原理资料
HACCP基本原理及其执行步骤

目前,HACCP系统在食品质量控制上已被世 界各国接受,获得联合国粮农组织(FAO)、和 世界卫生组织(WHO)联合食品法典委员会 (CAC)的认同,是目前世界上最具权威的食品 质量安全保证体系,它是一种建立在良好操作规 范(GMP : Good Manufacturing Practice) 和卫 生操作标准规程(SSOP :Sanitation Standard Operation Procedure )基础之上的控制危害的预 防性体系,主要控制目标是食品的安全性。
众所周知,太空人员需要安全、卫生的食品, 而传统的品质控制(Quality Control QC)手段 并不能完全确保产品的安全,且大多数食品的安 全性和质量都需要依赖终产品的检验,更需要对 产品进行大量的破坏性检测试验,这种方法最终 仅有少量产品符合要求。
皮尔斯柏利(Pillsbury)公司检查了NASA的“无缺 陷计划(zero-defect program),发现这种非破坏性检 验并没有直接针对食品与食品的成分,但总的来说是合 适的,认为该检测系统可以延伸到整个生产过程(即从 原材料和工厂环境开始到生产过程和产品消费)的控制。 皮尔斯柏利(Pillsbury)公司因此提出了新的概念— HACCP,专门用于控制生产过程中可能出现危害的位置 或加工点,而这个生产过程应该包括原材料、生产、贮 运过程直至食品消费。HACCP被纳蒂克(Natick)实验 室采用及修改后,用于太空食品生产。
1.9控制措施(Control Measure) 用以防止或消除食品安全危害或将其降低到可接受 的水平,所采取的任何措施和活动。
1.10标准(standard) 判断的依据。
1.11关键限值(Critical Limit (CL)) 将可接受水平与不可接受水平区分开的判定标准。
食品科学概论-食品工程原理

食品的冷冻原理
制冷-从低于环境温度的物体中吸取热量,并
将其转移给环境介质的过程。
食品工业上冷冻温度范围在-100度以上
制冷量-在一定操作条件下,单位时间制冷剂
从被冷冻物质取出的热量
制冷剂-氨、氟利昂-12、氟利昂-22 载冷剂-水、盐水、有机化合物
由冰点下降至形成冰晶的临界温度而尚不冻结的现象
食品的粉碎
颗粒群的粒度分布 列表法 图解法 函数法 粒度测定方法 筛分法 沉降法 显微镜法 库尔特计数法 -透过法、吸附法
食品的筛分
泰勒标准 1in=2.54cm(目)
食品的搅拌混合、均质和乳化原理
均质度-一种或几种组分的浓度或其他物理量 分离尺度-表示组分或热量等可分散的“参量” 的未分散部分的大小 分离强度-表示两相邻块间浓度、温度等参量 的差异,同时也表示团块中的参量值与完全均 匀后的参量平均值之间的差异 混合的机制 对流混合-混合器运动部件表面对物料的相对 运动;分离尺度大时 分子扩散混合-分离尺度小时 剪力混合-对高黏度流体的混合
将能量传递给食品---(传热过程) 促使食品物料中水分向表面转移并排放到物料 周围的外部环境中,完成脱水干制的过程--传质过程) 湿热的转移是食品干燥原理的核心问题。
影响湿热传递的主要因素
(一)食品物料的组成与结构 (1)食品成分在物料中的位置;(2)溶质浓度 (3)结合水的状态;(4)细胞结构 (二)物料的表面积 (三)空气的湿度 (四)空气温度 (五)空气流速 (六)大气压力或真空度 (七)物料干燥温度
(三)冰晶的洗涤
膜浓缩(膜分离)
膜浓缩--类似于过滤的浓缩方法,只不过“过滤介 质”为天然或人工合成的高分子半透膜,如果“过 滤”膜只允许溶剂通过,把溶质截留下来,使溶质 在溶液中的相对浓度提高,就称为膜浓缩。 膜分离的种类 以推动力本质的不同: 静压力差为推动力的过程 以蒸汽压差为推动力的过程 以浓度差为推动力的过程 以电位差为推动力的过程
食品科学英文作文范文

