超临界萃取——工艺流程
超临界萃取 油 工艺

超临界萃取油工艺下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!超临界萃取技术是一种利用超临界流体对植物材料中的有效成分进行提取的高效工艺方法。
超临界萃取技术

1.超临界流体萃取的简介超临界流体萃取(Supercritical fluidextraction,简称SFE)是用超临界条件下的流体作为萃取剂,由液体或固体中萃取出所需成分(或有害成分)的一种分离方法。
超临界流体(Supercritical fluid,简称SCF)是指操作温度超过临界温度和压力超过监界压力状态的流体。
在此状态下的流体,具有接近于液体的密度和类似于液体的溶解能力,同时还具有类似于气体的高扩散性、低粘度、低表面张力等特性。
因此SCF具有良好的溶剂特性,很多固体或液体物质都能被其溶解。
常用的SCF有二氧化碳、乙烯、乙烷、丙烯、丙烷和氨等.其中以二氧化碳最为常用。
由于SCF在溶解能力、传递能力和溶剂回收等方面具有特殊的优点.而且所用溶剂多为无毒气体.避免了常用有机溶剂的污染问题。
早在100多年前,人们就观察到临界流体的特殊溶解性能,但在相当长时间内局限于实验室研究及石油化工方面的小型应用。
直到20世纪70年代以后才真正进入发展高潮。
1978年召开了首届专题讨论会,1979年首台工业装置投入运行,标志着超临界萃取技术开始进入工业应用。
超临界萃取之所以受到青睐,是由于它与传统额液-液萃取或浸取相比,有以下优点:①萃取率高;②产品质量高;③萃取剂易于回收;④选择性好。
1.超临界萃取的基本原理1.1.超临界流体特性所谓超临界流体(SCF),是指一类压强高于临界压强Pc,温度高于临界温度Tc,的流体,这种流体既不是液体,也不是气体,是一类特殊的流体。
超临界流体的物性较为特殊。
表1将超临界流体的这些物性与气体、液体的表1超临界流体的物性及与普通流体物性的比较相应值作了比较。
从表中可以看出:①超临界流体的密度接近于液体密度,而比气体密度高得多。
另一方面.超临界流体是可压缩的,但其压缩性比气体小得多;②超临界流体的扩散系数与气体的扩散系数相比要小得多,但比液体的扩散系数又高得多;③超临界流体的粘度接近于气体的粘度,而比液体粘度低得多。
超临界流体萃取技术简介

5. 粒度
原料颗粒愈小,溶质从原料向SCF 传输的路径愈短,与SCF的接触的表 面积愈大,萃取愈快,愈完全,粒度 也不宜太小,容易造成过滤网堵塞而 破坏设备。
6. 夹带剂(携带剂)
超临界CO2流体对亲脂类物质的 溶解度较大,对较大极性的物质溶 解较小,限制了其对极性较大溶质 的应用。可在SCF中加入极性溶剂 (如乙醇等)以改变溶剂的极性, 拓宽其适用范围。如丹参中的丹参 酮难溶于CO2流体,在CO2中添加 一定量乙醇可大大增加其溶解度。
EPA(二十碳五烯酸)是有五个双键的多元
不饱和脂肪酸(C20H30O2)
DHA(二十二碳六烯酸)是有六个双键的多元
不饱和脂肪酸(C22H32O2)
山西省洪洞飞马集团公司(原洪洞县洗煤厂)
与中国科学院山西煤炭化学研究所合作,于1998年
投资4000万元,引进意大利Fedgari公司超
临界CO2萃取装置,制备DHA和EPA等生物活性物质
❖ 基本工艺流程
超临界流体萃取的工艺流程一般是 由萃取(CO2溶解组分)和分离 (CO2和组分的分离)两步组成。
包括高压泵及流体系统、萃取系统 和收集系统三个部分
