数学模型sss解决食堂排队问题

合集下载

食堂排队-数学建模-参考修改

食堂排队-数学建模-参考修改

食堂排队问题建模引言在学校里,我们常常可以看到这样的情景:下课后,许多同学争相跑向食堂去买饭,为数不多的食堂窗口前没过几分钟就排满了长长的队伍,本来空荡荡的食堂也立即变得拥挤不堪。

饥肠辘辘的同学们见到这种长蛇阵,怎能不怨声载道呢?增加窗口数量,减少排队等待时间,是同学们十分关心的问题。

然而就食堂角度来看,虽然增加窗口数量可以减少排队等待时间,提高学生对食堂的满意程度,从而赢得更多同学到该食堂来就餐。

但是,同时也会增加食堂的运营成本。

因此,如何在这两者之间进行权衡,找到最佳的窗口数量,对学生和食堂双方来说都是很重要的。

本论文将根据西区五餐厅食堂中午的拥挤状况建立数学模型,通过各方面因素的分析,为其拥挤状况找到一个比较合理的解决方案。

摘要1.首先,我分析了一些调查数据,发现学生流符合泊松分布,服务时间符合指数分布,由此,我们的模型就变成了排队理论模型,根据模型公式中的各项效率指标公式,我们可得到学生食堂拥挤情况的各方面数据。

2.根据模型求解得到的数据,我对模型进行了更精确的分析。

分析发现,解决本模型的关键就在于分析学生平均排队时间,如果对其窗口数进行关系拟合,就两者之间的关系进行分析。

3.针对窗口数与顾客平均排队时间之间的关系,比较增加窗口后成本的增加量与减少排队等待时间所带来的收益之间的关系,得出食堂每排设5个窗口比较合理。

关键词排队论 M\M\n模型模型的建立与分析由于周六周日学校基本上没课,所以学生去食堂的时间较分散,很少有排长队的现象,在这里就只对周一至周五食堂拥挤情况进行分析。

经过调查分析,我发现一般打到饭的同学都能找到座位吃饭,因此,可以认为食堂的座位数是足够的,不需要添加新的桌椅。

所以解决食堂拥挤状况,主要解决排长队的问题。

就此问题建立模型,进行分析。

调查数据统计从12月28到1月1中午食堂吃饭学生的分别情况做一统计:见下表:由概率论的知识可知,若分布满足:k p p k λ=-1k 则该分布为泊松分布。

数学建模优秀论文-食堂就餐模型

数学建模优秀论文-食堂就餐模型

.大学生数学建模竞赛论文学校食堂就餐问题摘要本文选取2012年兰州理工大学西校区食堂的消费情况作为研究对象,通过我们的随机调查取样和学校食堂及餐厅相关人员提供的相应数据,并结合西校区宿舍、教学区和食堂的规划布局,建立起了衡量就餐服务质量及学生就餐分布规律的数学模型。

模型一:建立了就餐服务满意度模型。

我们讨论得知影响学生就餐满意指标的因素可能为:餐饮品种和质量、饭菜价格;宿舍、教学楼和食堂的位置关系;食堂容量;周末和非周末;服务态度、食堂清洁卫生,其他等因素。

我们通过调查将各个因素在影响人们对食堂满意度的评价上选择的比例高低列入表格,根据比重,我们确立了满意度指标为餐饮品种与质量,饭菜价格,宿舍、教学楼和食堂的位置关系,食堂容量。

就这四个因素,我们建立起了简单优化模型,利用综合评分法算出各个食堂的总得分,通过数据拟合发现与实际情况相符。

模型二;建立了学生就餐分布规律对食堂经营影响的回归模型。

从学生就餐分布规律来解决食堂供求关系,进而较准确的预测不同时间段、不同日期的就餐人数,以减少资源的浪费,提高餐厅的服务质量和广大师生的满意度。

通过使用回归分析研究各个时间段学生就餐分布规律,按照剩余标准偏差和拟合优度选定了学生各个时间段所占比重的时间序列回归方程。

为以后近似的预测师生在食堂的就餐分布规律,建立模型,定量刻画各食堂特定时间早餐,午餐和晚餐以及周一至周五,周末和节假日等就餐人数的分布规律,优化食堂经营管理,方便师生就餐。

