排队问题-数学建模
数学建模:排队论2

无顾客
无顾客
n
无顾客 1 个顾客
n
1 个顾客 无顾客
n
1 个顾客 1 个顾客
n
9
上述四种情况发生概率分别为:
情况
时刻 t 顾客数
区间[ t,t + △t ) 到达顾客 离开顾客
概率
A
n
无顾客 无顾客 pn (t )(1 t )(1 t )
B
n+1
无顾客 1 个顾客 pn1(t )(1 t )t
时刻 t 顾客数
0 1 0
区间[ t,t + △t )
时刻 t + △t
到达顾客 离开顾客 顾客数
无顾客
无顾客
0
无顾客 1 个顾客
0
1 个顾客 1 个顾客
0
16
上述三种情况发生概率分别为:
情况
时刻 t 顾客数
区间[ t,t + △t ) 到达顾客 离开顾客
A
0
无顾客
无顾客
B
1
无顾客 1 个顾客
D
0
12
dpn (t ) dt
pn1(t )
pn1(t )
(
)
pn (t )
解上述方程的解是很困难的。这里只研究系统达到平
稳状态的情况,即系统运行了无限长时间之后,状态
概率分布不再随时间变化,显然此时 dpn (t ) 0
dt
13
由此可得,当 n≥1 时:
pn1 pn1 ( ) pn 0,n 1
第四节 单服务台负指数分 布排队系统
讨论单服务台的排队系统,并设定: 顾客到达过程服从泊松分布。 顾客服务时间服从负指数分布。
2
排队问题-数学建模

第九届“新秀杯”校园数学建模竞赛摘要医院有一位医生值班,经长期观察,每小时平均有4个病人,医生每小时可诊断5人,病人的到来服从Poisson流,诊断时间服从负指数分布。
根据题目所给信息,可以很明显看出本题是单服务台的排队模型,因此需要用到排队理论来求解这些问题。
本题需要用到排队理论中最简单的M/M/1/∞/∞模型,通过对病人到来及诊断时间的统计研究,得出这些数量指标的统计规律。
针对问题一,通过分析任意时刻t内到达的病人数为n的概率,使用数学期望的方法,,可以得出平均病人数及等待的平均病人数。
由题目给出条件病人的到来服从参数为λ的泊松分布,诊断时间服从参数为μ负指数分布,可以得出病人的平均看病所需时间及病人平均排队等待时间。
以及分析该医院的服务强度,可以粗略的分析该科室的工作状况。
针对问题二,在问题一的条件基础下,要求99%的病人有座位。
可以先假设出座位个数,由于每个时刻病人到来的个数是随机且独立,不可能同时到达两批病人,考虑到来病人的个数与座位之间的关系,考虑病人数不同时,有座位的概率不同。
所以用独立事件概率的加法可以得出概率需要大于等于0.99,从而反推出所需座位数。
针对问题三,分析问题可得,需要求出单位平均损失可以通过题目每小时病人到来数可以得出平均每天医院到来数。
根据问题一结论,可以得出平均看病所花时间,从而求出每天的平均损失。
针对问题四,只需要利用问题一,问题二,问题三的结论并改变医生每小时诊断时间,嵌套进来就能求解。
关键字:排队理论M/M/1/∞/∞模型数学期望Poisson流负指数分布一、问题提出某单位医院的一个科室有一位医生值班,经长期观察,每小时平均有4个病人,医生每小时可诊断5人,病人的到来服从Poisson流,诊断时间服从负指数分布。
(1)试分析该科室的工作状况:(2)如要求99%以上的病人有座,该科室至少设多少座位?(3)如果该单位每天24小时上班,病人因看病1小时而耽误工作单位要损失30元,这样单位平均损失多少元?(4)如果该科室提高看病速度,每小时平均可诊断6人,单位每天可减少损失多少?可减少多少座位?二、模型的准备根据题目所给信息,可以很明显看出本题是单服务台的排队模型,日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,市内电话占线等现象。