超临界流体萃取的简单流程
萃
分
取
离
釜
釜
热 交 换 器
CO2
热交换器 压缩机 过滤器 高压泵
超临界流体萃取的工艺流程
流量计
萃
高压泵
取
二 氧
第五部分 超临界CO2流体萃取部分装置
实物图
压缩机
萃取釜
热交换器
二氧化碳循环泵
萃取釜 容积500L
美国Supercritical Processing Inc
第六部分 超临界CO2萃取的影响因素
二氧化碳超临界萃取工艺流程环评报告书

二氧化碳超临界萃取工艺流程环评报告书全文共四篇示例,供读者参考第一篇示例:二氧化碳超临界萃取工艺被广泛应用于药物、食品、化工等各个领域,因其高效、环保等优点备受关注。
这一工艺在生产过程中也会产生一定的环境影响,因此需要进行严格的环境评估。
本报告书将对二氧化碳超临界萃取工艺的流程进行详细分析,并结合环境影响评价,提出相应的环境管理措施,以确保工艺的可持续发展。
一、工艺流程二氧化碳超临界萃取是指在超临界状态下,利用二氧化碳对物质进行溶解和萃取的一种工艺。
其主要包括三个步骤:物料处理、超临界萃取和产物回收。
将原料通过粉碎、加热等方式进行预处理,以提高其可溶解性。
然后,将预处理后的原料与高压二氧化碳混合,形成超临界流体,实现对目标物质的溶解。
通过降压、升温等方法把原料中的目标物质从超临界流体中分离出来,完成产品的回收。
二、环境影响评价1. 大气排放:二氧化碳超临界萃取是利用二氧化碳作为萃取剂,会在工艺中释放大量的二氧化碳气体,增加大气中的温室气体浓度,导致地球气候变暖。
2. 废水处理:工艺中会产生大量废水,其中含有萃取过程中的残留物质,如果未经处理直接排放会对水环境造成污染。
3. 能源消耗:二氧化碳超临界萃取工艺需要高压和高温条件下进行,消耗大量的能源,如果使用传统的化石能源容易增加二氧化碳排放量。
三、环境管理措施1. 减少碳排放:可通过提高工艺的能效,优化生产流程等方式减少二氧化碳的排放量,或引入可再生能源替代传统化石能源。
2. 废水处理:建立完善的废水处理系统,对废水进行处理和回收利用,减少对水环境的影响。
3. 定期检查维护设备:确保设备正常运行,减少能源的浪费和碳排放。
4. 加强监测:定期对工艺中各环节进行监测和检测,及时发现问题并采取措施处理。
四、结论二氧化碳超临界萃取工艺是一种高效、环保的工艺,但在生产过程中也会对环境造成一定的影响。
为了实现可持续发展,必须对工艺的环境影响进行评估和管理,采取相应的环境管理措施。
超临界萃取工艺流程

超临界萃取工艺流程超临界萃取是一种通过高压超临界流体(即介于气体与液体之间的状态)来提取物质的工艺。
它具有操作简单、提取效率高、反应速度快、工艺环保等优点。
下面我将以提取植物精油为例,介绍一下超临界萃取的工艺流程。
首先,需要准备好植物的原料,一般选择含有丰富精油的植物的花朵、叶子、根茎等部分作为提取原料。
原料应该经过清洗、干燥、粉碎等处理,以便更好地提取精油。
接下来,将处理好的植物原料放入超临界萃取设备的萃取罐中。
萃取罐是一个密封的容器,容器内部有加热器和压力控制器。
然后,使用压缩机将压缩物质(一般为二氧化碳)输送到萃取罐中,使其达到超临界状态。
此时,二氧化碳既具有气体的扩散性,又具有液体的溶解性,能够更好地与植物中的精油分子进行接触。
随着压缩物质的注入,萃取罐内的压力和温度会逐渐上升,直至达到超临界状态。
此时,超临界液体呈现出一种介于气体与液体之间的状态,具有较高的扩散性和溶解性,可以更好地提取精油的成分。