根据这些情况我总结了我们学校餐饮体系的优缺点,优点我们要继承发扬,缺点我们要改进。

既然食堂与我们学生的日常生活息息相关,所以食堂的管理必须引起我们的高度重视,所以,为完善我们学校食堂的管理体系,征集许多学生的意见,提出了一些有效的改进办法。

如适当增加学校食堂的座位和打饭窗口,使食物的种类更丰富,更营养更健康等等。

关键词:优化模型综合评分回归模型方差分析一、问题的提出我校目前有多个学生食堂,每天供约四万人(学生,教职员工)就餐。

食堂就餐问题(数学建模)

食堂就餐问题(数学建模)
模型求解 在模型中根据调查的数据进行计算,第 i 个学生对第 j 个食堂第 k 项 的重要性评分所得对应的绝对权数 Aijk= ; 有相对权数与绝对权数的计算方法我们得到学生整体对第 j 个食堂 第 k 项的重要性评分所得对应的绝对权数 Ajk= ; 根据数据计算第 i 个学生对第 j 个食堂第 k 项评价指标的重要性评分 所得对应的相对权数 Bijk=; 则学生整体对第 j 个食堂第 k 项的评价指标的重要性评分所得对应的 相对权数 Bjk=; 第 i 个学生对第 j 个食堂的指标评分所得相对应满意度的绝对权数是 Cij=, 由绝对权数得学生整体对第 j 个食堂的指标评分所得相对应的满意 度相对权数是 Cj= 第 i 名受访学生对 j 食堂就餐绝对满意度指标 Dij= 学生整体对 j 食堂就餐的相对满意度指标 Dj=; 由此得到食堂整体满意度的评分 Dj;
由此我们建立回归模型。 对应的多元线性回归预测模型如下: Y=β0+β1XX1+β2X2+β3X3+β4X4+β5X4+β6X6+β7X7
自变量 X 与因变量 Y 的值如下表:
Y
X
X
X
X
X
X
X
1
2
3
4
5
6
7
正阳 7.8 5.8 4.7 4.9 5
5.2 5.8
晨曦 6.7 5.7 5.5 4.7 4.9 5.2 5.3
12、学生整体对 j 食堂第 k 项的相对满意度设为 Eij;
五、模型的分析及建立
5.1 模型一、
评测指标的设计
学生满意测评的指标体系设计是否合理,直接影响到结果的真实性和
有用性。结合学生对于食堂服务,价格,环境等方面综合考虑。确定

数学建模-食堂排队问题

数学建模-食堂排队问题

数学建模论文——食堂排队问题指导老师:***小组成员: 姓名学号李晟源200807010409 自己闲来无事做的,仅供参考![摘要]通过应用排队论,为食堂窗口服务工作构建相应的定量模型,为节约学生排队就餐时间,提高食堂服务质量,效率,以及平衡学生排队时间与食堂收益之间的关系,优化食堂资源配置提供一种较有效的管理决策手段。

[关键词]排队论;M/M/s模型;灵敏度;等待损失1.引言在学校里,常常可以看到这样的情况:下课后,许多同学正想跑到食堂买饭,小小的买饭窗口前没过几分钟便排成了长长的队伍,本来空荡荡的食堂立即变得拥挤不堪。

饥肠辘辘的学生门见到这种长蛇阵,怎能不怨声载道。

增加窗口数量,减少排队等待时间,是学生们十分关心的问题。

然而就食堂的角度来说,虽说增加窗口数量可以减少排队等待时间,提高学生对该食堂的满意度,从而赢得更多的学生到该食堂就餐,但是同时也会增加食堂的运营成本,因此如何在这两者之间权衡,找到最佳的窗口数量,对学生和食堂双方来说都是很重要的。

排队论是通过研究各种服务系统的排队现象,解决服务系统最优设计和最优化控制的一门科学。

本文将根据食堂排队状况建立数学模型,运用排队论的观点进行分析,通过比较各方面因素的关系,为其拥挤状况找到一个较合理的解决方案。

2.多服务台排队系统的数学模型2.1排队论及M/M/s模型。

排队论是研究排队系统(又称为随即服务系统)的数学理论和方法,是运筹学的一个重要分支。

在日常生活中,人们会遇到各种各样的排队问题。

排队问题的表现形式往往是拥挤现象。

排队系统的一般形式符号为:X/Y/Z/A/B/C。

其中:X表示顾客相继到达时间间隔的分布;Y表示服务时间的分布;Z表示服务台的个数;A表示系统的容量,即可容纳的最多顾客数;B表示顾客源的数目;C 表示服务规则。

排队论的基本问题是研究一些数量指标在瞬时或平稳状态下的概率分布及其数字特征,了解系统运行的基本特征;系统数量指标的统计推断和系统的优化问题等。

数学建模——食堂就餐问题

数学建模——食堂就餐问题

某高校设有第1、2、3、4四个食堂,学生可以在任意一处就餐,假设现在学校准备在上述四处中挑选一处增开阅报栏,主要挑选依据是在就餐人数最多的食堂增开阅报人数的分布趋势,并且选择最合适的阅报栏地址。