数学建模排队论

数学建模排队论
排队论是一种数学理论,它研究的是人们排队等待服务或交通等系统的行为模式。
在排队论中,数学建模被广泛应用于分析和优化这些系统的性能和效率。
排队系统的基本构成包括到达过程、服务过程和队列规则。
到达过程指的是顾客或流量进入系统的过程,它可以用概率分布来描述。
服务过程指的是系统为每个顾客提供服务的时间,同样也可以用概率分布来描述。
队列规则则规定了顾客在等待队列中的顺序以及他们被服务的顺序。
在排队系统中,我们通常关注两个主要的性能指标:平均等待时间和平均队列长度。
平均等待时间指的是顾客在进入系统后需要等待多长时间才能接受服务的时间平均值,而平均队列长度则指的是在某个时间点等待服务的顾客数量的平均值。
为了分析和优化排队系统的性能,我们可以使用数学模型进行建模。
其中最常用的模型包括M/M/1模型、M/M/c模型、M/G/1模型等。
这些模型分别描述了不同的到达过程、服务过程和队列规则,并且可以计算出各种性能指标。
例如,M/M/1模型表示到达过程和服务过程都是泊松分布,并且只有一个服务窗口。
在这种情况下,我们可以使用该模型计算出平均等待时间和平均队列长度,并比较不同服务率下的性能指标。
M/M/c模型则表示到达过程和服务过程都是泊松分布,但是有c个服
务窗口。
在这种情况下,我们可以研究如何合理分配服务窗口的数量以优化系统的性能。
数学建模排队论是一种非常有用的工具,它可以用来分析和优化人们排队等待服务或交通等系统的行为模式。
通过建立数学模型,我们可以更好地理解这些系统的性能和效率,从而为实际应用提供指导。
数学建模-排队论(二)

基本的排队模型
一、随机服务过程基本组成 二、随机服务记号方案 三、排队论的重要公式
一、基本组成
排队系统
输入 来源
顾客
队列
服务机构 服务完离开
排队系统的三个基本组成部分
输入过程 (顾客到达规律) 排队规则 (顾客按照一定规则排队等待服务) 服务机构 (服务机构的设置,服务台的数量,
服务的方式,服务时间分布等)
队列容量
有限/无限
排队规则
先来先服务(FCFS);后来先服务(LCFS);随 机服务(RSS);有优先权的服务(PS);排队模 型中也用到服务中的“一般规则(GD)”它 包括前三种排队规则。
基本排队模型-服务规则
服务机构可以有一个,也可以有多个; 对于多个服务台可以是并列、串列、混合
排列; 服务方式可以是一个或成批; 服务时间分布:
排队论
(Queueing Theory)
排队等候随机服务现象
商店、超市等收款处排队付款 车站、民航等售票处依次购买车船票 各种生产系统、存储系统、运输系统等
一系列等待现象比比皆是
排队论的基本概念
研究随机的排队服务模型的主要工具是 排队论,排队论又称为随机服务系统理论 是研究由顾客、服务机构及其排队现象所 构成的一种排队系统的理论。
若 时,即 1 此时顾客在 系统中的逗留时间服从参数为 的
指数分布。
三、排队论的重要公式
平均到达率:单位时间 平均队长: 内到达顾客的平均数 平均服务率:单位时间 内被服务顾客的平均数 平均等待时间: 服务强度:/
AB AB AB
A
B
第t时刻有 n-1个顾客
Pn1(t) Pn1(t)
服务率问题、顾客满意问题)
核酸检测排队问题数学建模

核酸检测排队问题数学建模核酸检测排队问题是一个典型的排队论问题。
排队论是数学的一个分支,主要研究排队等待和系统服务的问题。
以下是一个简单的数学模型来描述这个问题:1. 模型假设:假设核酸检测点只有一个,即只有一个服务台。
到达过程服从泊松分布,即每单位时间到达的人数是一个随机变量,且这个随机变量服从泊松分布。