超临界状态下,萃取罐内的超临界液体与植物原料中的精油分子进行接触、溶解。
这个过程可以通过调节萃取罐的压力和温度来控制,以达到更好的精油提取效果。
当提取完成后,继续调节温度和压力,使超临界液体变回气体状态。
此时,萃取罐内的气体通过减压阀等装置流出,再经过冷凝器进行冷却,将其中的精油分离出来。
最后,将分离出的精油进行过滤、浓缩、脱水等处理步骤,以提高精油的质量和纯度。
经过这些步骤后,最终得到的精油可以用于食品添加剂、香料、药物等多个领域。
总结来说,超临界萃取是一种利用高压超临界流体来提取物质的工艺。
在提取植物精油的过程中,经过植物原料的准备、超临界液体的处理、精油的分离等多个步骤,最终得到高质量的精油产品。
超临界萃取工艺流程操作简单,提取效率高,受到了广泛的应用和推广。
二氧化碳超临界流体萃取技术简介

常见临界流体萃取辅助剂
被萃取物 咖啡因 单甘酯 亚麻酸
青霉素G钾盐 乙醇 豆油
菜子油 棕榈油 EPA ,DHA
超临界流体
CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2
辅助剂 水
丙酮 正己烷
水 氯化锂 己烷,乙醇
丙烷 乙醇 尿素
超临界流体旳选择性
超临界流体萃取技术
(Supercritical Fluid Extraction,SFE)
物质有三种状态: 气态、液态、固态 流体状态
物质旳第四态:超临界状态
临界温度:每种物质都有一种特定 温度,在这个温度以上,不论怎样 增大压强,虽然密度与液态接近, 气态物质也不会液化。这个温度称 为物质旳临界温度。
④ 化合物旳相对分子量越高,越难萃取。
分子量在200~400范围内旳组分轻易萃 取,有些低相对分子质量、易挥发成份甚 至能够直接用二氧化碳液体提取;高分子 量物质(如树胶、蜡等)则极难萃取。
超临界CO2是非极性溶剂,在许 多方面类似于己烷,对非极性旳脂 溶性成份有很好旳溶解能力,对有 一定极性旳物质(如黄酮、生物碱 等)旳溶解性就较差。其对成份旳 溶解能力差别很大,主要与成份旳 极性有关,其次与沸点、分子量也 有关。
3 扩散系数比气体小,但比液体高一到 两个数量级,具有很强旳渗透能力
4 SCF旳介电常数,极化率和分子行为 都与气液两相都有明显差别
总之,超临界流体不但具有液体 旳溶解能力,也具有气体旳扩散和 传质能力
超临界流体萃取
(Supercritical Fluid Extraction,SFE)
超临界流体萃取是利用超临 界流体作萃取剂,从液体或固体 中萃取出某些成份并进行分离旳 技术。
超临界萃取工艺流程图及操作

超临界萃取实验1.超临界萃取工艺流程图2.实验步骤2.1开机前的准备工作(1) 首先检查电源、三相四线是否完好无缺。
(AC380V/50HZ)(2) 冷冻机及储罐的冷却水源是否畅通,冷箱内为30%的乙二醇+70%的水溶液。
(3) CO2气瓶压力保证在5~6MPa的气压,且食品级净重大于等于22kg。
(4) 检查管路接头以及各连接部位是否牢靠。
(5) 将每个热箱内加入冷水,不宜太满,离箱盖2公分左右。
(6) 萃取原料装入料筒,原料不应装太满。
离过滤网2~3公分左右。
(7) 将料筒装入萃取缸,盖好压环及上堵头。
(8) 如果萃取液体物料需加入夹带剂时,将液料放入携带剂罐,可用泵压入萃取缸内。
2.2开机操作顺序(1) 先开电源开关,三相电源指示灯都亮,则说明电源已接通,再启动电源的(绿色)按钮。