二、问题的假设1、假设食堂没有扩建;2、假设各个食堂间的竞争是良性的;3、假设本校学生全部在食堂就餐,该校共有3000名学生。

三、符号说明n :选取的进行考察的时间段(:,)x k :取出矩阵x 的第k 列A :分别在这4个食堂就餐的概率组成的矩阵()i x k :在第i 个食堂就餐k 次的学生人数,1,2,3,4i =,0,1,2,3k =……四、模型的分析本题主要是考虑阅报栏的开设问题,所以只要从第1食堂、第2食堂、第3食堂和第4食堂中选取一个就餐人数最多的食堂开设阅报栏,以保证更多的阅读人数就可以了。

对于这个问题,我们可以考虑运用差分方程模型来求解,利用表格中所给的学生就餐地点变化的概率,再运用绘图程序画出变化趋势图,可以更加直观的看出在哪个食堂就餐的人数最多,最占优势,然后在那个食堂开设阅报栏即可。

五、模型的建立与求解5.1.1模型的建立记学生在食堂就餐第k 次的人数分别为1()x k ,2()x k ,3()x k ,4()x k ,据此可写出在食堂就餐第1k +次的人数为1234(1),(1),(1),(1)x k x k x k x k ++++,(0,1,2,3k =……)。

由题目所给数据可知,第一次在第1食堂就餐的概率为0.60,0.20,0.15,0.05,第二次在第1食堂就餐的概率为0.60,0.25,0.10,0.10,所以可得在第1食堂就餐的学生数量的差分方程为:11234(1)0.60()0.25()0.10()0.10()x k x k x k x k x k +=+++; 类似可得:在第2食堂就餐的学生数量的差分方程为:21234(1)0.20()0.50()0.20()0.25()x k x k x k x k x k +=+++;在第3食堂就餐的学生数量的差分方程为:31234(1)0.15()0.10()0.55()0.50()x k x k x k x k x k +=+++;在第4食堂就餐的学生数量的差分方程为:41234(1)0.05()0.15()0.15()0.15()x k x k x k x k x k +=+++;综上所述,我们可得一阶差分方程组如下:11234212343123441234(1)0.60()0.25()0.10()0.10()(1)0.20()0.50()0.20()0.25()(1)0.15()0.10()0.55()0.50()(1)0.05()0.15()0.15()0.15()x k x k x k x k x k x k x k x k x k x k x k x k x k x k x k x k x k x k x k x k +=+++⎧⎪+=+++⎪⎨+=+++⎪⎪+=+++⎩ 用矩阵表示为:11223344(1)()0.600.250.100.10(1)()0.200.500.200.25(1)()0.150.100.550.500.050.150.150.15(1)()x k x k x k x k x k x k x k x k +⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪+ ⎪ ⎪⎪= ⎪ ⎪⎪+ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭用matlab 编程计算出()x k 的值,观察4个食堂就餐的学生人数的变化情况,见附录。

食堂拥挤问题数学建模

食堂拥挤问题数学建模

承诺书我们仔细阅读了新乡市高校数学建模联赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其它公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。

我们参赛选择的题号为(从A/B/C/D中选择一项填写): A我们的报名参赛队号为:参赛组别(本科或专科):本科所属学校(请填写完整的全名)新乡学院参赛队员(打印并签名) :日期:年月日编号专用页竞赛评阅编号(由竞赛评委会评阅前进行编号):裁剪线裁剪线裁剪线竞赛评阅编号(由竞赛评委会评阅前进行编号):参赛队伍的参赛号码:(请各参赛队提前填写好):A题拥挤的食堂摘要本文根据题目要求研究我校第一食堂入口拥挤问题,通过5月15至5月20日5天用餐时间内对我校食堂调查,通过对数据的分析建立了以分析队列长度的变化的概率统计分布模型,并且得到了初步的结果。