服务时间服从指数分布,即每个人接受核酸检测所需的时间是一个随机变量,且这个随机变量服从指数分布。
2. 排队系统的表示:M/M/1表示:到达过程是泊松分布(M表示"Markovian",即到达是相互独立的),服务时间也是指数分布(第二个M表示"Markovian"),并且只有一个服务台(1)。
3. 系统状态:系统状态可以用一个非负整数n 来表示,表示当前排队等待的人数。
4. 系统平衡方程:系统的平衡方程组为:P(0) = ρP(1) + (1 - ρ)P(0)其中 P(n) 表示系统中有 n 个人在等待的概率,ρ 是平均到达率与平均服务率之比。
5. 求解平衡方程:求解平衡方程可以得到 P(0), P(1), P(2), ... 等。
6. 性能指标:系统通常关注的性能指标包括:平均排队长度、平均等待时间、平均忙期等。
这些都可以通过求解平衡方程得到。
7. 扩展模型:如果考虑多个核酸检测点(服务台),则模型变为 M/M/c,其中 c 是服务台的数量。
如果考虑到达率和服务率随时间变化的情况,则模型会更复杂。
8. 实际应用:根据这个模型,可以预测在某个时间段内需要多少个核酸检测点来满足需求,或者预测某个时间段内的平均排队长度等。
这个模型提供了一个基本的框架来描述核酸检测排队问题,但实际情况可能更复杂,需要考虑更多的因素。
数学建模排队论模型

数学建模排队论模型排队论模型是一种数学建模方法,用于研究排队系统中的等待时间、服务效率和资源利用率等问题。
排队论模型可以应用于各种领域,如交通运输、医疗服务、银行业务等。
本文将介绍排队论模型的基本概念和应用。
一、排队论模型的基本概念排队论模型的基本概念包括:顾客到达率、服务率、队列长度、等待时间、系统利用率等。
顾客到达率是指单位时间内到达系统的顾客数量,通常用λ表示。
服务率是指单位时间内一个服务员能够完成服务的顾客数量,通常用μ表示。
队列长度是指系统中正在等待服务的顾客数量。
等待时间是指顾客在队列中等待服务的时间。
系统利用率是指系统中所有服务员的利用率之和。
排队论模型可以分为单队列模型和多队列模型。
单队列模型是指系统中只有一个队列,多个服务员依次为顾客提供服务。
多队列模型是指系统中有多个队列,每个队列对应一个服务员,顾客可以选择任意一个队列等待服务。
二、排队论模型的应用排队论模型可以应用于各种领域,如交通运输、医疗服务、银行业务等。
下面以银行业务为例,介绍排队论模型的应用。
在银行业务中,顾客到达率和服务率是两个重要的参数。
顾客到达率受到银行营业时间、银行位置、顾客数量等因素的影响。
服务率受到银行服务员数量、服务质量、服务时间等因素的影响。
为了提高银行的服务效率和资源利用率,可以采用排队论模型进行优化。
首先需要确定银行的顾客到达率和服务率,然后根据排队论模型计算出等待时间、队列长度、系统利用率等指标。
根据这些指标,可以制定相应的服务策略,如增加服务员数量、优化服务流程、提高服务质量等。
例如,如果银行的顾客到达率较高,服务员数量较少,导致顾客等待时间较长,可以考虑增加服务员数量或优化服务流程,以缩短顾客等待时间。
如果银行的服务率较低,导致服务员利用率较低,可以考虑提高服务质量或增加服务时间,以提高服务员利用率。
三、排队论模型的局限性排队论模型虽然可以应用于各种领域,但也存在一些局限性。
首先,排队论模型假设顾客到达率和服务率是稳定的,但实际情况中这些参数可能会发生变化。
核酸检测排队问题数学建模

核酸检测排队问题数学建模摘要:一、背景介绍二、核酸检测排队问题描述三、数学建模思路和方法四、模型求解与分析五、结论与展望正文:正文一、背景介绍随着新冠疫情的不断发展,核酸检测已经成为疫情防控的重要手段。