(2) 接通制冷开关,同时接通水循环开关。
(3) 开始加温,先将萃取缸、分离Ⅰ、分离Ⅱ、精馏柱的加热开关接通,将各自控温仪调整到各自所需的设定温度。
如果精馏柱参加整机循环需打开与精馏柱相应的加热开关。
(4) 在冷冻机温度降到0℃左右,且萃取缸、分离Ⅰ、分离Ⅱ、温度接近设定的要求后,进行下列操作。
如萃取缸40℃,分离Ⅰ50℃,分离Ⅱ35℃,其中萃取缸与分离Ⅰ温度小于等于75℃,分离Ⅱ温度不变。
(5) 开始制冷的同时将CO2气瓶通过阀门2进入净化器、冷盘管和贮罐,CO2进行液化,液态CO2通过泵、混合气、净化器进入萃取缸(萃取缸已装样品且关闭上堵头),等压力平衡后,打开放空阀门4,慢慢放掉残留空气以降低部分压力后,关闭放空阀。
(6) 加压力:先将电极点拨到需要的压力(上限),启动泵Ⅰ绿色按钮,打开变频器上的RUN,如果反转时,按一下触摸开关FWD/PEV。
当压力加到接近设定压力(提前1MPa左右),开始打开萃取缸后面的节流阀门,具体怎么调节,根据下面不同流向:①萃取缸→分离器Ⅰ→分离Ⅱ→回路从阀门3进萃取缸,阀门5、7进入分离Ⅰ,阀门9、10进入分离Ⅱ,阀门13、12、1回路循环;调节阀门7控制萃取缸压力,调节阀门10控制分离Ⅰ压力,调节阀门12控制分离Ⅱ压力。
超临界流体萃取法名词解释

超临界流体萃取法名词解释超临界流体萃取法:利用某些具有超临界相平衡点的溶剂在极短的时间内萃取极小量物质的一种方法。
这是指用极性较大的有机溶剂萃取极性较小的无机或有机物质的萃取方法。
该法可适用于萃取低沸点,低极性物质,操作简便,但选择性差。
萃取温度和压力一般较高。
例如,可用于萃取三氯甲烷、四氯化碳等低极性有机溶剂难以萃取的物质,并且易于制备高纯度产品。
1、定义:利用具有超临界相平衡点的溶剂在极短的时间内萃取极小量物质的一种方法。
这是指用极性较大的有机溶剂萃取极性较小的无机或有机物质的萃取方法。
该法可适用于萃取低沸点,低极性物质,操作简便,但选择性差。
萃取温度和压力一般较高。
例如,可用于萃取三氯甲烷、四氯化碳等低极性有机溶剂难以萃取的物质,并且易于制备高纯度产品。
2、特点: (1)由于临界点超过液体的蒸气压,故需要很高的压力和温度,才能使被萃取的组分透过萃取相,而不能直接加热,只有加强搅拌,才能促进传质。
( 2)对物质的溶解度要求很严格,以避免萃取不完全。
3、工艺过程:(1)萃取相的配制与精制①按照生产要求配制混合溶剂。
②将欲提取的物质配成质量浓度为0.2%的萃取溶液,然后在超临界萃取器中加热萃取。
③当加入欲萃取的溶质达到一定的量时,即发生萃取作用。
4、操作要点:(1)萃取压力为0.3~0.4MPa,萃取温度一般为80~120 ℃,萃取相的粘度一般为15~50Pa·S。
(2)欲提取的溶质可先经预萃取,除去杂质后再进行萃取。
5、注意事项:①萃取压力及温度都应高于临界点压力和温度。
②不同的萃取组分应选用不同的萃取相,特别是选择溶解度大的溶质。
6、优缺点:(1)优点①操作温度低,萃取时间短,反应物耗量少。
②可用较低的温度和压力得到高纯度的有机萃取剂。
③易于回收和循环使用。
④工艺设备结构紧凑,设备投资省,自动化程度高。
⑤适用范围广,可用于对水体、空气、土壤、岩石等各种介质中微量组分的分离,也可用于化工产品的精制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果萃取组分在超临界流体中的溶解度随温度升高而增大, 则需降低温度。
.
