数学建模食堂排队问题共15页文档

合集下载

食堂排队-数学建模-参考修改

食堂排队-数学建模-参考修改

食堂排队问题建模引言在学校里,我们常常可以看到这样的情景:下课后,许多同学争相跑向食堂去买饭,为数不多的食堂窗口前没过几分钟就排满了长长的队伍,本来空荡荡的食堂也立即变得拥挤不堪。

饥肠辘辘的同学们见到这种长蛇阵,怎能不怨声载道呢?增加窗口数量,减少排队等待时间,是同学们十分关心的问题。

然而就食堂角度来看,虽然增加窗口数量可以减少排队等待时间,提高学生对食堂的满意程度,从而赢得更多同学到该食堂来就餐。

但是,同时也会增加食堂的运营成本。

因此,如何在这两者之间进行权衡,找到最佳的窗口数量,对学生和食堂双方来说都是很重要的。

本论文将根据西区五餐厅食堂中午的拥挤状况建立数学模型,通过各方面因素的分析,为其拥挤状况找到一个比较合理的解决方案。

摘要1.首先,我分析了一些调查数据,发现学生流符合泊松分布,服务时间符合指数分布,由此,我们的模型就变成了排队理论模型,根据模型公式中的各项效率指标公式,我们可得到学生食堂拥挤情况的各方面数据。

2.根据模型求解得到的数据,我对模型进行了更精确的分析。

分析发现,解决本模型的关键就在于分析学生平均排队时间,如果对其窗口数进行关系拟合,就两者之间的关系进行分析。

3.针对窗口数与顾客平均排队时间之间的关系,比较增加窗口后成本的增加量与减少排队等待时间所带来的收益之间的关系,得出食堂每排设5个窗口比较合理。

关键词排队论 M\M\n模型模型的建立与分析由于周六周日学校基本上没课,所以学生去食堂的时间较分散,很少有排长队的现象,在这里就只对周一至周五食堂拥挤情况进行分析。

经过调查分析,我发现一般打到饭的同学都能找到座位吃饭,因此,可以认为食堂的座位数是足够的,不需要添加新的桌椅。

所以解决食堂拥挤状况,主要解决排长队的问题。

就此问题建立模型,进行分析。

调查数据统计从12月28到1月1中午食堂吃饭学生的分别情况做一统计:见下表:由概率论的知识可知,若分布满足:k p p k λ=-1k 则该分布为泊松分布。

数学建模优秀论文-食堂就餐模型

数学建模优秀论文-食堂就餐模型

学校食堂就餐问题摘要本文主要利用数学建模解决学校食堂就餐问题,通过我们的随机调查取样和学校食堂及餐厅相关人员提供的相应数据,并结合西校区宿舍、教学区和食堂的规划布局,建立起了衡量就餐服务质量及学生就餐分布规律的数学模型。

模型一:建立了就餐服务满意度模型。

我们讨论得知影响学生就餐满意指标的因素可能为:餐饮品种和质量、饭菜价格;宿舍、教学楼和食堂的位置关系;食堂容量;周末和非周末;服务态度、食堂清洁卫生,其他等因素。

我们通过调查将各个因素在影响人们对食堂满意度的评价上选择的比例高低列入表格,根据比重,我们确立了满意度指标为餐饮品种与质量,饭菜价格,宿舍、教学楼和食堂的位置关系,食堂容量。

就这四个因素,我们建立起了简单优化模型,利用综合评分法算出各个食堂的总得分,通过数据拟合发现与实际情况相符。

模型二;建立了学生就餐分布规律对食堂经营影响的回归模型。

从学生就餐分布规律来解决食堂供求关系,进而较准确的预测不同时间段、不同日期的就餐人数,以减少资源的浪费,提高餐厅的服务质量和广大师生的满意度。

通过使用回归分析研究各个时间段学生就餐分布规律,按照剩余标准偏差和拟合优度选定了学生各个时间段所占比重的时间序列回归方程。

为以后近似的预测师生在食堂的就餐分布规律,建立模型,定量刻画各食堂特定时间早餐,午餐和晚餐以及周一至周五,周末和节假日等就餐人数的分布规律,优化食堂经营管理,方便师生就餐。