在实际检测过程中,采样点和检测机构的数量、检测速度等因素都会影响排队等待的时间。
为了有效减少等待时间,提高检测效率,本文针对核酸检测排队问题进行数学建模,旨在寻求最优的采样点和检测机构数量以及检测速度。
二、核酸检测排队问题描述假设某地区有多个核酸检测采样点,每个采样点可以采集到的样本数量有限。
同时,样本需要送到检测机构进行检测,检测机构的数量和检测速度也会影响整个检测过程。
在排队等待检测的过程中,每个采样点的样本到达检测机构的时间和排队等待时间之和称为总等待时间。
我们需要找到合适的采样点和检测机构数量以及检测速度,使得总等待时间最小。
三、数学建模思路和方法为了描述核酸检测排队问题,我们可以建立一个数学模型。
首先,我们设xij 表示第i 个采样点采集的样本送到第j 个检测机构进行检测,其中i=1,2,...,m;j=1,2,...,n。
同时,我们设f_i 表示第i 个采样点的样本到达检测机构的时间,g_j 表示第j 个检测机构的检测速度。
排队等待时间可以用一个矩阵H 来表示,其中H[i][j] 表示第i 个采样点的样本在第j 个检测机构排队等待的时间。
我们的目标是最小化总等待时间,即求解以下优化问题:min ∑(xij * H[i][j])s.t.∑xij = 1 (i=1,2,...,m) # 每个采样点的样本数量之和为1xij ≥ 0 (i=1,2,...,m; j=1,2,...,n) # 变量非负四、模型求解与分析通过数学建模的方法,我们可以求解出最优的采样点和检测机构数量以及检测速度。
在得到最优解之后,我们可以根据实际情况调整采样点和检测机构的工作策略,从而有效降低排队等待时间,提高检测效率。
核酸检测排队问题数学建模

核酸检测排队问题数学建模核酸检测是目前疫情防控中非常重要的一项措施,它能够快速、准确地检测出人体内是否存在新冠病毒。
然而,由于疫情的爆发,核酸检测的需求量大大增加,导致排队人数激增,排队时间也大大延长。
为了解决这一问题,我们可以运用数学建模的方法,通过对排队系统的分析和优化,来减少排队时间,提高核酸检测的效率。
首先,我们可以将核酸检测排队系统看作一个典型的排队论问题。
在这个系统中,人们排队等待核酸检测,每个人需要的检测时间是不同的,同时还受到其他因素的影响,比如核酸检测点的服务速度和人流量等。
为了建立模型,我们需要确定一些基本参数,比如平均服务速度、到达率以及排队长度。
通过对这些参数的测量和分析,可以得出排队系统的性质和特点。
其次,我们可以运用排队论中的一些经典模型来描述核酸检测的排队系统。
比如,我们可以使用M/M/1模型来描述只有一个服务台的情况,其中M表示到达过程和服务过程都是符合泊松分布的,1表示只有一个服务台。
通过这个模型,我们可以计算出系统的排队长度、平均等待时间和平均逗留时间等指标。
此外,如果有多个服务台,我们还可以使用M/M/c模型来进行模拟和计算。
除了基本的排队论模型,我们还可以考虑一些改进策略来优化核酸检测的排队系统。
例如,我们可以引入优先级机制,将一些特殊人群或者紧急情况优先安排,以减少其等待时间。
此外,我们还可以通过增加服务台的数量来提高服务效率,或者设置预约系统来避免过多人群集中在某个时间段内。
这些方法都可以在一定程度上提高核酸检测的排队效率。
最后,我们需要通过数据收集和分析来验证我们的模型和改进策略的有效性。
通过实际的排队时间和排队长度的测量,我们可以与模型计算的结果进行比较,从而评估我们的模型的准确性。
同时,我们还可以通过实际操作中的调整和改进来不断优化排队系统,使其更加适应实际情况。
综上所述,通过数学建模的方法来解决核酸检测排队问题是可行的。
