第三章零维纳米材料( 精品)

合集下载

0维纳米材料

0维纳米材料

纳米粉
应用
(一)纳米涂层 纳米涂层是运用表面技术,将部分或全部含有纳米粉的材料涂于基体,由于纳米粉体的独特表面
性质,从而赋予材料新的各种性质。 ① 可以做成表面涂料从而改变物质表面的光学性质。 ②纳米红外涂层。 ③纳米紫外涂层。 ④纳米隐身技术。
(二)环境保护方面的应用 矿物能源的短缺,环境污染困扰着人们,纳米材料在环境保护,环境治理和减少污染方面的应用,
缺点:是设备要求较高,投资 较大
液相法::溶胶-凝胶(SOL-GEL)法、 水 热 (hydrothermal synthesis) 法 和 沉 淀 (co-precipitation) 法 等 。 其 中SOL-GEL得到广泛的应用。
主要原因是:①操作简单,处理时间 短,无需极端条件和复杂仪器设备; ②各组分在溶液中实现分子级混合, 可制备组分复杂大分布均匀的各种纳 米粉;③适应性强,不但可以制备微 粉,还可以方便的用于制备纤维、薄 膜、多孔载体和复合材料。
三维
纳米多层膜பைடு நூலகம்纳米阵列 纳米多孔材料 纳米复合材料
PART TWO 纳米粉
纳米粉
定义
纳 米 粉 也 叫 纳 米 颗 粒 , 一 般 指 尺 寸 在 1100nm之间的超细粒子,有人称它是超微粒子。 它的尺度大于原子簇而又小于一般的微粒。
纳米粉
制备方法
气相法:化学气相沉积(CVD, chemical vapor deposition)、 激 光 气 相 沉 积 (LCVD, laser chemical vapor deposition)、 真空蒸汽和电子束和射线束溅 射等
纳米球在电子显微镜下的状态
纳米球
作用机理
纳米球是一种以多元合金为原料的纳米级尺度的球状原子团簇,能够吸附在受损的摩擦表面,形成新 的超高硬度、极低摩擦系数、抗磨损、耐腐蚀的保护膜,实现润滑、修复和保护作用,实验显示其摩擦阻 力仅为普通润滑剂的1/3。同时,纳米球润滑剂在润滑和修复的同时,提高了机械密封型,控制燃料和空 气比重,燃料燃烧更充分,增强发动机动力,减少不完全燃烧过程中产生的多种有害气体污染,实现节能 和减排的目的。

无机纳米材料

无机纳米材料
粒子小,比表面积急遽变化增大,表面原子数增多,表面能高,原子配位不足,使得表面原子具有高活性,不稳定,易结合。(书17页,图1.21,1.22)
体积效应
纳米材料由有限个原子或分子组成,改变了由无数个原子或分子组成的集体属性,物质本身性质也发生了变化,这种由体积改变引起的效应称为体积效应。 如:金属纳米微粒与金属块体材料的性质不同。
纳米稀土复合氧化物做荧光材料 溶胶凝胶法制备镧-钼复合氧化物超细微粒催化剂(对苯甲醛的选择性)
纳米稀土复合氧化物 及其他纳米复合氧化物
其他无机纳米材料
单击此处添加小标题
纳米SiC的制备:固-固法,固-液法
单击此处添加小标题
应用:制备复合陶瓷(书,141)
单击此处添加小标题
纳米CaCO3的制备与应用
纳米SiC的制备与应用
PLEASE ENTER YOUR TITLE HERE
word
纳米CaCO3的制备与应用
添加标题
CaCO3的分类
添加标题
按粒径 微粒CaCO3;粒1-5μm
添加标题
微细CaCO3;0.1-1μm
添加标题
超细CaCO3;0.02-0.1μm
纳米二氧化硅
纳米二氧化硅是极其重要的高科技超微细无机新材料之一,因其粒径很小,比表面积大,表面吸附力强,表面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。纳米二氧化硅俗称“超微细白炭黑”,广泛用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂,橡胶补强剂,塑料充填剂,油墨增稠剂,金属软性磨光剂,绝缘绝热填充剂,高级日用化妆品填料及喷涂材料、医药、环保等各种领域。