根据这些情况我总结了我们学校餐饮体系的优缺点,优点我们要继承发扬,缺点我们要改进。

既然食堂与我们学生的日常生活息息相关,所以食堂的管理必须引起我们的高度重视,所以,为完善我们学校食堂的管理体系,征集许多学生的意见,提出了一些有效的改进办法。

如适当增加学校食堂的座位和打饭窗口,使食物的种类更丰富,更营养更健康等等。

关键词:优化模型综合评分回归模型方差分析一、问题的提出我校目前有多个学生食堂,每天供约四万人(学生,教职员工)就餐。

就西校区而言,25000左右学生分布在南村和北村两个宿舍区,在两个教学区(包含四座教学楼和两座实验楼)上课,师生就餐主要集中在南村食堂和北村饮食一条街。

食堂就餐问题(数学建模)

食堂就餐问题(数学建模)
模型求解 在模型中根据调查的数据进行计算,第 i 个学生对第 j 个食堂第 k 项 的重要性评分所得对应的绝对权数 Aijk= ; 有相对权数与绝对权数的计算方法我们得到学生整体对第 j 个食堂 第 k 项的重要性评分所得对应的绝对权数 Ajk= ; 根据数据计算第 i 个学生对第 j 个食堂第 k 项评价指标的重要性评分 所得对应的相对权数 Bijk=; 则学生整体对第 j 个食堂第 k 项的评价指标的重要性评分所得对应的 相对权数 Bjk=; 第 i 个学生对第 j 个食堂的指标评分所得相对应满意度的绝对权数是 Cij=, 由绝对权数得学生整体对第 j 个食堂的指标评分所得相对应的满意 度相对权数是 Cj= 第 i 名受访学生对 j 食堂就餐绝对满意度指标 Dij= 学生整体对 j 食堂就餐的相对满意度指标 Dj=; 由此得到食堂整体满意度的评分 Dj;
由此我们建立回归模型。 对应的多元线性回归预测模型如下: Y=β0+β1XX1+β2X2+β3X3+β4X4+β5X4+β6X6+β7X7
自变量 X 与因变量 Y 的值如下表:
Y
X
X
X
X
X
X
X
1
2
3
4
5
6
7
正阳 7.8 5.8 4.7 4.9 5
5.2 5.8
晨曦 6.7 5.7 5.5 4.7 4.9 5.2 5.3
12、学生整体对 j 食堂第 k 项的相对满意度设为 Eij;
五、模型的分析及建立
5.1 模型一、
评测指标的设计
学生满意测评的指标体系设计是否合理,直接影响到结果的真实性和
有用性。结合学生对于食堂服务,价格,环境等方面综合考虑。确定

数学建模-食堂排队问题

数学建模-食堂排队问题

数学建模论文——食堂排队问题指导老师:***小组成员: 姓名学号李晟源200807010409 自己闲来无事做的,仅供参考![摘要]通过应用排队论,为食堂窗口服务工作构建相应的定量模型,为节约学生排队就餐时间,提高食堂服务质量,效率,以及平衡学生排队时间与食堂收益之间的关系,优化食堂资源配置提供一种较有效的管理决策手段。

[关键词]排队论;M/M/s模型;灵敏度;等待损失1.引言在学校里,常常可以看到这样的情况:下课后,许多同学正想跑到食堂买饭,小小的买饭窗口前没过几分钟便排成了长长的队伍,本来空荡荡的食堂立即变得拥挤不堪。

饥肠辘辘的学生门见到这种长蛇阵,怎能不怨声载道。

增加窗口数量,减少排队等待时间,是学生们十分关心的问题。

然而就食堂的角度来说,虽说增加窗口数量可以减少排队等待时间,提高学生对该食堂的满意度,从而赢得更多的学生到该食堂就餐,但是同时也会增加食堂的运营成本,因此如何在这两者之间权衡,找到最佳的窗口数量,对学生和食堂双方来说都是很重要的。