等压变温法: P1 ≈ P2 T1 < T2(若溶解度随温度升高而降低)
CO2+萃取物
固物料的超临界流体萃取系统
1.普通的间歇式萃取系统
回流头T
2
1
3
54
2
2
1
3
6
5
4
(a)
(b)
1
图1.几种典型的间歇式萃取系统 (a)单级分离 (b)两级分离 (c)精馏+分离 1.萃取釜 2.减压阀 3.分离釜 4.换热器 5.压缩机
6.分离釜 7.精馏柱
.
7
2
2
3
5
4
(c)
3. 超临界萃取设备及连续化进料装置的探索
.
连续式SFE装置的研究现状
利用SFE技术, 进行规模化生产的难题在于高压条件下固体进出 料系统的设计。
机械式进出料装置:对物料的磨损严重,能量消耗大,容易发生机械故
障,而且密封性及耐压性不强。
日本、伊藤正澄等,在1988年发明了连续式超临界流体萃取器装置。 利用螺旋杆加料器避免了萃取开盖过程中大量的能量损失。
根据萃取原料和分离目标的不同,如果要求将萃取产物按照不同溶解 性能分为不同产品,可在工艺流程中串联多个分离釜,各级分离釜按压力 自高至低的顺序排列,最后一级分离釜的压力应为循环CO2的压力。
萃取条件的选取:
推荐使用的萃取压力介于对比压力与对比温度之间。
.
.
.
液相物料的超临界流体萃取系统
有轴向温度控制
.
等温变压法: T1≈T2 P1 >P2
P1
T1
萃 取 器
CO2+萃取物 CO2
膨胀阀 P2
T2
分
离
器
CO2
压缩机
.
萃取物
(2)等压变温法:依靠温度变化的萃取分离法。 利用超临界流体在一定范围内萃取组分的溶解度随温度升高
而降低的性质。 降温升压后的萃取剂,处于超临界状态,被送入到萃取槽中
与物料接触进行萃取。 然后,萃取了溶质的超临界流体经加热器升温后使萃取组分
萃取段(溶质由原料转移至二氧化碳流体)
解析段(溶质和二氧化碳分离及不同溶质间的分离)
依萃取过程的特殊性来分类可分为常规萃取、夹带剂萃
取、喷射萃取等;
依解析方式的不同可分为等温法、等压法、吸附法、多
级解析法;还有萃取与解析同在一起的超临界二氧化碳
精馏。
.
(1)等温变压法:依靠压力变化的萃取分离法。 萃取剂经压缩达到最大溶解能力的状态点(即超临界状态)后
P1
T1
加热器 P2
T2 分
萃
离
取
器
器
冷却器
泵 萃取物
T1 > T2 (若. 溶解度随温度升高而增加)
(3)等温等压法(吸收或吸附法):
用可吸附溶质而不吸附萃取剂的吸附剂进行的萃取 分离法(吸附法), 在分离器中,经萃取出的溶质被吸 附剂吸附与萃取剂分离,气体经压缩(适当加压)后返回 萃取器循环使用。
.
快开式萃取器:
萃取某些不易进行粉碎预处 理的固体物料(例如某些必须 保持纤维结构不发生变化的 天然产品),需要打开萃取器 的顶盖加料和出料,进行间 歇生产。为了提高生产效率, 萃取器顶盖须设计成快开式 结构。
这种高压、大尺寸、快开式 封头的结构、密封、强度设 计及加工制造国内压力容器 设计和制造部门尚缺乏经验。
加入到萃取器中与物料接触进行萃取。 在一定温度下,当萃取了溶质的超临界流体通过膨胀阀进入
分离槽后,压力降低,被萃取组分在超临界流体中的溶解度降低, 使其在分离器中析出。
溶质由分离器下部取出,气体经压缩机返回萃取器循环使用。 萃取釜与分离釜温度(基本)相等。
该过程易于操作,是最为普遍的超临界萃取流程,适应于从 固体物质中萃取油溶性组分、热不稳定成分。
超临界萃取
—— ——工艺流程
组员:
.