通过对排队系统的分析和优化,我们可以减少排队时间,提高核酸检测的效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九届“新秀杯”校园数学建模竞赛摘要医院有一位医生值班,经长期观察,每小时平均有4个病人,医生每小时可诊断5人,病人的到来服从Poisson流,诊断时间服从负指数分布。
根据题目所给信息,可以很明显看出本题是单服务台的排队模型,因此需要用到排队理论来求解这些问题。
本题需要用到排队理论中最简单的M/M/1/∞/∞模型,通过对病人到来及诊断时间的统计研究,得出这些数量指标的统计规律。
针对问题一,通过分析任意时刻t内到达的病人数为n的概率,使用数学期望的方法,,可以得出平均病人数及等待的平均病人数。
由题目给出条件病人的到来服从参数为λ的泊松分布,诊断时间服从参数为μ负指数分布,可以得出病人的平均看病所需时间及病人平均排队等待时间。
以及分析该医院的服务强度,可以粗略的分析该科室的工作状况。
针对问题二,在问题一的条件基础下,要求99%的病人有座位。
可以先假设出座位个数,由于每个时刻病人到来的个数是随机且独立,不可能同时到达两批病人,考虑到来病人的个数与座位之间的关系,考虑病人数不同时,有座位的概率不同。
所以用独立事件概率的加法可以得出概率需要大于等于0.99,从而反推出所需座位数。
针对问题三,分析问题可得,需要求出单位平均损失可以通过题目每小时病人到来数可以得出平均每天医院到来数。
根据问题一结论,可以得出平均看病所花时间,从而求出每天的平均损失。
针对问题四,只需要利用问题一,问题二,问题三的结论并改变医生每小时诊断时间,嵌套进来就能求解。
关键字:排队理论M/M/1/∞/∞模型数学期望Poisson流负指数分布一、问题提出某单位医院的一个科室有一位医生值班,经长期观察,每小时平均有4个病人,医生每小时可诊断5人,病人的到来服从Poisson流,诊断时间服从负指数分布。
(1)试分析该科室的工作状况:(2)如要求99%以上的病人有座,该科室至少设多少座位?(3)如果该单位每天24小时上班,病人因看病1小时而耽误工作单位要损失30元,这样单位平均损失多少元?(4)如果该科室提高看病速度,每小时平均可诊断6人,单位每天可减少损失多少?可减少多少座位?二、模型的准备根据题目所给信息,可以很明显看出本题是单服务台的排队模型,日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,市内电话占线等现象。
该模型显著特点是:服务设施是一个或者多个,需要被服务的人是无限制的,因此被服务者需要等待一段时间,因此会出现排队现象,被服务者的到来是完全随机的。
因此排队论又称为随机服务系统理论,它是通过对服务对象到来及服务时间的统计研究,得出这些数量指标(等待时间、排队长度、忙期长短等)的统计规律,然后根据这些规律来改进服务系统的结构或重新组织被服务对象,使得服务系统既能满足服务对象的需要,又能使机构的费用最经济或某些指标最优。
排队系统又称服务系统。
服务系统由服务机构和服务对象构成。
排队系统包括三个组成部分:输入过程:考察的是顾客到达服务系统的规律。
它可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。
本题是病人随机到达且服从泊松分布。
排队规则:分为等待制、损失制和混合制三种。
当顾客到达时,所有服务机构都被占用,则顾客排队等候,即为等待制。
在等待制中,为顾客进行服务的次序可以是先到先服务,或后到先服务,或是随机服务和有优先权服务。
如果顾客来到后看到服务机构没有空闲立即离去,则为损失制。