(1)对于问题一,通过连续5天同一时间同一地点得到了与实际情况大致相符的所需数据。

(2)对于问题二,根据问题一调查所得到的结果,对问题二进行假设分析,建立以分析队列长度的变化的概率统计分布模型。

(3)对于问题三,根据自己的亲身经历和观察,进行数据调查建立排队理论模型,分析解决问题关键词:学生食堂拥挤排队论 M/M/s模型一问题重述在大学校园里,每到放学吃饭的时候,总是让同学们进食堂吃饭比较困难,因为进门特别拥挤。

这是一个多数大学都存在的问题,新乡市各高校的食堂也是如此。

请建模说明下列问题(请选自己学校一个典型餐厅为例,但在文中不要显示具体学校和餐厅的名字)问题一:中午放学的时候,食堂门口来流人数达到每分钟多少人时,会发生拥挤。

食堂排队问题ylogic物流仿真

食堂排队问题ylogic物流仿真

食堂排队问题y l o g i c物流仿真Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998食堂排队问题物流仿真项目计划书一、仿真目的应用仿真技术,对汀香一楼食堂排队问题的进行系统建模,通过仿真进行验证分析。

考虑食堂购饭的窗口开设数目是否合适,以达到在高低峰期间能够合理配置资源,减少资源浪费,增加学生就餐满意度的目的。

二、仿真问题描述在汀香食堂一楼,经常看见这样的情况:食堂共4个打饭窗口,相当于4个服务窗口,在中午下午下课时间,食堂就餐学生特别多,往往每个窗口都是排着长长的队伍。

食堂的拥挤会造成排队,极大地增加了学生的时间成本,也会影响食堂的服务效率和服务质量。

因此解决食堂排队问题,减少排队等待时间,是十分重要的。

然而对于食堂而言,也有更现实的问题,虽然增加窗口数量可减少排队等待时间,但同时也会增加食堂的运营成本,因此如何在两者之间权衡找到最佳的窗口数量,对学生和食堂双方来说是最合适和实用的。

食堂一般实行的是先来先服务原则,且学生可自由在队列间进行转移,并总向最短的队列转移,没有学生会因为队列过长而离去,故可认为排队方式是单一队列等待制。

由于周末没课,学生去食堂就餐的时间比较分散,故只考虑周一到周五的情况。

据本小组成员的观察,食堂就餐的学生一般都可找到座位就餐,因此食堂的容纳量是足够的,主要解决排队长与服务窗口的问题。

三、仿真模型与步骤1.食堂就餐排队系统模型假设为了更好地研究就餐排队系统模型,本文对系统的组成要素进行假设:(1) 排队规则:若食堂中有空闲的购饭窗口,则学生到达后可直接开始购饭,如果有人正在接受服务,学生会选择队伍长度最短的窗口进行等候,直到窗口不再忙碌时再接受业务。

(2) 服务机构:假定食堂开放了c个购饭窗口,每个窗口都可以单独地为学生服务,互不干扰,一起工作,而且在同一时刻同一个窗口下一次只为一位学生服务。

2.食堂购饭排队系统性能指标为了更好的研究排队系统特性,对得到的数据进行后续分析,需要考虑的系统性能指标有:(1) 平均排队等待时间W q(n)=1n ∑W i ni=1式中W i—第 i 个旅客排队等待时间;(2) 平均队长L q(n)=1T ∑L(t) T mi=1式中L(t)—t时刻排队等待的学生数目;T m—仿真时间上限。

中学生打饭数学建模案例精选构造判断矩阵

中学生打饭数学建模案例精选构造判断矩阵

中学生打饭数学建模案例精选构造判断矩阵摘要:1.中学生打饭问题的背景介绍2.数学建模的概述3.构造判断矩阵的方法4.案例精选的解析5.结论正文:1.中学生打饭问题的背景介绍中学生打饭问题是一个日常生活中常见的排队问题。