0维纳米材料

0维纳米材料

0维纳米材料0维纳米材料是指在一维、二维和三维纳米材料的基础上,将纳米材料的尺寸进一步缩小至纳米级别的新型材料。

与传统的一维、二维和三维纳米材料相比,0维纳米材料具有更小的尺寸和更高的比表面积,因此在材料的物理、化学和生物学性质上表现出独特的特点。

本文将从0维纳米材料的定义、制备方法、性质和应用等方面进行介绍。

首先,0维纳米材料的定义。

0维纳米材料是指在三个空间维度上尺寸均在纳米级别的材料,也就是说,其长度、宽度和高度均小于100纳米。

由于其尺寸极小,因此0维纳米材料通常具有量子尺寸效应,表现出与宏观材料完全不同的物理和化学性质。

其次,0维纳米材料的制备方法。

目前,制备0维纳米材料的方法主要包括化学合成法、物理气相法、生物制备法等。

化学合成法是通过化学反应在溶液中合成纳米材料,物理气相法是利用物理气相沉积技术在高温高压条件下制备纳米材料,生物制备法则是利用生物体或生物体提取物作为模板合成纳米材料。

这些方法各有优缺点,可以根据具体需求选择合适的方法。

接下来,是0维纳米材料的性质。

由于其极小的尺寸,0维纳米材料通常具有较大的比表面积和量子尺寸效应。

这使得0维纳米材料在光电、磁电、热电、力学等性质上表现出与传统材料完全不同的特点。

例如,量子点是一种典型的0维纳米材料,具有较大的光学吸收截面和较高的荧光量子效率,因此在光电器件、生物成像等领域有着广泛的应用前景。

最后,是0维纳米材料的应用。

由于其独特的性质,0维纳米材料在光电器件、催化剂、生物医学、传感器等领域具有广泛的应用前景。

例如,量子点被广泛应用于LED显示屏、生物成像、太阳能电池等领域,纳米金刚石颗粒被用作高效的催化剂,纳米药物载体被用于肿瘤治疗等。

综上所述,0维纳米材料是一类具有独特物理、化学和生物学性质的纳米材料,其制备方法多样,性质独特,应用广泛。

随着纳米技术的不断发展,相信0维纳米材料在未来会有更广阔的应用前景。

《零维纳米材料》课件

《零维纳米材料》课件

零维纳米材料的研究前景
1 新材料的发现
纳米材料为开发新型材料 提供了巨大机遇。
2 跨学科合作
纳米领域需要物理学、化 、生物学等多学科的交 叉融合。
3 可持续发展
纳米技术有望推动能源、 环境和健康领域的可持续 发展。
总结回顾
通过本课件,我们对零维纳米材料的定义、种类、制备方法、应用和研究前景有了系统的了解。希望您对纳米 领域有了更深入的认识和兴趣,愿您继续探索科学的精彩世界。
《零维纳米材料》PPT课 件
欢迎来到《零维纳米材料》PPT课件,本课程将带您探索纳米领域的奇妙世界。 从定义到制备方法,从应用到研究前景,让我们一起深入了解零维纳米材料。
什么是零维纳米材料?
零维纳米材料是指那些在所有维度中尺寸都控制在纳米级别的材料。它们具 有独特的物理和化学特性,引起了科学家们的广泛关注。
2
气相法
通过控制气相反应的条件,将气体中的原子或分子聚集成纳米尺寸的物质。
3
物理法
利用物理方法如球磨、溅射等来制备纳米颗粒或纳米结构。
零维纳米材料的应用
电子学
纳米材料的特殊电学性质被应用 于高性能电子器件的制备。
医学
纳米药物递送系统可以实现精准 治疗,提高药物疗效。
能源
纳米材料在太阳能电池、储能材 料等领域展现出巨大潜力。
零维纳米材料的种类
量子点
具有尺寸相关的光学性质,广泛应用于显示技术和生物成像领域。
纳米线
具有高比表面积和优异的导电性能,用于传感器、能量储存等领域。
纳米颗粒
具有独特的化学反应性,用于催化剂、药物递送和生物医学应用等。
零维纳米材料的制备方法
1
溶液法
通过溶剂中超饱和度和反应条件的调控,控制纳米颗粒的生成。