食品科学英文作文范文英文:As a food scientist, I believe that food is not just something we eat to survive, but also a form of art. Theway we prepare and present food can greatly affect our enjoyment and appreciation of it. In addition, food plays a crucial role in our health and well-being.One of the most important aspects of food science is understanding the chemistry behind food. For example, knowing how different ingredients interact with each other can help us create delicious and nutritious meals. In addition, understanding the chemical reactions that occur during cooking can help us avoid common mistakes and ensure that our food is safe to eat.Another important aspect of food science is food safety. We need to ensure that the food we eat is free from harmful bacteria and other contaminants. This involves properhandling, storage, and preparation of food, as well as regular testing and monitoring.As a food scientist, I am also interested in the cultural and social aspects of food. Food is often acentral part of our celebrations and traditions, and can bring people together in a unique way. For example, in my own culture, we often prepare special dishes for holidays and family gatherings, and these meals are an important way of connecting with our heritage and each other.Overall, I believe that food science is a fascinating and important field that has a significant impact on our daily lives.中文:作为一名食品科学家,我认为食物不仅是我们为了生存而吃的东西,也是一种艺术形式。
食品工程原理英语

食品工程原理英语Food Engineering PrinciplesFood engineering is a multidisciplinary field that combines the principles of science, technology, and engineering to develop and improve processes for the production, preservation, and distribution of food products. This field encompasses a wide range of activities, from the design and optimization of food processing equipment to the development of new food products and the implementation of sustainable practices in the food industry.One of the fundamental principles in food engineering is the understanding of the physical and chemical properties of food materials. This knowledge is essential for the design and operation of various food processing operations, such as mixing, drying, fermentation, and packaging. Food engineers must be able to analyze the behavior of food components, such as proteins, carbohydrates, and lipids, under different processing conditions to ensure the quality, safety, and stability of the final product.Another crucial aspect of food engineering is the application of heat and mass transfer principles. Food processing often involves thetransfer of heat and mass (e.g., moisture, gases) between the food product and its surroundings, and food engineers must be able to predict and control these processes to achieve the desired product characteristics. This includes the design of heating and cooling systems, the optimization of drying processes, and the understanding of the effects of temperature and pressure on food quality.In addition to the physical and chemical properties of food, food engineers must also consider the microbial aspects of food production and preservation. They must understand the growth and behavior of microorganisms, such as bacteria, yeasts, and molds, and how they can be controlled or eliminated to ensure the safety and shelf-life of food products. This may involve the design of sterilization and pasteurization processes, the development of antimicrobial packaging materials, and the implementation of effective cleaning and sanitation protocols.Another important area of food engineering is the optimization of food processing operations. This involves the use of mathematical modeling and simulation tools to analyze and improve the efficiency, productivity, and sustainability of food processing systems. Food engineers may use techniques such as process control, optimization, and simulation to identify and address bottlenecks, reduce energy and resource consumption, and improve product quality andconsistency.The field of food engineering also encompasses the development of new food products and the improvement of existing ones. Food engineers may work with food scientists and product developers to create innovative food products that meet the changing demands of consumers, such as healthier, more convenient, or more sustainable options. This may involve the use of novel ingredients, the application of new processing technologies, or the optimization of existing formulations and production methods.In recent years, the importance of sustainability and environmental responsibility has become increasingly prominent in the food industry. Food engineers play a crucial role in developing and implementing sustainable practices, such as the use of renewable energy sources, the reduction of waste and emissions, and the optimization of water usage. They may also work on the design of biodegradable packaging materials, the recovery and reuse of food processing byproducts, and the integration of renewable energy sources into food processing facilities.Overall, food engineering is a dynamic and multifaceted field that plays a vital role in the development, production, and distribution of safe, nutritious, and high-quality food products. By applying principles from various scientific and engineering disciplines, foodengineers are constantly working to improve the efficiency, sustainability, and innovation of the food industry, ultimately contributing to the well-being of people and the planet.。
HACCP基础知识