有些系统因留给顾客排队等待的空间有限,因此超过所能容纳人数的顾客必须离开系统,这种排队规则就是混合制。
本题中不考虑优先制,而是先到先服务,且队伍可以无限长,不考虑容量问题。
服务机构:可以是一个或多个服务台。
多个服务台可以是平行排列的,也可以是串连排列的。
服务时间一般也分成确定型和随机型两种。
而随机型服务时间v 则服从一定的随机分布。
本题的服务台(医生)是有限且唯一的,诊断时间是随机的,且服从负指数分布。
排队论主要研究排队系统运行的效率,估计服务质量。
因此,研究排队问题,首先要确定判断系统运行优劣的基本量化指标,并求出这些指标的概率分布和数学特征。
要研究的系统运行指标主要有:1、排队模型的表示X/Y/Z/A/B/CX—顾客相继到达的间隔时间的分布;Y—服务时间的分布;M—负指数分布、D—确定型、Ek —k阶爱尔兰分布;Z—服务台个数;A—系统容量限制(默认为∞);B—顾客源数目(默认为∞);C—服务规则(默认为先到先服务FCFS)。
2、排队系统的衡量指标队长Ls—系统中的顾客总数;排队长Lq—队列中的顾客数;逗留时间Ws—顾客在系统中的停留时间;等待时间Wq—顾客在队列中的等待时间;忙期—服务机构两次空闲的时间间隔;服务强度ρ;稳态—系统运行充分长时间后,初始状态的影响基本消失,系统状态不再随时间变化。
3、到达间隔时间与服务时间的分布泊松分布;负指数分布;爱尔兰分布;Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松在1838年时发表。
泊松分布的参数是单位时间(或单位面积)内随机事件的平均发生率。
泊松分布适合于描述单位时间内随机事件发生的次数。
泊松分布的期望和方差均为λ。
负指数分布又称指数分布。
泊松事件流的等待时间(相继两次出现之间的间隔)服从指数分布。
指数函数的一个重要特征是无记忆性。
这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。
即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
如果指数分布的参数为λ,则指数分布的期望为1/λ。
根据以上资料,解决本题的科室的工作状态问题,只需要运用排队论中最简单的单服务台,即M/M/1/∞/∞模型即可。
下面通过对该问题进行排队论模型嵌套进行求解。
三、模型假设1.首先确定医生的接待能力、病人的客源为无限大,且排除医生,病人的心理因素及插队等意外情况的发生。
2.排队只排一排,根据先到先得的原则,且每次医生只看一个病人,且每个病人肯定能得出诊断。
3.假设每段时间到来的病人数基本稳定,不会出现剧增和很长一段时间无人看病的问题。
四、符号说明符号意义n 任意时刻t内到达的病人数(个)Ls 平均病人数(个)Lq 等待的平均病人数(个)Ws 病人的平均看病(包括等待时间)时间(h) Wq 病人平均排队等待时间(h)λ单位时间内到达病人的平均数(个/h)μ单位时间内能诊断完的病人的平均数(个/h)m 座位数(个)T 看病耽误的时间(h)Q 损失的钱(元)ρ服务强度五、模型建立与解决:问题1模型建立与解决问题1模型建立:已知病人的到来服从Poisson流,即服从参数为λ的泊松分布,其中λ表示单位时间内到达病人的平均数。
医生诊断时间服从参数为μ的负指数分布,其中μ表示单位时间内能诊断完的病人的平均数。
1)设任意时刻t内到达的病人数为n的概率为P n(t),病人的到来服从泊松分布,因此单位时间内病人的到达数服从X~P(λ),则时间间隔△t为内病人到来的数目为G~P(λ△t)。