假设一个中学的食堂有n 个窗口,每个窗口出售不同的饭菜,学生们需要排队购买。

为了使排队时间最短,需要合理地分配学生到各个窗口。

这个问题可以通过数学建模来求解。

2.数学建模的概述数学建模是将实际问题抽象为数学问题,建立数学模型来描述问题,然后运用数学方法求解。

在这个问题中,我们可以将中学生打饭问题抽象为一个图论问题,每个窗口可以看作一个节点,学生需要从一个节点出发,经过其他节点,最后到达目标节点。

我们需要找到一条路径,使得这条路径的长度最短。

3.构造判断矩阵的方法为了求解最短路径问题,我们可以使用弗洛伊德算法。

弗洛伊德算法需要构造一个判断矩阵。

判断矩阵的元素是一个二进制数,表示从当前节点到目标节点是否可以不经过当前节点。

例如,如果从节点i 到节点j 可以不经过节点k,则判断矩阵的元素为0,否则为1。

4.案例精选的解析假设有一个中学食堂有4 个窗口,分别出售A、B、C、D 四种饭菜。

有10 名学生需要购买,他们分别喜欢不同的饭菜。

我们可以通过弗洛伊德算法来求解最短路径问题,使得学生们的排队时间最短。

具体的案例解析如下:(1) 判断矩阵的构造:首先,我们需要根据学生的口味偏好来构造判断矩阵。

例如,如果学生1 喜欢A、B、C,不喜欢D,则从窗口1 到窗口D 的路径不能包含窗口1。

我们可以得到如下判断矩阵:A B C DA 0 1 1 1B 1 0 1 1C 1 1 0 1D 1 1 1 0(2) 弗洛伊德算法:根据判断矩阵,我们可以得到如下的路径:学生 1 2 3 4 5 6 7 8 9 10窗口A 1 2 3 4 5 6 7 8 9 10窗口B 2 1 4 3 6 5 8 9 1 10窗口C 3 4 1 2 7 6 9 1 10 2窗口D 4 3 2 1 8 9 1 10 2 1(3) 最短路径:从上面的路径中,我们可以得到最短路径为:1-2-4-3-6-5,路径长度为6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成绩评定表课程设计任务书食堂排队问题摘要近年来,随着大学不断扩招,大学在校学生人数不断增加,学生食堂用餐排队拥挤现象也日益严重。

首先,从网上找到某一高校中午去食堂用餐人数的时刻表,利用SPSS中的中心移动平均法,观察到学生进入食堂的人数近视服从正态分布。

在此基础上研究了在权衡学校食堂和学生的利益这两方面时,利用边际分析法得到了合理的窗口数为9个。

计算由窗口数变化而产生的平均等待时间,利用SPSS中的曲线估计,得到窗口数与平均等待时间满足S型曲线估计,对其做灵敏度分析发现灵敏度很高,并且窗口数由8个增加到9个时平均等待时间变化很大,而继续增加时,变化趋于平缓。

所以认为食堂设置9个窗口是合理的。

在进一步的探讨中,由于每个窗口饭菜好吃与否不同,学生对其具有选择性,在假设上面9个窗口吸引学生的比例后,求其平均等待时间为40.35秒,是没有考虑这个因素的8倍左右,所以这是造成学生平均等待时间增加并且浪费窗口资源的一个重要因素。

关键词:食堂排队,中心移动平均,曲线估计,平均等待时间目录1.引言: 02.模型: 02.1问题的简化及分析 02.2模型假设 02.3符号说明 (1)2.4模型建立 (1)3.分析: (5)4.结论: (6)5.进一步的探讨: (6)6.模型的评价 (8)6.1模型的优点 (8)6.2模型的缺点 (8)7.结束语: (8)参考文献 (9)1.引言:在学校或者大型企业里,经常可以看到在午餐时间大量的人涌入食堂。

由于午餐时间相对固定,导致在这个时间段内食堂的人数激增。

原本没有多少人的食堂顿时充满了人,大家都在排队买饭。

买到的人就开开心心的去吃了,买不到的还在那里排队等着买饭,不时的传来几句怨言。

这是一个普遍的问题,有很多人对其进行研究,希望找到更好的办法来解决这个问题。

食堂排队问题的解决可以减少人们的排队时间,所以对此研究具有一定的意义。

在一些初中和高中,有过一些解决这个问题的一些方法,比如像分年级、班级去吃饭,错开人们的吃饭时间,从而解决这个问题。

但由于大学里,学院很多,而且每个学生还有自己的选修课,上课地点又不是固定的,所以实行错开学生吃饭的方法在这里就不在适用了。

对此我们提出解决食堂排队问题的其它方法,对其进行研究。

2.模型:2.1问题的简化及分析食堂排队问题实际上就是排队论问题,对学生而言食堂增加卖饭的窗口,学生的等待时间就会减少,而食堂的成本就会相应的增加。

而减少食堂窗口的数量,食堂的利益会增加,但学生的等待时间就会相应的增加。

所以我们要权衡这两个方面,对其进行研究。

利用边际分析法,求得其合理的窗口数。

后又考虑到学生对每个窗口的饭菜喜爱程度不同这个因素,对前面得到的窗口数进行研究,求得其平均等待时间,和之前的平均等待时间进行比较,得到增加这个因素对平均等待时间的影响。