问题4:是否有下一步骤能控制危害发生,将危害程度减少到可接受水平? 否 是
关键控制点
没有关键控制点
停止
13.制订HACCP计划的流程
准备阶段
完成危害分析工作表
完成HACCP计划表
13.1 准备阶段
步骤1
步骤2 步骤3 步骤4 步骤5
基本资料的收集:包括有关政策,法规,标准,组 建HACCP实施小组的人员及有关教育培训,制定的 有关表格等信息资料。并完成危害分析工作表和 HACCP计划表。 食品说明:食品特性,产品包装等。 产品销售方法说明:产品储藏运输方式等。 确定产品使用者或消费者。 完成一张流程图:流程图应反应产品生产的全过程 简要描述加工的每个步骤。
2.HACCP起源 1959年美国皮尔斯柏利(Pillsbury)公司与美国 航空和航天局(NASA)纳蒂克(Natick)实验室在联合 开发航天食品时形成了HACCP食品质量体系。太空实验 室人员需要安全,卫生的食品,而传统的品质控制手段 并不能完全确保产品的安全,而且需要对产品进行大量 的破坏性检测试验,这种方法最终仅有少量的产品符合 要求。Pillsbury 检查了NASA的 “无缺陷计划 ”(Zero defect Program),发现这种非破坏检测系统非常合 适,这种非破坏检验并没有直接针对食品和食品成分, 仅延伸到整个生产过程的控制。因此,Pillsbury提出了 一个新的概念—HACCP。
步骤18 建立审核(验证)措施:实施HACCP以后,要经 常进行审核,检查HACCP计划一确定建立的 CCP 和CL值是否正确;是否进行有效的控制和监控; 出现偏差时,采取的措施;检查HACCP记录是否 保持完好等。
பைடு நூலகம்
11.食品的潜在危害程度: 11.1 A类:专门用于非杀菌产品和特殊人群(如:婴儿 老人,体弱等)消费的食品。 11.2 B类:产品含有对微生物敏感性的成分,如:牛奶 鲜肉等含水分高的新鲜食品。 11.3 C类:生产过程缺乏可控制的步骤,如:肉类分割 等无热处理过程。 11.4 D类:产品在加工后,包装前会遭受污染的食品, 如大批量杀菌后在包装的食品。 11.5 E类:在运输,分零和消费过程中,易造成消费者 操作不当而存在的潜在危害的食品。 11.6 F类:包装后或在家里食用时不再加热处理的食品
食品科学与工程专业课英文对照

食品包装:Food packaging
食品毒理学:Food toxicology
食品生物技术:Food biotech
仪器分析:Instrument analysis
饮料工艺学:Beverage technology
园产品加工学:The product processingbiology
食品卫生检验:Food hygiene inspection
焙烤食品工艺学:Baking food technology
功能性食品:Functional food
粮油食品加工学:Cereals, oils and foodstuffs processing learn
食品机械基础:Food machinery basis
食品加工厂设计:Food processing plant design
食品营养学:Food nutrition
食品发酵工艺学:Food fermentation technology
食品分析:Food analysis
食品企业经营管理:Food enterprise operation and management
调味品生产工艺:Dressing production process
肉制品加工技术:Meat processing technology
乳制品加工技术:Dairy products processing technology
食品安全评价:Food safety evaluation
水产品加工技术:Aquatic product processing technology
GMP与HACCP原理