则△t内1个病人到达的概率为P(G=1)=λ△t*e-λ△t=λ△t+o△t,反之没有病人到达的概率为P(G=0)=1-λ△t*e-λ△t=1-λ△t+o△t2)由于医生的诊断时间Y~E(μ),故病人被诊断时,1个病人被诊断完的概率为P{Y≤Δt }=1 -e-μ△t=μΔt + o(Δt),没有被诊断完的概率为1-μΔt + o(Δt)。
3)在t+△t时刻考虑n个病人到来的概率P n(t+△t),△t足够小的情况下,有以下4种情况:①t时刻系统中有n个病人到来,没有病人到来且没有病人诊断完毕,其概率为:[1-λ△t+o(△t)][ 1-μ△t+o(△t)]= (1-λ△t-μ△t)+o(△t);②t时刻系统中有n+1个病人到来,没有病人到来且有1个病人诊断完毕,其概率为:[1-λ△t+o(△t)][μ△t+o(△t)]=μ△t+o(△t);③ t时刻系统中有n-1个病人到来,有1个病人到来且没有病人诊断完毕,其概率为:[λ△t+o(△t)][1-μ△t+o(△t)]= λ△t+o(△t);④其他状态的概率为o(△t)。
由于四种情况相互独立且不可能同时发生,所以得到系统中有n个病人到来的概率P n(t+△t)满足:P n(t+△t)= P n(t)(1-λ△t-μ△t)+P n+1(t)μ△t+P n-1(t)λ△t+ o(△t)移项整理,两边同除以△t,得:=λP n-1(t)+μP n+1(t)-(λ+μ)P n(t)+令△t→0,得:=λP n-1(t)+μP n+1(t)-(λ+μ)P n(t) n=1,2…当n=0 时,因为:P0(t+△t)= P0(t)(1-λ△t)+ P1(t)(1-λ△t)μ△t+ o(△t)所以有:= -λP0(t)+μP1(t)对于稳态情形,与t无关,其导数为零。
因此,得到:问题1模型求解:这是关于Pn 的差分方程,也反映出了系统状态的转移关系,即每一状态都=(λ/μ)n(n≥1)是平衡的,求解得:=(λ/μ),递推可得P由概率的性质知=1,将上式代入λ/μ<1 时可得到=1-λ/μ,P=(1-λ/μ)(λ/μ)n因为病人到达规律服从参数为λ的泊松分布,诊断时间服从参数为μ的负指数分布,其期望值就分别为λ,1/μ。
所以λ表示单位时间内平均到达的病人数,μ表示单位时间内能诊断完的病人数。
如果令ρ=λ/μ,这时ρ就表示相同时间内病人到达的平均数与能被诊断的平均数之比,它是刻画诊断效率和医院利用程度的重要标志,称ρ为服务强度。
上面在ρ<1的条件下得到了稳定状态下的概率Pn,n=0,1,2,…其实,如果ρ>1,可以证明排队长度将是无限增加的,即使ρ=1的情况下,P0(t)也是随时间而变化的,系统达不到稳定状态. 因此,这里只讨论ρ<1 时情况,从上面的推导知:P n=(1-ρ) ρn n=1,2…则服务系统的运行指标为:(1) 队长(平均病人数):由于系统的状态为n 时即系统中有n个病人,由期望的定义得:(2) 排队长:(等待的平均病人数)=λ/(μ-λ)可以证明,病人在系统中看病时间服从参数为μ- 的负指数分布。
因此,有(3) 系统中病人的平均看病时间:(4) 系统中病人的平均等待时间:=题目中每小时平均有4个病人,医生每小时可诊断5人,病人的到来服从Poisson 流,诊断时间服从负指数分布。
可以得到医院平均病人数:(人)医院等待的平均病人数:(人)病人的平均看病(包括等待时间)时间:h病人平均排队等待时间:h医院当中没有病人的概率为:1-=0.2病人到来不需要等待的概率即是医院中没有病人的概率问题一结论:由上结果可得,病人到来不需要等待的概率为0.2,医院平均病人数为4人,医院等待的平均病人数为3.2人,病人的平均看病(包括等待时间)时间为1h,病人平均排队等待时间为0.8h。