零维纳米材料

零维纳米材料

零维纳米材料
零维纳米材料是一种新型材料,其特殊的结构和性质使其在材料科学和纳米技
术领域备受关注。

零维纳米材料是指在三个维度上均小于100纳米的纳米材料,通常具有独特的电子、光学、磁性和力学性质,因此被广泛应用于电子器件、传感器、催化剂等领域。

首先,零维纳米材料的特殊结构赋予其独特的性能。

由于其尺寸在纳米级别,
其电子在量子尺寸效应的影响下表现出不同于宏观材料的行为。

例如,零维纳米材料的能带结构和能级分布会发生改变,从而影响其电子传输性能。

此外,由于零维纳米材料的表面积大大增加,使得其在催化剂和传感器等领域具有更高的活性和灵敏度。

其次,零维纳米材料在电子器件方面具有巨大的潜力。

由于其尺寸小、电子迁
移率高和能带结构可调节等特点,零维纳米材料被广泛应用于新型纳米电子器件的制备中。

例如,零维纳米材料可以作为场效应晶体管的通道材料,具有优异的电子传输性能;此外,零维纳米材料还可以作为新型存储器件的介质层,实现高密度、低能耗的数据存储。

此外,零维纳米材料在光学和光电器件领域也有重要应用。

由于其尺寸接近光
波长的数量级,零维纳米材料表现出与光子的强耦合效应,可以用于制备纳米激光器、纳米光学器件等。

同时,零维纳米材料还具有优异的光电转换性能,可以应用于太阳能电池、光电探测器等领域。

总的来说,零维纳米材料由于其独特的结构和性能,在电子、光学、催化等领
域具有广阔的应用前景。

随着纳米技术的不断发展,相信零维纳米材料将会在未来的科技领域发挥越来越重要的作用。

第三章 零维纳米材料

第三章 零维纳米材料

图 颗粒由于布朗运动发生聚集
控制液相法制备过程中的“聚集” 是液相法中的关键科学问题之一
沉淀生长:共沉淀法\均匀沉淀法\金属醇盐水解\沉淀转化法 电解生长: 溶胶-凝胶法:
(1)共沉淀法:在含有多种阳离子的溶液中加入沉淀剂,使 金属阳离子全都完全沉淀的 方法称为共沉淀法。
共沉淀法又可主要分为两大类:①单相共沉淀,即沉淀物为单一化合 物或单相固溶体。该类沉淀的适用范围很窄,仅对有限的草酸盐 [Xm(C2O4)n]体系沉淀适用,可用于制备BaTiO3、PbTiO3等PZT系 电子陶瓷粉体。②混合物共沉淀,即沉淀产物为混合物。其过程较为 复杂,溶液中不同种类的阳离子可能不能同时沉淀(沉淀先后与溶液 的pH值有关)。
颗粒在做“布朗运动”时彼此会经常碰撞到,由于吸引作用,它们会 连接在一起。二次颗粒较单一粒子运动的速度慢,但仍有可能与其它 粒子发生碰撞,进而形成更大的团聚体,直到大到无法运动,从悬浮 体中沉降下来。这样的一个过程称为“聚集”(aggregation process), 如图所示。
x
RT t N A 3r
化学气相沉积是半导体工业中应用最为广泛的用来沉积多种材 料的技术,包括大范围的绝缘材料、大多数金属材料和金属合 金材料。其基本原理很简单:将两种或两种以上的气态原材料 导入到一个反应室内,然后它们相互之间发生化学反应,形成 一种新的材料,沉积到基片表面上。如沉积制备氮化硅材料 (Si3N4)就是由硅烷和氮反应而形成的。 CVD技术常常通过反应类型或者压力来分类,包括低压CVD (LPCVD)、常压CVD(APCVD)、亚常压CVD (SACVD)、超高真空CVD(UHCVD)、等离子体增强 CVD(PECVD)、高密度等离子体CVD(HDPCVD)以及快 热CVD(RTCVD)等。现在,大规模制备GaN宽禁带半导体 材料的主要方法是金属有机物CVD(MOCVD)。