GMP与HACCP原理目前,我国的食品安全状况令人担忧,主要表现在农业种植、养殖业的源头污染对食品安全的威胁日趋严重,一些企业违法生产和经营伪劣食品,企业应用新原料、新工艺(如转基因技术等)给食品安全带来许多新问题,政府有关部门在食品储存、运输、销售等环节监督管理不力并缺乏有效的卫生安全措施等。
因此,亟待加大我国食品行业安全卫生监管的力度,推广和应用GMP势在必行。
GMP是良好操作规范(Good Manufacture Practce)的英文缩写,其主要内容是对企业生产过程的合理性、生产设备的适用性和生产操作的精确性、规范性提出强制性要求。
几十年的应用实践证明,GMP是确保产品高质量的有效工具。
因此,联合国食品法典委员会(CAC)将GMP作为实施危害分析与关键控制点(HACCP)原理的必备程序之一。
1969年,世界卫生组织向世界各国推荐使用GMP。
1972年,欧共体14个成员国公布了GMP总则。
1975年,日本开始制定各类食品卫生规范。
我国药品行业率先应用GMP并颁布了药品生产的GMP标准,要求企业实施GMP认证,使药品的生产及管理水平有了较大程度的提高。
我国食品行业应用GMP始于20世纪80年代。
1984年,为加强对我国出口食品生产企业的监督管理,保证出口食品的安全和卫生质量,原国家商检局制定了《出口食品厂、库卫生最底要求》。
该规定是类似GMP 的卫生法规,于1994年卫生部修改为《出口食品厂、库卫生要求》。
1994年,卫生部参照FAO/WHO食品法典委员会CAC/RCP Rev.2—1985《食品卫生通则》,制定了《食品企业通用卫生规范》(GB14881—1994)国家标准。
随后,陆续发布了《罐头厂卫生规范》、《白酒厂卫生规范》等19项国家标准。
虽然上述标准均为强制性国家标准,但由于标准本身的局限性、我国标准化工作的滞后性、食品生产企业卫生条件和设施的落后状况,以及政府有关部门推广和监管措施力度不够,这些标准尚未得到全面的推广和实施。
英文食品科学原理资料(PPT 60页)

Watson & Crick discover the double-helix structure of DNA, laying the foundation for understanding genetics and developing recombinant DNA technology
Projection: Maximum amount of people earth can sustain = 20.7 billion
Food Science Achievements:
1900 - 1999
1900s:
Vacuum packaging - removes atmosphere from food packages. Hydrogenation - to keep unsaturated fats from turning rancid. U.S. & British patents issues for killing bacteria in food with ionizing radiation (1905). In U.S., first commercial freezing ofgest increases are expected in some of the poorest areas, such as Africa, southern Asia, and South America. Human population of Africa will double in 23 years. Population of South America will double in 29 years. Population of Europe will double in 343 years.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1930s:
Freeze-drying process invented to preserve food. Vitamin D first added to milk through ultraviolet radiation (1933).
1950s:
Controlled-atmosphere packaging (CAP) developed (CAP controls O2 and CO2 in the package to limit respiration and ethylene production, thereby delaying ripening and spoilage).
1910s:
In U.S., first large-scale commercial pasta production.
1920s:
Clarence Birdseye develops quick-freezing process for foods and first commercializes blanched frozen vegetables.
Projle earth can sustain = 20.7 billion
Food Science Achievements:
1900 - 1999
1900s:
Vacuum packaging - removes atmosphere from food packages. Hydrogenation - to keep unsaturated fats from turning rancid. U.S. & British patents issues for killing bacteria in food with ionizing radiation (1905). In U.S., first commercial freezing of fruit and fish.
Milestones & Projections:
1830: World human population reaches 1 billion 1930: 2 billion 1960: 3 billion 1975: 4 billion 1999: 6 billion [Assuming a 64-year human life expectancy, of all the people born on earth since its creation, 2/3 are now alive.] 2030: 9 billion
Food Science and Technology
By Gilsonl 10/23/2002
Definition
Food science: Scientific study of food from “farm to fork”. Food technology: Use of the information generated by food science to produce safe, nutritious and wholesome food.
MORE PEOPLE, LESS FOOD
Widespread food shortages will develop over the next 40 years as a population explosion gradually outstrips world food supply. The food supply is the most immediate constraint on the Earth’s population-carrying capacity.
FOOD SCIENCE
Multidisciplinary Engineering Chemistry/Biochemistry Microbiology Nutrition
Foods as edible biochemicals Touches on many other areas Globalization of world food supply
Biggest increases are expected in some of the poorest areas, such as Africa, southern Asia, and South America. Human population of Africa will double in 23 years. Population of South America will double in 29 years. Population of Europe will double in 343 years.
1940s:
Mass production of food using automation takes off. Concentrated, frozen, and dehydrated foods produced in mass quantities for shipping overseas to military. Flour first fortified with vitamins and iron (1940). Aseptic processing and packaging is developed, increasing food quality, safety, and retention of nutrients.
U.S. Army begins food irradiation program (1953).
Watson & Crick discover the double-helix structure of DNA, laying the foundation for understanding genetics and developing recombinant DNA technology