排队论是通过研究各种服务系统的排队现象,解决服务系统最优设计和最优化控制的一门科学。

本文将根据食堂排队状况建立数学模型,运用排队论的观点进行分析,通过比较各方面因素的关系,为其拥挤状况找到一个较合理的解决方案。

2.多服务台排队系统的数学模型2.1排队论及M/M/s模型。

排队论是研究排队系统(又称为随即服务系统)的数学理论和方法,是运筹学的一个重要分支。

在日常生活中,人们会遇到各种各样的排队问题。

排队问题的表现形式往往是拥挤现象。

排队系统的一般形式符号为:X/Y/Z/A/B/C。

其中:X表示顾客相继到达时间间隔的分布;Y表示服务时间的分布;Z表示服务台的个数;A表示系统的容量,即可容纳的最多顾客数;B表示顾客源的数目;C 表示服务规则。

排队论的基本问题是研究一些数量指标在瞬时或平稳状态下的概率分布及其数字特征,了解系统运行的基本特征;系统数量指标的统计推断和系统的优化问题等。

数学建模——食堂就餐问题

数学建模——食堂就餐问题

某高校设有第1、2、3、4四个食堂,学生可以在任意一处就餐,假设现在学校准备在上述四处中挑选一处增开阅报栏,主要挑选依据是在就餐人数最多的食堂增开阅报人数的分布趋势,并且选择最合适的阅报栏地址。

二、问题的假设1、假设食堂没有扩建;2、假设各个食堂间的竞争是良性的;3、假设本校学生全部在食堂就餐,该校共有3000名学生。

三、符号说明n :选取的进行考察的时间段(:,)x k :取出矩阵x 的第k 列A :分别在这4个食堂就餐的概率组成的矩阵()i x k :在第i 个食堂就餐k 次的学生人数,1,2,3,4i =,0,1,2,3k =……四、模型的分析本题主要是考虑阅报栏的开设问题,所以只要从第1食堂、第2食堂、第3食堂和第4食堂中选取一个就餐人数最多的食堂开设阅报栏,以保证更多的阅读人数就可以了。

对于这个问题,我们可以考虑运用差分方程模型来求解,利用表格中所给的学生就餐地点变化的概率,再运用绘图程序画出变化趋势图,可以更加直观的看出在哪个食堂就餐的人数最多,最占优势,然后在那个食堂开设阅报栏即可。

五、模型的建立与求解5.1.1模型的建立记学生在食堂就餐第k 次的人数分别为1()x k ,2()x k ,3()x k ,4()x k ,据此可写出在食堂就餐第1k +次的人数为1234(1),(1),(1),(1)x k x k x k x k ++++,(0,1,2,3k =……)。

由题目所给数据可知,第一次在第1食堂就餐的概率为0.60,0.20,0.15,0.05,第二次在第1食堂就餐的概率为0.60,0.25,0.10,0.10,所以可得在第1食堂就餐的学生数量的差分方程为:11234(1)0.60()0.25()0.10()0.10()x k x k x k x k x k +=+++; 类似可得:在第2食堂就餐的学生数量的差分方程为:21234(1)0.20()0.50()0.20()0.25()x k x k x k x k x k +=+++;在第3食堂就餐的学生数量的差分方程为:31234(1)0.15()0.10()0.55()0.50()x k x k x k x k x k +=+++;在第4食堂就餐的学生数量的差分方程为:41234(1)0.05()0.15()0.15()0.15()x k x k x k x k x k +=+++;综上所述,我们可得一阶差分方程组如下:11234212343123441234(1)0.60()0.25()0.10()0.10()(1)0.20()0.50()0.20()0.25()(1)0.15()0.10()0.55()0.50()(1)0.05()0.15()0.15()0.15()x k x k x k x k x k x k x k x k x k x k x k x k x k x k x k x k x k x k x k x k +=+++⎧⎪+=+++⎪⎨+=+++⎪⎪+=+++⎩ 用矩阵表示为:11223344(1)()0.600.250.100.10(1)()0.200.500.200.25(1)()0.150.100.550.500.050.150.150.15(1)()x k x k x k x k x k x k x k x k +⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪+ ⎪ ⎪⎪= ⎪ ⎪⎪+ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭用matlab 编程计算出()x k 的值,观察4个食堂就餐的学生人数的变化情况,见附录。

数学建模_食堂问题

数学建模_食堂问题

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号)学校食堂就餐问题摘要:食堂满意度一直是学生和食堂最关心的问题,如何定量评价食堂满意度却有一定难度,本文提出基于大量的调查问卷数据,将评价食堂的指标量化,结合Saaty比较尺度的取值范围,将其分为1-9个档次。