3.纳米结构单元(1)

3.纳米结构单元(1)

二、纳米微粒

纳米微粒是指颗粒尺寸为纳米量级的超细微粒, 它的尺度大于原子簇(cluster),小于通常的 微粉

血液中的红细胞的大小为200~300nm,一般细 菌(例如,大肠杆菌)长度为200—600nm,引起 人体发病的病毒尺寸一般为几十纳米。因此, 纳米微粒的尺寸为红细胞和细菌的几分之一, 与病毒大小相当或略小些,这样小的物体只能 用高倍的电子显微镜进行观察
图3-9
碳纳米管

每个单壁管侧面由碳原子六边形组成, 两端由碳原子的五边形封顶。单壁碳纳 米管可能存在三种类型的结构,分别称 为单臂纳米管、锯齿形纳米管和手性纳 米管

这些类型的碳纳米管的形成,取决于碳 原子的六角阵二维石墨片是如何“卷起 来”形成圆筒形态
图3-10 按截面边缘形状区分的各种碳纳米管


理论计算和实验研究表明,单壁碳纳米管的杨 氏模量和剪切模量都与金刚石相当,其强度是 钢的100倍,而密度却只有钢的六分之一,是 一种新型的“超级纤维”材料

有学者曾对碳纳米管这种“超级纤维”材 料作了一个奇特的设想--用来制造太空升 降机的缆绳 如果人类将来真的有一天能够制造出太空 升降机用作从地球到外层空间站的通道的 话,碳纳米管缆绳将是唯一不会因为自重 而折断的材料
人造原子的意义

人造原子的一个重要特点是放入一个电子或拿出 一个电子很容易引起电荷涨落,放入一个电子相 当于对人造原子充电,这些现象是设计单电子晶 体管的物理基础 研究人造原子中电子的输运特性,特别是该系统 表现出的独有的量子效应将为设计和制造量子效 应原理性器件和纳米结构器件奠定理论基础

一维纳米结构单元
三、人造原子
人造原子(artificial atoms)有时称为量子 点,是20世纪90年代提出来的一个新概念。所谓 人造原子是由一定数量的实际原子组成的聚集体, 它们的尺寸小于l00nm

零维纳米材料

零维纳米材料

零维纳米材料
零维纳米材料是指在空间维度上为零维的纳米结构,也称为零维纳米粒子或纳米颗粒。

它们通常是由原子或分子构成的微观颗粒,具有特殊的物理和化学性质。

以下是几种常见的零维纳米材料:
1.量子点:量子点是一种具有三维尺寸范围,但在空间上是零维的纳米结构。

它们通常由几百到几千个原子组成,具有量子尺寸效应,能够通过控制其尺寸和组成来调节其光学、电学和磁学性质。

2.金属纳米颗粒:金属纳米颗粒是由金属原子构成的微小颗粒,具有良好的表面等离子共振效应和局域化表面等离子体共振效应,可以应用于催化、生物医学、光学传感等领域。

3.纳米荧光颗粒:纳米荧光颗粒是一种具有荧光特性的零维纳米结构,通常由半导体材料构成。

它们的荧光性质可以通过调节其尺寸、形状和表面修饰来调控,用于生物成像、荧光标记等应用。

4.纳米粒子:纳米粒子是一种广泛存在的零维纳米结构,通常由某种化合物或材料构成,如氧化物、硫化物、碳纳米粒子等。

它们具有特殊的光学、电学和磁学性质,在催化、传感、生物医学等领域有着重要应用。

5.夸克-胶子凝聚物:在高能物理学领域,夸克-胶子凝聚物被认为是零维的基本粒子结构,由夸克和胶子组成,具有特殊的强相互作用性质,是研究强子物理和量子色动力学的重要对象。

这些零维纳米材料具有独特的物理、化学和生物学性质,对于纳米科技的发展和应用具有重要意义。

通过精确控制其尺寸、形状、表面性质等参数,可以实现对其性质和功能的调控,拓展其在材料科学、纳米生物学、纳米医学等领域的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档