2.2模型假设1.由于学校学生多,而食堂少,在中午时段,学生又大都集中在11:30至13:30这一时间段赶去食堂吃饭,故可认为在该时间段中学生源是无限的,且学生单独到来且相互独立。

2.学生对菜色没有特别偏好,每个窗口对学生来说都是一样的。

3.食堂实行先来先服务原则,且学生可自由在队列间进行转移,并总向较短的队进行转移,没有学生会因为队列过长而离去,故可认为排队方式是单一队列等待制。

4.由于每个窗口服务员的工作效率是随机的,很难对其进行精确的分析。

所以由一般统计规律,认为其满足指数分布,平均每个学生的服务时间是15秒,且服务员之间无差异。

2.3符号说明s 卖饭窗口数p 窗口服务强度λ 每十分钟进入食堂的人数μ 每个窗口每十分钟服务的人数 1t M 一次移动平均数 2t M 二次移动平均数q L 平均等待队长 q W 平均等待时间1c 每个窗口的单位时间成本 2c 每个学生在食堂中逗留损失费用s λ 到达每个窗口的人数比例2.4模型建立对学生在食堂进餐的情形进行研究,根据食堂进餐排队的特点,选择排队模型,进行研究。

学生进餐可以分解成三个部分,第一部分:学生进入食堂;第二部分:学生在窗口买饭;第三部分:吃饭或打包离开。

具体流程图如图一所示:从网上得到查找得到某一高校的食堂进餐人数随时间变化如表一所示:对上面的数据进行处理,利用EXCEL 画出食堂进餐的人数随时间的变化图,如图二所示:图二:食堂进餐人数随时间变化图观察上图可以发现食堂进餐人数在10:40至13:30这个时间段内有呈现正态分布的特点。

为了使这个特点更加明显,我们对人数做移动中心平均处理。

设一次移动平均数为1t M ,则二次移动平均数2t M 的计算公式为:NM M M N M M M M N t t t N t t t t112111112--+-++=+++= (1)对表一中进餐人数分别做一次移动平均和二次移动平均,结果如图三所示:图三:进餐人数一、二次移动平均图在利用EXCEL 对第二次移动平均数作图,得到食堂人数随时间变化的趋势图。

如图四所示:图四:食堂人数随时间变化趋势图观察上图,发现食堂人数随时间的变化服从正态分布,其函数为: ()22221)(δδπa t et F --=(2)利用边际分析法建立模型,求窗口数。

窗口服务强度:μλs p =(3) 由于不希望等待的学生人数越来越多,所以p 小于等于1。

经研究认为15秒的平均服务时间对于服务员来说已经是极限了,如果再加快速度反而可能手忙脚乱,增大出错的可能性,到时反而会降低效率,故认为平均服务时间不可改变,是个常数,所以μ为40。

λ表示的是每十分钟进入食堂的学生数,它的取值与上面的食堂进餐人数随时间变化的关系有关。

所以λ的值可以表示为: ()22221)(δδπλa t et F --== (4)所以得到p 等于:()ses t F p a t 4021)(222δδπμ--==(5)由状态流图可列出K 氏代数方程并求出相应的平稳分布:()⎪⎪⎩⎪⎪⎨⎧≥<≤=sk ps p s sk p k sp ks kk 00!0!ρ (6)由正则性条件∑∞==01k k ρ,当p <1时,有()()()01001011!!!!1p p s sp k sp p s p s k sp s k s k s k s k ks k ⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛+=∑∑∑-=-=∞= (7) 于是空闲概率:()()110011!!--=⎪⎪⎭⎫⎝⎛-+=∑p s sp k sp s s k k ρ (8) 于是平均等待队长: ∑∑∞=∞=-+-===010210)1(!)(!)(j j s j s js q p s sp p jp s sp p j L ρρρ (9) 平均等待时间:λqq L W =(10)为了权衡学生与食堂的利益这两者的关系,建立如下目标: q L c s c f 21min+= (11)其中1c 为每个窗口的单位时间成本,2c 为每个学生在食堂中逗留损失费用。