通过建立4层关系图,将影响食堂排名的重要指标分别列出。

利用层次分析法(AHP)并进行组合分析,求出各个指标的权重,经检验都具有令人满意的一致性,最终得到量化了的满意度,从量化的角度进行刻画更加直观。

对于食堂人数预测,我们考虑到可以通过将校园分割成几个区域,将距离作为一个变量,综合了第一问题食堂满意度综合分析,建立多元回归方程,求出相应的预测人数,特别的具体情况具体分析,结合海大食堂情况具体分析,使结果具有一定的针对性,从而更加有说服力。

这两文我们均采用MATLAB进行演算,MATLAB在处理大量数据上啊的优势得到充分的体现,我们的工作量得到有效减少,计算结果也得到了保障,另外我们将程序进行改进,实现了模块化,收录在附录二中,为以后其他相关数据处理提供了有力参考。

有关饭店餐桌布局问题(数学建模)

有关饭店餐桌布局问题(数学建模)

安徽工程科技学院课程设计用纸计算机数学建模课程设计——饭店餐桌的布局问题【】专业:班级:姓名:学号:序号:指导老师:二00九年六月十日目录一问题的重述 (2)二模型的假设 .. (3)三模型的分析 (3)四模型的建立和求解 (3)4.1 餐厅为8*12.5m2的矩形 (4)【4.11】不考虑吧台及门 (4)【4.12】考虑吧台及门 (6)4.2 饭店大堂为直角L型 (8)【4.21】考虑吧台及门 (8)【4.22】不考虑吧台及门 (9)4.3 大堂为其他形状及应注意的问题 (9)五模型的推广 (10)参考文献:.................................................. 错误!未定义书签。

课程设计任务书 .. (11)饭店餐桌的布局问题摘要饭店餐桌的布局对于一个饭店有着很重要的作用。

本文讨论的就是饭店餐桌的布局问题,根据实际需求及规定建立模型,同时考虑餐桌的类型及规格,尤其是餐桌的摆放技巧,保证使饭店能容纳的人数达到最大。

根据所需餐桌的数量以及就餐人数分布情况,作出在不同情况下餐桌的摆放示意图。

一、问题的重述进饭店大堂吃饭,常见到四人桌只坐两人,并且还有人排队。

这是因为另外的客人不愿或不被欢迎加到该桌,由此可设想,若多些两人桌,可望多容纳客人。

假设就餐时一起来就餐的人数分布为现有200m2左右的大厅,针对以下情况讨论,如何设计饭桌的布局,以尽量多容纳客人。

1.餐厅为8×12.5 m2矩形,不考虑门及巴台;2.餐厅为直角L型,由6×10 m2和6×6.6 m2两矩形合成;3.考虑门及巴台讨论1,2;4.讨论其他的餐厅形状,布局问题中什么问题是重要的。

餐桌、巴台、门、通道等的尺寸可自行考察设定。

二、模型的假设由题意我们可以作出假设:1、假设就餐时一起来就餐的人数分布为:2、一起来的顾客共用餐桌,不是一起来的就不共用一个餐桌。

3、餐厅里提供一人餐桌,二人餐桌和四人餐桌都是长方形饭桌和一个供多人吃饭的多人圆桌。

关于食堂就餐问题的数学建模

关于食堂就餐问题的数学建模

关于食堂就餐问题的数学建模
一、问题描述
在一次聚餐时,希望给每位参加聚餐的人从价值最大化的角度来提供一顿佳肴。

现共有n位参加人员,每位参加者对菜的偏好都是不同的,每种菜的价格和口味也各不相同,为了尽可能满足每位参加者的偏好,需要用最优化的方法求出购买的菜单,使得每位参加者的满意度最大化。

二、建模描述
假设有m种菜,可以表示为X1,X2,X3,...,Xm,其中Xi代表第i 种菜。

目标函数:
求解:
最大化
Y=∑XijVij
其中,Xij表示第i种菜每位参加者的量,Vij表示每位参加者对第i种菜的满意度。

约束条件:
(1) ∑Xij=n,其中n为聚餐人数
(2) Xi≥0,其中i=1,2,...,m,即每种菜只能买正数
(3) ∑XijCij≤P,其中Cij表示第i种菜的价格,P表示购买菜品总价格。

三、模型的解决
本问题可以使用数学规划来求解,具体的求解方法可以采用模拟退火、遗传算法等算法来实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档