吕占傲 牟睿 杨超
超临界萃取的工艺流程
超临界萃取的工艺流程是根据不同的萃取对象和为
完成不同的工作任务而设置的。
固体物料的超临界萃取根据萃取釜与分离釜温度和
压力的变化情况可分为四种典型的基本流程:
(1)等温变压法
(2)等压变温法
(3)等压等温法
(4)变压变温法
超临界萃取的基本流程的主要部分是:
鱼油乙酯
先低压萃取碳数小 的鱼油乙酯
在逐级升压萃取出 碳数渐大的乙酯组 分
原料 (液体)
T
T T
外回流 T
T 填料 塔
T
T
T T
T CO2
图1 液相物料连续逆. 流萃取系统
残渣物
萃取物
1 液料
CO2+ 萃取物 液面位置
2 降液柱
CO2
精制产物
图2 装有多孔塔盘的液相原料萃取系统及塔盘结构 1.电容传感. 器 2. 塔盘
.
解析条件的选取:
在固态物料的超临界CO2流体中,萃取釜压力增高有利于溶解度增加, 但是过高压力将增加过高的设备投资和压缩能耗,分离压力越低,萃取和 解析的溶解度差值越大,越有利于分离过程效率的提高。工业化流程都采 用液化CO2再经高压柱泵加压与循环的工艺,故分离压力受CO2液化压力 的限制,不可能选取过低的压力,实用的CO2解析循环压力在5.0-6.0MPa 之间。
Rice等发明了在闭路管线中利用SCF连续萃取固体物料的装置, 其 中固体物料的间歇加入是通过切换机械阀门实现的。
气锁式进出料装置:在操作中气体损失量大,对于萃取体系的平衡有较大 的扰动。
.
设计轮廓:
(1)工作原理
1,开始时先将料仓2,9装满。
2,打开节流阀3,7,关闭节流阀6,使料仓 2,9与萃取器5联通。 3, 打开计量泵将CO2抽入萃取器5中, 密闭管线由于连通而保持等压。 4,当压力表1、4、8均达到萃取压力值时, 关闭节流阀7,开启螺旋输送机进料。 5,经过一定时间反应后(可测定),打开节 流阀7,向料仓9补充物料; 6,关闭节流阀3、7,打开节流阀6; 7,待压力表1降至常压,打开料仓2,补 充物料; 8,关闭节流阀6,打开节流阀3; 9,待压力表1升至萃取压力,打开节流阀7, 向料仓9补充物料。
该种方法常用于萃取产物中有害成分和杂质的去除, 而前两种方法常用于萃取产物为需要精制的产品
.
等压等温法(吸收或吸附法): : P1 ≈ P2 T1 ≈ T2
CO2+萃取物
.
.
咖啡因SFE的水吸收过程
在31.3MPa、313K下 分配系数0.0%水 绿元酸
高压水
1-萃取塔;2-吸收塔;3-二氧化碳压缩机;4-膨胀阀; 5-脱气器;6-蒸发器
间歇式萃取器:
萃取器——装置的核心部分,它 必须耐高压、腐蚀,密封可靠, 操作安全。
目前大多数萃取器是间歇式的静 态装置,装卸料必须打顶盖,为 提高操作效率,生产中大都采用 并联操作以便切换萃取器 。
萃取液体物料时,萃取器内加入 螺旋填料;萃取固体物料时,将 填料取出,代之以不锈钢提篮, 物料加入篮内。