约束方程为:⎩⎨⎧≥<0,,1.2,1q L s c c p t s (12)根据边际分析法,最佳的满足条件:⎩⎨⎧+≤-≤)1()()1()(****s f s f s f s f (13) 将上面的约束方程代入到最佳满足条件里得:⎪⎩⎪⎨⎧+⨯++⨯≤⨯+⨯-⨯+-⨯≤⨯+⨯)1()1()()1()1()(*2*1*2*1*2*1*2*1s L c s c s L c s c s L c s c s L c s c q q q q (14) 于是有,⎪⎩⎪⎨⎧+-≥--≤)]1()([)]()1([**21**21s L s L c c s L s L c c q q q q (15) 整理得,)()1()1()(**21**s L s L c c s L s L q q q q --≤≤+- (16) 取8.121=c c ,9=t 时,此时296=λ,采用边际分析法,求得*s ,如表二所示:表二:人数最多时边际分析法求窗口数取8.121=c c ,18=t 时,此时9=λ,采用边际分析法,求得*s ,如表三所示:表三:人数最少时边际分析法求窗口数由于进入食堂的学生数服从正态分布,所以所需的窗口数也应近似的服从正态分布。

窗口在学生数最多时为9,在学生数最少时为1个。

根据边际分析法可以求出每个时间点在8.121=c c 时,需要的窗口数目,利用EXCEL 作出窗口数随时间的变化图,如图五所示:图五:窗口数随时间变化图由于μ一定,所以影响平均排队时间的只有窗口数s ,利用SPSS 对平均排队时间及窗口数进行多种模型曲线估计,得到下图:图六:窗口数与平均等待时间的多模型曲线估计观察上图发现窗口数与平均等待时间的曲线估计最接近S 模型,对其做S 模型曲线估计得到下图:图七:窗口数与平均等待时间的S 模型曲线估计观察上图发现当窗口数从8个增加到9个时,平均等待时间迅速下降,后增加窗口数,平均等待时间趋于平缓。

得到模型汇总和参数估计值表,见表四:表四:得到模型汇总和参数估计值表从上表中可以看出Sig 值为0.001,说明S 模型曲线估计效果很好,参数估计值中常数值为-9.526,b1值为101.265。

所以模型曲线方程为下面再分析在学生数最多时平均排队时间对窗口数的灵敏度: sW s W Q q q //∆∆=(17)由于窗口数为整数,所以求得如下数据,见表五:表五:平均排队时间对窗口数的灵敏度分析从上表可以看出,平均排队时间对窗口数十分敏感,灵敏度均达到了15以上,其中在窗口数从8变到9时,平均排队时间由24.21秒变为了5.08秒。

3.分析:通过上面的灵敏度分析得到,当食堂的窗口数超过9个时,即使增加再多的窗口数,其平均排队时间变化的绝对值也只在5秒左右,而这么小的时间间隔对学生造成的影响是很小的。

但是每增加一个窗口就会花费很大的成本,他们自然也不可能增加。

但小于9个窗口时,从表四中可以看出,平均排队时间会大大增加,这将会引起学生的极大不满,当然也是不合理的。

至此可看出,最佳的窗口设置是9个。

对于学生来说,当然是窗口数越多越好。

而对于食堂来说,窗口数的增加一方面会导致成本的增加,另一方面会缩短排队时间,即意味着它能为更多学生服务,所以它是否会增加窗口数就取决于成本和收益的大小关系。

4.结论:本文在把握学生进餐人数随时间变化规律的情况下,以动态变化的人流量来研究窗口数的随时间的变化情况,改进了原来研究固定人流量的模型,使得研究的结果更加接近实际。

在权衡减少学生平均等待时间和增加食堂利益这两方面时,给出合理的食堂窗口数。

5.进一步的探讨:由于食堂每个窗口的饭菜口味都不相同,学生去每个窗口买饭的人数也会出现很大的差别。

基于这个条件,对其进行研究。

设每个窗口到达的人数比例分别为s λλλ,,,21 ,由于每个窗口的工作人员能力相同。

相关文档
最新文档